Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70041
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor董致韡(Chih-Wei Tung)
dc.contributor.authorChe-Wei Hsuen
dc.contributor.author許哲維zh_TW
dc.date.accessioned2021-06-17T03:40:18Z-
dc.date.available2019-03-05
dc.date.copyright2018-03-05
dc.date.issued2018
dc.date.submitted2018-02-07
dc.identifier.citationAggarwal, R.K., Brar, D.S., Nandi, S., Huang, N., and Khush, G.S. (1999). Phylogenetic relationships among Oryza species revealed by AFLP markers. Theor. Appl. Genet. 98, 1320–1328.
Allaby, R.G., Stevens, C., Lucas, L., Maeda, O., and Fuller, D.Q. (2017). Geographic mosaics and changing rates of cereal domestication. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 372.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410.
Alverson, A.J., Wei, X., Rice, D.W., Stern, D.B., Barry, K., and Palmer, J.D. (2010). Insights into the Evolution of Mitochondrial Genome Size from Complete Sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol. Biol. Evol. 27, 1436–1448.
Arbogast, B.S. (2001). Phylogeography: The History and Formation of Species. Integr. Comp. Biol. 41, 134–135.
Arrieta-Montiel, M.P., and Mackenzie, S.A. (2011). Plant Mitochondrial Genomes and Recombination. In Plant Mitochondria, (Springer, New York, NY), pp. 65–82.
Asaf, S., Khan, A.L., Khan, A.R., Waqas, M., Kang, S.-M., Khan, M.A., Shahzad, R., Seo, C.-W., Shin, J.-H., and Lee, I.-J. (2016). Mitochondrial Genome Analysis of Wild Rice (Oryza minuta) and Its Comparison with Other Related Species. PLOS ONE 11, e0152937.
Avise, J.C., and Wollenberg, K. (1997). Phylogenetics and the origin of species. Proc. Natl. Acad. Sci. 94, 7748–7755.
Barr, C.M., Neiman, M., and Taylor, D.R. (2005). Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. New Phytol. 168, 39–50.
Barrett, J.C., Fry, B., Maller, J., and Daly, M.J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinforma. Oxf. Engl. 21, 263–265.
Bentolila, S., and Stefanov, S. (2012). A reevaluation of rice mitochondrial evolution based on the complete sequence of male-fertile and male-sterile mitochondrial genomes. Plant Physiol. 158, 996–1017.
Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma. Oxf. Engl. 30, 2114–2120.
Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y., and Buckler, E.S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinforma. Oxf. Engl. 23, 2633–2635.
Buhay, J.E., and Crandall, K.A. (2005). Subterranean phylogeography of freshwater crayfishes shows extensive gene flow and surprisingly large population sizes. Mol. Ecol. 14, 4259–4273.
Cai, X., Fan, J., Jiang, Z., Basso, B., Sala, F., Spada, A., Grassi, F., and Lu, B.-R.(2013). The Puzzle of Italian Rice Origin and Evolution: Determining Genetic Divergence and Affinity of Rice Germplasm from Italy and Asia. PLoS ONE 8.
Cavalier-Smith, T. (2009). Predation and eukaryote cell origins: A coevolutionary perspective. Int. J. Biochem. Cell Biol. 41, 307–322.
Chang, C.-S., Liu, H.-L., Moncada, X., Seelenfreund, A., Seelenfreund, D., and Chung, K.-F. (2015). A holistic picture of Austronesian migrations revealed by phylogeography of Pacific paper mulberry. Proc. Natl. Acad. Sci. 112, 13537–13542.
Chaudhary, A., Chaudhary, S., Ghosh, A., Vuduthala, S., Singh, K.M., and Chikara, S.K.(2015). A Rapid, low cost, and efficient method for isolation of high quality mitochondrial DNA from <Emphasis Type='Italic'>Oryza sativa</Emphasis>. J. Crop Sci. Biotechnol. 18, 155–160.
Chen, L., and Liu, Y.-G. (2014). Male Sterility and Fertility Restoration in Crops. Annu. Rev. Plant Biol. 65, 579–606.
Chen, J.-M., Du, Z.-Y., Sun, S.-S., Gituru, R.W., and Wang, Q.-F. (2013). Chloroplast DNA Phylogeography Reveals Repeated Range Expansion in a Widespread Aquatic Herb Hippuris vulgaris in the Qinghai-Tibetan Plateau and Adjacent Areas. PLoS ONE 8.
Cheng, C., Motohashi, R., Tsuchimoto, S., Fukuta, Y., Ohtsubo, H., and Ohtsubo, E.(2003). Polyphyletic Origin of Cultivated Rice: Based on the Interspersion Pattern of SINEs. Mol. Biol. Evol. 20, 67–75.
Choi, J.Y., Platts, A.E., Fuller, D.Q., Hsing (邢禹依), Y.-I., Wing, R.A., and Purugganan, M.D. (2017). The Rice Paradox: Multiple Origins but Single Domestication in Asian Rice. Mol. Biol. Evol. 34, 969–979.
Civan, P., and Brown, T.A. (2016). Diversity patterns across 1,800 chloroplast genomes of wild (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.). BioRxiv 094482.
Civáň, P., Craig, H., Cox, C.J., and Brown, T.A. (2015). Three geographically separate domestications of Asian rice. Nat. Plants 1, 15164.
Clegg, M.T., Gaut, B.S., Learn, G.H., and Morton, B.R. (1994). Rates and patterns of chloroplast DNA evolution. Proc. Natl. Acad. Sci. U. S. A. 91, 6795–6801.
Consuegra, S., John, E., Verspoor, E., and de Leaniz, C.G. (2015). Patterns of natural selection acting on the mitochondrial genome of a locally adapted fish species. Genet. Sel. Evol. 47, 58.
Davila, J.I., Arrieta-Montiel, M.P., Wamboldt, Y., Cao, J., Hagmann, J., Shedge, V., Xu, Y.-Z., Weigel, D., and Mackenzie, S.A. (2011). Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis. BMC Biol. 9, 64.
Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., and Yates, C.J. (2011). A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57.
Fang, C., Ji, C., Luo, D., Wu, H., Li, H., Wu, H., Xu, H., Zheng, H., Guo, J., Chen, L., et al. (2013). A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat. Genet. 45, 573.
Fujii, S., Kazama, T., Yamada, M., and Toriyama, K. (2010). Discovery of global genomic re-organization based on comparison of two newly sequenced rice mitochondrial genomes with cytoplasmic male sterility-related genes. BMC Genomics 11, 209.
Fuller, D.Q. (2011). Pathways to Asian Civilizations: Tracing the Origins and Spread of Rice and Rice Cultures. Rice 4, 78–92.
Fuller, D.Q., and Qin, L. (2009). Water management and labour in the origins and dispersal of Asian rice. World Archaeol. 41, 88–111.
Fuller, D.Q., Sato, Y.-I., Castillo, C., Qin, L., Weisskopf, A.R., Kingwell-Banham, E.J., Song, J., Ahn, S.-M., and Etten, J. van (2010). Consilience of genetics and archaeobotany in the entangled history of rice. Archaeol. Anthropol. Sci. 2, 115–131.
Fulton, T.M. (Cornell U., Chunwongse, J., and Tanksley, S.D. (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Report. USA.
Furtado, A., Waters, D.L., Brozynska, M., Wambugu, P.W., and Henry, R.J. (2015). Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences. Sci. Rep. 5, 13957.
García-Alcalde, F., Okonechnikov, K., Carbonell, J., Cruz, L.M., Götz, S., Tarazona, S., Dopazo, J., Meyer, T.F., and Conesa, A. (2012). Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 28, 2678–2679.
Garris, A.J., Tai, T.H., Coburn, J., Kresovich, S., and McCouch, S. (2005). Genetic Structure and Diversity in Oryza sativa L. Genetics 169, 1631–1638.
Gross, B.L., and Zhao, Z. (2014). Archaeological and genetic insights into the origins of domesticated rice. Proc. Natl. Acad. Sci. 111, 6190–6197.
Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704.
Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 59, 307–321.
Hill, C., Soares, P., Mormina, M., Macaulay, V., Clarke, D., Blumbach, P.B., Vizuete-Forster, M., Forster, P., Bulbeck, D., Oppenheimer, S., et al. (2007). A mitochondrial stratigraphy for island southeast Asia. Am. J. Hum. Genet. 80, 29–43.
Holmes, E.C. (2004). The phylogeography of human viruses. Mol. Ecol. 13, 745–756.
Igarashi, K., Kazama, T., Motomura, K., and Toriyama, K. (2013). Whole Genomic Sequencing of RT98 Mitochondria Derived from Oryza rufipogon and Northern Blot Analysis to Uncover a Cytoplasmic Male Sterility-Associated Gene. Plant Cell Physiol. 54, 237–243.
Itabashi, E., Kazama, T., and Toriyama, K. (2009). Characterization of cytoplasmic male sterility of rice with Lead Rice cytoplasm in comparison with that with Chinsurah Boro II cytoplasm. Plant Cell Rep. 28, 233–239.
Janska, H., Sarria, R., Woloszynska, M., Arrieta-Montiel, M., and Mackenzie, S. (1998). Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. Plant Cell 10, 1163–1180.
Kazama, T., and Toriyama, K. (2016). Whole Mitochondrial Genome Sequencing and Re-Examination of a Cytoplasmic Male Sterility-Associated Gene in Boro-Taichung-Type Cytoplasmic Male Sterile Rice. PLOS ONE 11, e0159379.
Kazama, T., Itabashi, E., Fujii, S., Nakamura, T., and Toriyama, K. (2016). Mitochondrial ORF79 levels determine pollen abortion in cytoplasmic male sterile rice. Plant J. 85, 707–716.
Khush, G.S. (1997). Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35, 25–34.
Kim, H., Jung, J., Singh, N., Greenberg, A., Doyle, J.J., Tyagi, W., Chung, J.-W., Kimball, J., Hamilton, R.S., and McCouch, S.R. (2016). Population Dynamics Among six Major Groups of the Oryza rufipogon Species Complex, Wild Relative of Cultivated Asian Rice. Rice 9, 56.
Kmiec, B., Woloszynska, M., and Janska, H. (2006). Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr. Genet. 50, 149–159.
Knoop, V., Volkmar, U., Hecht, J., and Grewe, F. (2011). Mitochondrial Genome Evolution in the Plant Lineage. In Plant Mitochondria, (Springer, New York, NY), pp. 3–29.
Knowles, L.L., and Maddison, W.P. (2002). Statistical phylogeography. Mol. Ecol. 11, 2623–2635.
Kubo, T., and Newton, K.J. (2008). Angiosperm mitochondrial genomes and mutations. Mitochondrion 8, 5–14.
Kumagai, M., Kanehara, M., Shoda, S., Fujita, S., Onuki, S., Ueda, S., and Wang, L. (2016). Rice Varieties in Archaic East Asia: Reduction of Its Diversity from Past to Present Times. Mol. Biol. Evol. 33, 2496–2505.
Kurtz, S., Choudhuri, J.V., Ohlebusch, E., Schleiermacher, C., Stoye, J., and Giegerich, R. (2001). REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29, 4633–4642.
Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C., and Salzberg, S.L. (2004). Versatile and open software for comparing large genomes. Genome Biol. 5, R12.
Lander, E.S., Getz, G., Thorvaldsdóttir, H., Robinson, J.T., Mesirov, J.P., Guttman, M., and Winckler, W. (2011). Integrative genomics viewer.
Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359.
Lefort, V., Longueville, J.-E., and Gascuel, O. (2017). SMS: Smart Model Selection in PhyML. Mol. Biol. Evol. 34, 2422–2424.
Li, C., Zhou, A., and Sang, T. (2006). Rice Domestication by Reducing Shattering. Science 311, 1936–1939.
Li, C., Sun, C., Xie, D., Liu, F., Cai, H., Tan, L., Wang, X., Li, X., Sun, X., Fu, Y., et al. (2008). Control of a key transition from prostrate to erect growth in rice domestication. Nat. Genet. 40, 1360.
Li, C., Zheng, H., Tang, H., Zhou, J., Guo, J., Chen, L., Ye, S., Xie, X., Zheng, X., Zhao, X., et al. (2017). Multi-step formation, evolution, and functionalization of new cytoplasmic male sterility genes in the plant mitochondrial genomes. Cell Res. 27, 130.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and 1000 Genome Project Data Processing Subgroup (2009). The Sequence Alignment/Map format and SAMtools. Bioinforma. Oxf. Engl. 25, 2078–2079.
Lin, Z., Griffith, M.E., Li, X., Zhu, Z., Tan, L., Fu, Y., Zhang, W., Wang, X., Xie, D., and Sun, C. (2007). Origin of seed shattering in rice (Oryza sativa L.). Planta 226, 11–20.
Londo, J.P., Chiang, Y.-C., Hung, K.-H., Chiang, T.-Y., and Schaal, B.A. (2006). Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc. Natl. Acad. Sci. 103, 9578–9583.
Lowe, T.M., and Eddy, S.R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964.
Luo, D., Lin, H.-X., Gao, J.-P., Jin, J., Yang, J., Zhu, M.-Z., Shi, M., and Huang, W.(2008). Genetic control of rice plant architecture under domestication. Nat. Genet. 40, 1365.
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303.
Merow, C., Smith, M.J., and Silander, J.A. (2013). A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069.
Moison, M., Roux, F., Quadrado, M., Duval, R., Ekovich, M., Lê, D.-H., Verzaux, M., and Budar, F. (2010). Cytoplasmic phylogeny and evidence of cyto-nuclear co-adaptation in Arabidopsis thaliana. Plant J. 63, 728–738.
Molina, J., Sikora, M., Garud, N., Flowers, J.M., Rubinstein, S., Reynolds, A., Huang, P., Jackson, S., Schaal, B.A., Bustamante, C.D., et al. (2011). Molecular evidence for a single evolutionary origin of domesticated rice. Proc. Natl. Acad. Sci. 108, 8351–8356.
Morisita, M. (1959) Measuring the Dispersion and the Analysis of Distribution Patterns. Memoires of the Faculty of Science, Kyushu University, Series E Biology, 2, 215-235.
Moritz, C. (1994). Defining “Evolutionarily Significant Units” for conservation. Trends Ecol. Evol. 9, 373–375.
Nei, M., and Li, W.H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76, 5269–5273.
Notsu, Y., Masood, S., Nishikawa, T., Kubo, N., Akiduki, G., Nakazono, M., Hirai, A., and Kadowaki, K. (2002). The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol. Genet. Genomics 268, 434–445.
Okazaki, M., Kazama, T., Murata, H., Motomura, K., and Toriyama, K. (2013). Whole Mitochondrial Genome Sequencing and Transcriptional Analysis to Uncover an RT102-Type Cytoplasmic Male Sterility-Associated Candidate Gene Derived from Oryza rufipogon. Plant Cell Physiol. 54, 1560–1568.
Okonechnikov, K., Conesa, A., and García-Alcalde, F. (2016). Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinforma. Oxf. Engl. 32, 292–294.
Oldenburg, D.J., and Bendich, A.J. (2015). DNA maintenance in plastids and mitochondria of plants. Front. Plant Sci. 6.
Radosavljevic, A., and Anderson, R.P. (2014). Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643.
Rand, D.M., Haney, R.A., and Fry, A.J. (2004). Cytonuclear coevolution: the genomics of cooperation. Trends Ecol. Evol. 19, 645–653.
Rice, P., Longden, I., and Bleasby, A. (2000). EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. TIG 16, 276–277.
Richards, M., Macaulay, V., Hickey, E., Vega, E., Sykes, B., Guida, V., Rengo, C., Sellitto, D., Cruciani, F., Kivisild, T., et al. (2000). Tracing European Founder Lineages in the Near Eastern mtDNA Pool. Am. J. Hum. Genet. 67, 1251–1276.
Rito, T., Richards, M.B., Fernandes, V., Alshamali, F., Cerny, V., Pereira, L., and Soares, P. (2013). The First Modern Human Dispersals across Africa. PLOS ONE 8, e80031.
Rose, R.J., McCurdy, D.W., and Sheahan, M.B. (2001). Plant Mitochondria. In ELS, (John Wiley & Sons, Ltd), p.
Sang, T., and Ge, S. (2007). Genetics and phylogenetics of rice domestication. Curr. Opin. Genet. Dev. 17, 533–538.
Shannon, C.E. (1997). The mathematical theory of communication. 1963. MD Comput. Comput. Med. Pract. 14, 306–317.
Shaw, J., Lickey, E.B., Schilling, E.E., and Small, R.L. (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am. J. Bot. 94, 275–288.
Sloan, D.B., Alverson, A.J., Chuckalovcak, J.P., Wu, M., McCauley, D.E., Palmer, J.D., and Taylor, D.R. (2012). Rapid Evolution of Enormous, Multichromosomal Genomes in Flowering Plant Mitochondria with Exceptionally High Mutation Rates. PLOS Biol. 10, e1001241.
Soares, P.A., Trejaut, J.A., Rito, T., Cavadas, B., Hill, C., Eng, K.K., Mormina, M., Brandão, A., Fraser, R.M., Wang, T.-Y., et al. (2016). Resolving the ancestry of Austronesian-speaking populations. Hum. Genet. 135, 309–326.
Spellerberg, L. F. 1991. Monitoring ecological change, 14-326. University Press, Cambridge.
Sweeney, M.T., Thomson, M.J., Cho, Y.G., Park, Y.J., Williamson, S.H., Bustamante, C.D., and McCouch, S.R. (2007). Global Dissemination of a Single Mutation Conferring White Pericarp in Rice. PLOS Genet. 3, e133.
Thorvaldsdóttir, H., Robinson, J.T., and Mesirov, J.P. (2013). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192.
Tian, X., Zheng, J., Hu, S., and Yu, J. (2006). The Rice Mitochondrial Genomes and Their Variations. Plant Physiol. 140, 401–410.
Toda, T., and Toriyama, K. (2013). Re-sequencing of mitochondrial genes in a standard rice cultivar Nipponbare. Rice 6.
Tong, W., Kim, T.-S., and Park, Y.-J. (2016). Rice Chloroplast Genome Variation Architecture and Phylogenetic Dissection in Diverse Oryza Species Assessed by Whole-Genome Resequencing. Rice 9.
Tsitrone, A., Kirkpatrick, M., and Levin, D.A. (2003). A model for chloroplast capture. Evol. Int. J. Org. Evol. 57, 1776–1782.
Vaughan, D.A., Lu, B.-R., and Tomooka, N. (2008). The evolving story of rice evolution. Plant Sci. 174, 394–408.
Wang, A., Fujiyama, A., Toyoda, A., Han, B., Li, C., Zhu, C., Zhou, C., Fan, D., Dong, G., Lu, H., et al. (2012). A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497.
Wang, H., Xu, X., Vieira, F.G., Xiao, Y., Li, Z., Wang, J., Nielsen, R., and Chu, C. (2016). The Power of Inbreeding: NGS-Based GWAS of Rice Reveals Convergent Evolution during Rice Domestication. Mol. Plant 9, 975–985.
Wang, H., Vieira, F.G., Crawford, J.E., Chu, C., and Nielsen, R. (2017). Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice. Genome Res. gr.204800.116.
Weller, S.K., and Sawitzke, J.A. (2014). Recombination Promoted by DNA Viruses: Phage λ to Herpes Simplex Virus. Annu. Rev. Microbiol. 68, 237–258.
White, D.J., Wolff, J.N., Pierson, M., and Gemmell, N.J. (2008). Revealing the hidden complexities of mtDNA inheritance. Mol. Ecol. 17, 4925–4942.
Wilson, A.C., Stoneking, M., and Cann, R.L. (1987). Mitochondrial DNA and human evolution. Nature 325, 31.
Wolfe, K.H., Li, W.H., and Sharp, P.M. (1987). Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. U. S. A. 84, 9054–9058.
Woloszynska, M. (2010). Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes—though this be madness, yet there’s method in’t. J. Exp. Bot. 61, 657–671.
Wyman, S.K., Jansen, R.K., and Boore, J.L. (2004). Automatic annotation of organellar genomes with DOGMA. Bioinforma. Oxf. Engl. 20, 3252–3255.
Yang, C., Kawahara, Y., Mizuno, H., Wu, J., Matsumoto, T., and Itoh, T. (2012). Independent Domestication of Asian Rice Followed by Gene Flow from japonica to indica. Mol. Biol. Evol. 29, 1471–1479.
Yu, C., Hu, F., Zhang, F., Zhang, G., Jensen, J.D., Wang, J., Li, J., Wang, J., Kristiansen, K., Huang, L., et al. (2012). Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat. Biotechnol. 30, 105.
Zeltz, P., Kadowaki, K., Kubo, N., Maier, R.M., Hirai, A., and Kössel, H. (1996). A promiscuous chloroplast DNA fragment is transcribed in plant mitochondria but the encoded RNA is not edited. Plant Mol. Biol. 31, 647–656.
Zhang, L.-B., Zhu, Q., Wu, Z.-Q., Ross-Ibarra, J., Gaut, B.S., Ge, S., and Sang, T.(2009). Selection on grain shattering genes and rates of rice domestication. New Phytol. 184, 708–720.
Zhang, T., Hu, S., Zhang, G., Pan, L., Zhang, X., Al-Mssallem, I.S., and Yu, J. (2012). The Organelle Genomes of Hassawi Rice (Oryza sativa L.) and Its Hybrid in Saudi Arabia: Genome Variation, Rearrangement, and Origins. PLOS ONE 7, e42041.
Zhu, Q., Zheng, X., Luo, J., Gaut, B.S., and Ge, S. (2007). Multilocus Analysis of Nucleotide Variation of Oryza sativa and Its Wild Relatives: Severe Bottleneck during Domestication of Rice. Mol. Biol. Evol. 24, 875–888.
Zuo, X., Lu, H., Jiang, L., Zhang, J., Yang, X., Huan, X., He, K., Wang, C., and Wu, N. (2017). Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene. Proc. Natl. Acad. Sci. 114, 6486–6491.(2014). The 3,000 rice genomes project. GigaScience 3.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70041-
dc.description.abstract植物的細胞質基因組是由兩種胞器的基因組所組成,分別為粒線體和葉綠體。在生化機制上,兩者於呼吸作用和光合作用中個別扮演著極其重要的角色。細胞質基因組有著與細胞核基因組不同的特性,為一單親本遺傳的單倍體基因組。因此細胞質基因組的遺傳訊息不會與來自另一親本的細胞質基因組進行重組而產生基因漸滲,換句話說,細胞質基因組的譜系歷史近似於單一基因且其來源為單一親本。這些特徵使其被廣泛應用於追溯族群的起源地與遷徙軌跡,而這種結合遺傳上親緣關係與地理學的研究被稱為親緣地理學 (phylogeography) 。本研究一共分析了 4140 種具遺傳多樣性的稻屬 (Oryza) 品系,包括了 3671 種亞洲栽培稻(Oryza sativa)、456 種亞洲野生稻 (Oryza rufipogon)、11 種澳洲野生稻 (Oryza meridionalis)、1 種非洲栽培稻 (Oryza glaberrima) 及 1 種非洲野生稻 (Oryza barthii)。透過分析4140 個稻種細胞質基因組的重定序 (resequencing) 資料,共分別於葉綠體和粒線體基因組中偵測到 665 和 882 個具高可信度的單一核苷酸多型性 (single nucleotide polymorphism, SNP) 。根據親緣分析 (phylogenetic analysis) 和主成分分析 (principle component analysis, PCA) 的結果,將4140 個稻種細胞質基因組分成15 個細胞質群 (cytogroup) ,並以此分群作為基準,描述細胞質基因組的遺傳歧異度和族群結構。親緣地理分析的結果顯示每個細胞質群都有獨特的地理分佈。本研究進一步利用歷史上的氣候資料進行野生稻生態棲位的模擬 (ecological niche modeling, ENM) ,探索野生稻族群於歷史上及地理上的消長,並由結果推論野生稻的歧異度中心(center of diversity )為中南半島(SEA1)。依據考古證據,本研究假定野生稻最早被利用及馴化的地理區位於長江下游流域。透過建立不同族群的ENM,我們推論最早於長江下游流域被馴化的栽培稻為稉稻 (Oryza sativa spp. japonica) 。除了SNP 之外,本研究利用14 個已發表的水稻粒線體基因組開發出了9 個可代表序列間大片段插入和刪除(indels)的PAV (presence/absence variation) 分子標誌,能用於捕捉植物粒線體基因組所特有的大規模結構變異 (large-scale structural variation) ,而這些PAV分子標誌不僅提高了親緣地理分析的解析度,還與細胞質雄不稔 (cytoplasmic male sterility, CMS)有密切關聯。基因註解 (annotation) 與對偶基因頻度於不同細胞質群的分佈,暗示著細胞質群間功能上的差異。研究中發現 COX3 (cytochrome C oxidase 3) 和ATP6 (ATP synthase 6) 等組成呼吸作用中電子傳遞鏈 (electron transport chain, ETC) 的重要蛋白質,其替代等位基因 (alternative allele) 只存在於特定的細胞質群。這些等位基因很可能影響水稻於不同地理環境中的適應性。總結而言,本研究提供了水稻種原保護和利用的參考,以及進一步探究水稻的演化、細胞質核交互作用 (nucleo-cytoplasmic interaction) 和細胞質效應 (cytoplasmic effect) 的基石。zh_TW
dc.description.abstractIn plants, cytoplasmic genomes consist of genome from two organelles, chloroplast (cpDNA) and mitochondria (mtDNA). Each organelle plays a biochemically vital role in terms of photosynthesis and respiration. Cytoplasmic genomes have distinct characteristics from nuclear genome. Cytoplasmic genomes are inherited uniparentally as a haploid, which suggests that there is little adulteration of genetic information due to recombination or introgression from another parent. In other words, their genealogical history is analogous to that of a single gene. For reasons mentioned above, they are widely adopted to infer the geographical origins and migration events of populations. The approach utilizing both phylogenetics and geology is called phylogeography. In this research, 4140 diverse rice accessions were analyzed. Among 4140 accessions, there are 3671 Asian cultivated rice (Oryza sativa), 456 Asian wild rice (Oryza rufipogon), 11 Australian wild rice (Oryza meridionalis), 1 African cultivated rice (Oryza glaberrima) and 1 African wild rice (Oryza barthii). Through mining the resequencing data of these 4140 accessions, 665 and 882 high quality single nucleotide polymorphism (SNP) were identified in cpDNA and mtDNA respectively. 15 distinct cytogroups, which represent cytoplasmic genetic diversity and population structure, were then determined by both phylogenetic analysis and principle component analysis (PCA). Construction of phylogeography showed that each cytogroup had a unique geographical distribution. We further incorporated historical climate data to perform ecological niche modeling (ENM) of wild rice, which revealed demographic history of wild rice population across geographical regions. From the results, we deduced that center of diversity in wild rice was Indochina peninsula (SEA1). In this study, we assumed the region where the earliest wild rice cultivation and subsequent domestication occurred at lower Yangtze basin in China. By building ENMs of different populations, we suggested that the first cultivated subgroup being domesticated at lower Yangtze basin was japonica rice. In addition to SNP variation, complexed large-scale structural variation unique to plant mtDNA was captured by nine presence/absence variation (PAV) markers identified in 14 published de-novo assembled mtDNA sequences. These mitochondria-specific PAV markers represent large indel variation among genomes and some of them were associated with cytoplasmic male sterility (CMS). In addition, these PAV markers improved resolution of phylogeography of wild rice population. Distribution of allele frequency in annotated coding genes implied that functional differences could exist among cytogroups, alternative alleles of important electron transport chain (ETC) genes cytochrome c oxidase 3 (cox3) and ATP synthase 6 (atp6) were only found in specific cytogroups. These alternative alleles can be crucial for rice to adapt in diverse geographical environments. In summary, this research gave insights into germplasm conservation and management, and provided references for further investigation of rice evolution and how nucleo-cytoplasmic interaction and cytoplasmic effects affect rice adaptation.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:40:18Z (GMT). No. of bitstreams: 1
ntu-107-R05621108-1.pdf: 33709816 bytes, checksum: d16e131de2667c79e0db727fde9bfe05 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書----------------------------------------------------------------------------------3
誌謝--------------------------------------------------------------------------------------------------4
摘要 Abstract --------------------------------------------------------------------------------------5
Figure index----------------------------------------------------------------------------------------10
Table index-----------------------------------------------------------------------------------------14
Abbreviation---------------------------------------------------------------------------------------15
Chapter 1. Genetic diversity and population structure of rice cytoplasmic genomes---16
Introduction---------------------------------------------------------------------------------16
Material and methods----------------------------------------------------------------------22
Results and discussion---------------------------------------------------------------------29
Chapter 2. Structural variation of rice mitochondrial genome-----------------------------40
Introduction---------------------------------------------------------------------------------40
Material and methods----------------------------------------------------------------------44
Results and discussion---------------------------------------------------------------------48
Chapter 3. Phylogeography and ecological niche modeling--------------------------------56
Introduction---------------------------------------------------------------------------------56
Material and methods----------------------------------------------------------------------59
Results and discussion---------------------------------------------------------------------61
Concluding remarks and perspectives---------------------------------------------------73
Reference-------------------------------------------------------------------------------------------76
Figure-----------------------------------------------------------------------------------------------87
Table-----------------------------------------------------------------------------------------------157 Supplementaries---------------------------------------------------------------------------------166
dc.language.isoen
dc.title水稻細胞質基因組之遺傳與親緣地理分析zh_TW
dc.titleGenetic and phylogeographic analysis of cytoplasmic genomes (mitochondria, chloroplast) in rice (Oryza)en
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡育彰(Yu-Chang Tsai),李承叡(Cheng-Ruei Lee)
dc.subject.keyword水稻,細胞質,粒線體,葉綠體,親緣地理學,生態棲位模擬,馴化,細胞質雄不稔,種原保護與探勘,zh_TW
dc.subject.keywordrice,cytoplasm,mitochondria,chloroplast,phylogeography,ecological niche modeling,domestication,CMS,germplasm conservation and management,en
dc.relation.page166
dc.identifier.doi10.6342/NTU201800392
dc.rights.note有償授權
dc.date.accepted2018-02-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
32.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved