請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70037
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 邱智賢(Chiu-Chih Hsien) | |
dc.contributor.author | Mu-En Wang | en |
dc.contributor.author | 王沐恩 | zh_TW |
dc.date.accessioned | 2021-06-17T03:40:06Z | - |
dc.date.available | 2018-03-02 | |
dc.date.copyright | 2018-03-02 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-02-08 | |
dc.identifier.citation | Aburto, M.R., Hurle, J.M., Varela-Nieto, I., and Magarinos, M. (2012). Autophagy during vertebrate development. Cells 1, 428-448.
ADA (2017). Standards of Medical Care in Diabetes-2017: Summary of Revisions. Diabetes Care 40, S4-S5. Airhart, S., Cade, W.T., Jiang, H., Coggan, A.R., Racette, S.B., Korenblat, K., Spearie, C.A., Waller, S., O'Connor, R., Bashir, A., et al. (2016). A Diet Rich in Medium-Chain Fatty Acids Improves Systolic Function and Alters the Lipidomic Profile in Patients With Type 2 Diabetes: A Pilot Study. J Clin Endocrinol Metab 101, 504-512. Alastair Burt, L.F., Stefan Hubscher, Alastair Burt, Bernard Portmann, and Linda Ferrell (2012). MacSween’s Pathology of the Liver, 6 edn (Elsevier). Alers, S., Loffler, A.S., Wesselborg, S., and Stork, B. (2012). Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32, 2-11. Apovian, C.M., Bigornia, S., Mott, M., Meyers, M.R., Ulloor, J., Gagua, M., McDonnell, M., Hess, D., Joseph, L., and Gokce, N. (2008). Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol 28, 1654-1659. Appelmans, F., Wattiaux, R., and De Duve, C. (1955). Tissue fractionation studies. 5. The association of acid phosphatase with a special class of cytoplasmic granules in rat liver. Biochem J 59, 438-445. Bach, M., Larance, M., James, D.E., and Ramm, G. (2011). The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. Biochem J 440, 283-291. Ballestri, S., Romagnoli, D., Nascimbeni, F., Francica, G., and Lonardo, A. (2015). Role of ultrasound in the diagnosis and treatment of nonalcoholic fatty liver disease and its complications. Expert Rev Gastroenterol Hepatol 9, 603-627. Benjamin, A., Zubajlo, R., Thomenius, K., Dhyani, M., Kaliannan, K., Samir, A.E., and Anthony, B.W. (2017). Non-invasive diagnosis of non-alcoholic fatty liver disease (NAFLD) using ultrasound image echogenicity. Conf Proc IEEE Eng Med Biol Soc 2017, 2920-2923. Buscarini, L., Fornari, F., Bolondi, L., Colombo, P., Livraghi, T., Magnolfi, F., Rapaccini, G.L., and Salmi, A. (1990). Ultrasound-guided fine-needle biopsy of focal liver lesions: techniques, diagnostic accuracy and complications. A retrospective study on 2091 biopsies. J Hepatol 11, 344-348. Calzadilla Bertot, L., and Adams, L.A. (2016). The Natural Course of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 17. Cam, H., Easton, J.B., High, A., and Houghton, P.J. (2010). mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha. Mol Cell 40, 509-520. Caviglia, J.M., Gayet, C., Ota, T., Hernandez-Ono, A., Conlon, D.M., Jiang, H., Fisher, E.A., and Ginsberg, H.N. (2011). Different fatty acids inhibit apoB100 secretion by different pathways: unique roles for ER stress, ceramide, and autophagy. J Lipid Res 52, 1636-1651. Chalasani, N., Younossi, Z., Lavine, J.E., Charlton, M., Cusi, K., Rinella, M., Harrison, S.A., Brunt, E.M., and Sanyal, A.J. (2017). The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. Chan, E.Y. (2009). mTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex. Sci Signal 2, pe51. Cheng, D. (2005). Prevalence, predisposition and prevention of type II diabetes. Nutr Metab (Lond) 2, 29. Cheng, Y.H., Tsao, Y.C., Tzeng, I.S., Chuang, H.H., Li, W.C., Tung, T.H., and Chen, J.Y. (2017). Body mass index and waist circumference are better predictors of insulin resistance than total body fat percentage in middle-aged and elderly Taiwanese. Medicine (Baltimore) 96, e8126. Chung, J.O., Cho, D.H., Chung, D.J., and Chung, M.Y. (2012). Associations among body mass index, insulin resistance, and pancreatic beta-cell function in Korean patients with new-onset type 2 diabetes. Korean J Intern Med 27, 66-71. Cohen, J.C., Horton, J.D., and Hobbs, H.H. (2011). Human fatty liver disease: old questions and new insights. Science 332, 1519-1523. Cuervo, A.M. (2010). Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab 21, 142-150. Czaja, M.J., and Cuervo, A.M. (2009). Lipases in lysosomes, what for? Autophagy 5, 866-867. Czaja, M.J., Ding, W.X., Donohue, T.M., Jr., Friedman, S.L., Kim, J.S., Komatsu, M., Lemasters, J.J., Lemoine, A., Lin, J.D., Ou, J.H., et al. (2013). Functions of autophagy in normal and diseased liver. Autophagy 9, 1131-1158. Dancygier, H. (2010). Clinical Hepatology, Vol 1, 1 edn (Springer-Verlag Berlin Heidelberg). Davies, S.P., Helps, N.R., Cohen, P.T., and Hardie, D.G. (1995). 5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett 377, 421-425. den Besten, G., Bleeker, A., Gerding, A., van Eunen, K., Havinga, R., van Dijk, T.H., Oosterveer, M.H., Jonker, J.W., Groen, A.K., Reijngoud, D.J., et al. (2015). Short-Chain Fatty Acids Protect Against High-Fat Diet-Induced Obesity via a PPARgamma-Dependent Switch From Lipogenesis to Fat Oxidation. Diabetes 64, 2398-2408. Dulai, P.S., Sirlin, C.B., and Loomba, R. (2016). MRI and MRE for non-invasive quantitative assessment of hepatic steatosis and fibrosis in NAFLD and NASH: Clinical trials to clinical practice. J Hepatol 65, 1006-1016. Duncan, R.E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E., and Sul, H.S. (2007). Regulation of lipolysis in adipocytes. Annu Rev Nutr 27, 79-101. Eckel, R.H., Hanson, A.S., Chen, A.Y., Berman, J.N., Yost, T.J., and Brass, E.P. (1992). Dietary substitution of medium-chain triglycerides improves insulin-mediated glucose metabolism in NIDDM subjects. Diabetes 41, 641-647. Egan, D., Kim, J., Shaw, R.J., and Guan, K.L. (2011). The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7, 643-644. Farah, B.L., Landau, D.J., Sinha, R.A., Brooks, E.D., Wu, Y., Fung, S.Y., Tanaka, T., Hirayama, M., Bay, B.H., Koeberl, D.D., et al. (2016). Induction of autophagy improves hepatic lipid metabolism in glucose-6-phosphatase deficiency. J Hepatol 64, 370-379. Feng, Y., He, D., Yao, Z., and Klionsky, D.J. (2014). The machinery of macroautophagy. Cell Res 24, 24-41. Festa, A., Williams, K., D'Agostino, R., Jr., Wagenknecht, L.E., and Haffner, S.M. (2006). The natural course of beta-cell function in nondiabetic and diabetic individuals: the Insulin Resistance Atherosclerosis Study. Diabetes 55, 1114-1120. Forbes, J.M., and Cooper, M.E. (2013). Mechanisms of diabetic complications. Physiological reviews 93, 137-188. Fowler, M.J. (2011). Microvascular and Macrovascular Complications of Diabetes. Clinical Diabetes 29, 116-122. Frayn, K.N. (2002). Adipose tissue as a buffer for daily lipid flux. Diabetologia 45, 1201-1210. Fukuo, Y., Yamashina, S., Sonoue, H., Arakawa, A., Nakadera, E., Aoyama, T., Uchiyama, A., Kon, K., Ikejima, K., and Watanabe, S. (2014). Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease. Hepatol Res 44, 1026-1036. Funderburk, S.F., Wang, Q.J., and Yue, Z. (2010). The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. Trends Cell Biol 20, 355-362. Furuya, N., Yu, J., Byfield, M., Pattingre, S., and Levine, B. (2005). The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1, 46-52. Ganley, I.G., Lam du, H., Wang, J., Ding, X., Chen, S., and Jiang, X. (2009). ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284, 12297-12305. Goldstein, D.J. (1992). Beneficial health effects of modest weight loss. Int J Obes Relat Metab Disord 16, 397-415. Gonzalez-Rodriguez, A., Mayoral, R., Agra, N., Valdecantos, M.P., Pardo, V., Miquilena-Colina, M.E., Vargas-Castrillon, J., Lo Iacono, O., Corazzari, M., Fimia, G.M., et al. (2014). Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis 5, e1179. Gwinn, D.M., Shackelford, D.B., Egan, D.F., Mihaylova, M.M., Mery, A., Vasquez, D.S., Turk, B.E., and Shaw, R.J. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30, 214-226. Hanada, T., Noda, N.N., Satomi, Y., Ichimura, Y., Fujioka, Y., Takao, T., Inagaki, F., and Ohsumi, Y. (2007). The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282, 37298-37302. Hardie, D.G. (2007). AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8, 774-785. Hawley, S.A., Davison, M., Woods, A., Davies, S.P., Beri, R.K., Carling, D., and Hardie, D.G. (1996). Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271, 27879-27887. He, Q., Sha, S., Sun, L., Zhang, J., and Dong, M. (2016). GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway. Biochem Biophys Res Commun 476, 196-203. Holland, W.L., Bikman, B.T., Wang, L.P., Yuguang, G., Sargent, K.M., Bulchand, S., Knotts, T.A., Shui, G., Clegg, D.J., Wenk, M.R., et al. (2011). Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest 121, 1858-1870. Iannucci, L.F., Sun, J., Singh, B.K., Zhou, J., Kaddai, V.A., Lanni, A., Yen, P.M., and Sinha, R.A. (2016). Short chain fatty acids induce UCP2-mediated autophagy in hepatic cells. Biochem Biophys Res Commun 480, 461-467. Inami, Y., Yamashina, S., Izumi, K., Ueno, T., Tanida, I., Ikejima, K., and Watanabe, S. (2011). Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression. Biochem Biophys Res Commun 412, 618-625. Inc., B.-R.L. (2014). Handcasting Polyacrylamide Gels - Protocol. Inoki, K., Zhu, T., and Guan, K.L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590. Itakura, E., Kishi, C., Inoue, K., and Mizushima, N. (2008). Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19, 5360-5372. Itakura, E., and Mizushima, N. (2009). Atg14 and UVRAG: mutually exclusive subunits of mammalian Beclin 1-PI3K complexes. Autophagy 5, 534-536. Janiec, D.J., Jacobson, E.R., Freeth, A., Spaulding, L., and Blaszyk, H. (2005). Histologic variation of grade and stage of non-alcoholic fatty liver disease in liver biopsies. Obes Surg 15, 497-501. Javitt, N.B. (1990). Hep G2 cells as a resource for metabolic studies: lipoprotein, cholesterol, and bile acids. FASEB J 4, 161-168. Joseph, A.E., Dewbury, K.C., and McGuire, P.G. (1979). Ultrasound in the detection of chronic liver disease (the 'bright liver'). Br J Radiol 52, 184-188. Juarez-Hernandez, E., Chavez-Tapia, N.C., Uribe, M., and Barbero-Becerra, V.J. (2016). Role of bioactive fatty acids in nonalcoholic fatty liver disease. Nutrition journal 15, 72. Kabeya, Y., Mizushima, N., Yamamoto, A., Oshitani-Okamoto, S., Ohsumi, Y., and Yoshimori, T. (2004). LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117, 2805-2812. Karanasios, E., Walker, S.A., Okkenhaug, H., Manifava, M., Hummel, E., Zimmermann, H., Ahmed, Q., Domart, M.C., Collinson, L., and Ktistakis, N.T. (2016). Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nature communications 7, 12420. Kim, D.H., Sarbassov, D.D., Ali, S.M., King, J.E., Latek, R.R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D.M. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175. Kim, Y.M., Jung, C.H., Seo, M., Kim, E.K., Park, J.M., Bae, S.S., and Kim, D.H. (2015). mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol Cell 57, 207-218. Klaunig, J.E., Goldblatt, P.J., Hinton, D.E., Lipsky, M.M., Chacko, J., and Trump, B.F. (1981). Mouse liver cell culture. I. Hepatocyte isolation. In Vitro 17, 913-925. Klionsky, D.J. (2008). Autophagy revisited: a conversation with Christian de Duve. Autophagy 4, 740-743. Knowler, W.C., Barrett-Connor, E., Fowler, S.E., Hamman, R.F., Lachin, J.M., Walker, E.A., Nathan, D.M., and Diabetes Prevention Program Research, G. (2002). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346, 393-403. Koga, H., Kaushik, S., and Cuervo, A.M. (2010). Altered lipid content inhibits autophagic vesicular fusion. FASEB J 24, 3052-3065. Laing, S.P., Swerdlow, A.J., Slater, S.D., Burden, A.C., Morris, A., Waugh, N.R., Gatling, W., Bingley, P.J., and Patterson, C.C. (2003). Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia 46, 760-765. Leamy, A.K., Egnatchik, R.A., and Young, J.D. (2013). Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res 52, 165-174. Li, W.W., Li, J., and Bao, J.K. (2012). Microautophagy: lesser-known self-eating. Cell Mol Life Sci 69, 1125-1136. Liang, C., Lee, J.S., Inn, K.S., Gack, M.U., Li, Q., Roberts, E.A., Vergne, I., Deretic, V., Feng, P., Akazawa, C., et al. (2008). Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10, 776-787. Lin, C.W., Zhang, H., Li, M., Xiong, X., Chen, X., Chen, X., Dong, X.C., and Yin, X.M. (2013). Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J Hepatol 58, 993-999. Listenberger, L.L., Han, X., Lewis, S.E., Cases, S., Farese, R.V., Jr., Ory, D.S., and Schaffer, J.E. (2003). Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A 100, 3077-3082. Liu, F., Li, X., Lu, C., Bai, A., Bielawski, J., Bielawska, A., Marshall, B., Schoenlein, P.V., Lebedyeva, I.O., and Liu, K. (2016a). Ceramide activates lysosomal cathepsin B and cathepsin D to attenuate autophagy and induces ER stress to suppress myeloid-derived suppressor cells. Oncotarget 7, 83907-83925. Liu, H.Y., Hong, T., Wen, G.B., Han, J., Zuo, D., Liu, Z., and Cao, W. (2009). Increased basal level of Akt-dependent insulin signaling may be responsible for the development of insulin resistance. Am J Physiol Endocrinol Metab 297, E898-906. Liu, T.Y., Xiong, X.Q., Ren, X.S., Zhao, M.X., Shi, C.X., Wang, J.J., Zhou, Y.B., Zhang, F., Han, Y., Gao, X.Y., et al. (2016b). FNDC5 Alleviates Hepatosteatosis by Restoring AMPK/mTOR-Mediated Autophagy, Fatty Acid Oxidation and Lipogenesis in Mice. Diabetes. Lu, Z.H., Mu, Y.M., Wang, B.A., Li, X.L., Lu, J.M., Li, J.Y., Pan, C.Y., Yanase, T., and Nawata, H. (2003). Saturated free fatty acids, palmitic acid and stearic acid, induce apoptosis by stimulation of ceramide generation in rat testicular Leydig cell. Biochem Biophys Res Commun 303, 1002-1007. Madrigal-Matute, J., and Cuervo, A.M. (2016). Regulation of Liver Metabolism by Autophagy. Gastroenterology 150, 328-339. Maruyama, T., and Noda, N.N. (2017). Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. J Antibiot (Tokyo). McLaughlin, T., Sherman, A., Tsao, P., Gonzalez, O., Yee, G., Lamendola, C., Reaven, G.M., and Cushman, S.W. (2007). Enhanced proportion of small adipose cells in insulin-resistant vs insulin-sensitive obese individuals implicates impaired adipogenesis. Diabetologia 50, 1707-1715. Mei, S., Ni, H.M., Manley, S., Bockus, A., Kassel, K.M., Luyendyk, J.P., Copple, B.L., and Ding, W.X. (2011). Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes. J Pharmacol Exp Ther 339, 487-498. Mishra, P., and Younossi, Z.M. (2007). Abdominal ultrasound for diagnosis of nonalcoholic fatty liver disease (NAFLD). Am J Gastroenterol 102, 2716-2717. Mizushima, N. (2007). Autophagy: process and function. Genes Dev 21, 2861-2873. Mizushima, N., and Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell 147, 728-741. Morris, D.H., Yip, C.K., Shi, Y., Chait, B.T., and Wang, Q.J. (2015). Beclin 1-Vps34 Complex Architecture: Understanding the Nuts and Bolts of Therapeutic Targets. Front Biol (Beijing) 10, 398-426. Mrschtik, M., and Ryan, K.M. (2015). Lysosomal proteins in cell death and autophagy. FEBS J 282, 1858-1870. Murano, I., Barbatelli, G., Parisani, V., Latini, C., Muzzonigro, G., Castellucci, M., and Cinti, S. (2008). Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J Lipid Res 49, 1562-1568. Nagao, K., and Yanagita, T. (2010). Medium-chain fatty acids: functional lipids for the prevention and treatment of the metabolic syndrome. Pharmacol Res 61, 208-212. Nakatogawa, H., Ishii, J., Asai, E., and Ohsumi, Y. (2012). Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy 8, 177-186. Nguyen, T.B., Louie, S.M., Daniele, J.R., Tran, Q., Dillin, A., Zoncu, R., Nomura, D.K., and Olzmann, J.A. (2017). DGAT1-Dependent Lipid Droplet Biogenesis Protects Mitochondrial Function during Starvation-Induced Autophagy. Dev Cell 42, 9-21 e25. NIDDK (2016). Symptoms & Causes of Diabetes - What are the symptoms of diabetes? Novikoff, A.B., Beaufay, H., and De Duve, C. (1956). Electron microscopy of lysosomerich fractions from rat liver. J Biophys Biochem Cytol 2, 179-184. Ortiz-Lopez, C., Lomonaco, R., Orsak, B., Finch, J., Chang, Z., Kochunov, V.G., Hardies, J., and Cusi, K. (2012). Prevalence of prediabetes and diabetes and metabolic profile of patients with nonalcoholic fatty liver disease (NAFLD). Diabetes Care 35, 873-878. Pal, D., Dasgupta, S., Kundu, R., Maitra, S., Das, G., Mukhopadhyay, S., Ray, S., Majumdar, S.S., and Bhattacharya, S. (2012). Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 18, 1279-1285. Papamandjaris, A.A., MacDougall, D.E., and Jones, P.J. (1998). Medium chain fatty acid metabolism and energy expenditure: obesity treatment implications. Life Sci 62, 1203-1215. Park, J.M., Jung, C.H., Seo, M., Otto, N.M., Grunwald, D., Kim, K.H., Moriarity, B., Kim, Y.M., Starker, C., Nho, R.S., et al. (2016). The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy 12, 547-564. Pastors, J.G., Warshaw, H., Daly, A., Franz, M., and Kulkarni, K. (2002). The evidence for the effectiveness of medical nutrition therapy in diabetes management. Diabetes Care 25, 608-613. Perry, R.J., Samuel, V.T., Petersen, K.F., and Shulman, G.I. (2014). The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510, 84-91. Petersen, K.F., Dufour, S., Befroy, D., Lehrke, M., Hendler, R.E., and Shulman, G.I. (2005). Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes 54, 603-608. Polonsky, K.S., Given, B.D., Hirsch, L., Shapiro, E.T., Tillil, H., Beebe, C., Galloway, J.A., Frank, B.H., Karrison, T., and Van Cauter, E. (1988a). Quantitative study of insulin secretion and clearance in normal and obese subjects. J Clin Invest 81, 435-441. Polonsky, K.S., Given, B.D., and Van Cauter, E. (1988b). Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest 81, 442-448. Portillo-Sanchez, P., Bril, F., Maximos, M., Lomonaco, R., Biernacki, D., Orsak, B., Subbarayan, S., Webb, A., Hecht, J., and Cusi, K. (2015). High Prevalence of Nonalcoholic Fatty Liver Disease in Patients With Type 2 Diabetes Mellitus and Normal Plasma Aminotransferase Levels. J Clin Endocrinol Metab 100, 2231-2238. Ratziu, V., Charlotte, F., Heurtier, A., Gombert, S., Giral, P., Bruckert, E., Grimaldi, A., Capron, F., Poynard, T., and Group, L.S. (2005). Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 128, 1898-1906. Ricchi, M., Odoardi, M.R., Carulli, L., Anzivino, C., Ballestri, S., Pinetti, A., Fantoni, L.I., Marra, F., Bertolotti, M., Banni, S., et al. (2009). Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J Gastroenterol Hepatol 24, 830-840. Riserus, U., Arnlov, J., and Berglund, L. (2007). Long-term predictors of insulin resistance: role of lifestyle and metabolic factors in middle-aged men. Diabetes Care 30, 2928-2933. Rogov, V., Dotsch, V., Johansen, T., and Kirkin, V. (2014). Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53, 167-178. Ronis, M.J., Baumgardner, J.N., Sharma, N., Vantrease, J., Ferguson, M., Tong, Y., Wu, X., Cleves, M.A., and Badger, T.M. (2013). Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of non-alcoholic fatty liver disease. Exp Biol Med (Maywood) 238, 151-162. Rosner, M., Siegel, N., Valli, A., Fuchs, C., and Hengstschlager, M. (2010). mTOR phosphorylated at S2448 binds to raptor and rictor. Amino Acids 38, 223-228. Sahani, M.H., Itakura, E., and Mizushima, N. (2014). Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy 10, 431-441. Sanders, M.J., Grondin, P.O., Hegarty, B.D., Snowden, M.A., and Carling, D. (2007). Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J 403, 139-148. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676-682. Schonfeld, P., and Wojtczak, L. (2016). Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res 57, 943-954. Shi, H., Kokoeva, M.V., Inouye, K., Tzameli, I., Yin, H., and Flier, J.S. (2006). TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116, 3015-3025. Shimada, M., Hashimoto, E., Taniai, M., Hasegawa, K., Okuda, H., Hayashi, N., Takasaki, K., and Ludwig, J. (2002). Hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J Hepatol 37, 154-160. Shimobayashi, M., and Hall, M.N. (2016). Multiple amino acid sensing inputs to mTORC1. Cell Res 26, 7-20. Sinha, R.A., Farah, B.L., Singh, B.K., Siddique, M.M., Li, Y., Wu, Y., Ilkayeva, O.R., Gooding, J., Ching, J., Zhou, J., et al. (2014). Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology 59, 1366-1380. Sinha, R.A., You, S.H., Zhou, J., Siddique, M.M., Bay, B.H., Zhu, X., Privalsky, M.L., Cheng, S.Y., Stevens, R.D., Summers, S.A., et al. (2012). Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. J Clin Invest 122, 2428-2438. Sun, Q., Westphal, W., Wong, K.N., Tan, I., and Zhong, Q. (2010). Rubicon controls endosome maturation as a Rab7 effector. Proc Natl Acad Sci U S A 107, 19338-19343. Sun, Q., Zhang, J., Fan, W., Wong, K.N., Ding, X., Chen, S., and Zhong, Q. (2011). The RUN domain of rubicon is important for hVps34 binding, lipid kinase inhibition, and autophagy suppression. J Biol Chem 286, 185-191. Takagi, A., Kume, S., Kondo, M., Nakazawa, J., Chin-Kanasaki, M., Araki, H., Araki, S., Koya, D., Haneda, M., Chano, T., et al. (2016). Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation. Scientific reports 6, 18944. Takahashi, Y., Coppola, D., Matsushita, N., Cualing, H.D., Sun, M., Sato, Y., Liang, C., Jung, J.U., Cheng, J.Q., Mule, J.J., et al. (2007). Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9, 1142-1151. Takeshige, K., Baba, M., Tsuboi, S., Noda, T., and Ohsumi, Y. (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 119, 301-311. Tanaka, S., Hikita, H., Tatsumi, T., Sakamori, R., Nozaki, Y., Sakane, S., Shiode, Y., Nakabori, T., Saito, Y., Hiramatsu, N., et al. (2016). Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology 64, 1994-2014. Tandra, S., Yeh, M.M., Brunt, E.M., Vuppalanchi, R., Cummings, O.W., Unalp-Arida, A., Wilson, L.A., Chalasani, N., and Network, N.C.R. (2011). Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease. J Hepatol 55, 654-659. Tang, Y., Chen, Y.K., Jiang, H.M., and Nie, D.T. (2011). The role of short-chain fatty acids in orchestrating two types of programmed cell death in colon cancer. Autophagy 7, 235-237. Targher, G., Bertolini, L., Padovani, R., Rodella, S., Tessari, R., Zenari, L., Day, C., and Arcaro, G. (2007). Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care 30, 1212-1218. Thumm, M., Egner, R., Koch, B., Schlumpberger, M., Straub, M., Veenhuis, M., and Wolf, D.H. (1994). Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349, 275-280. Torres, D.M., and Harrison, S.A. (2013). NAFLD: Predictive value of ALT levels for NASH and advanced fibrosis. Nat Rev Gastroenterol Hepatol 10, 510-511. Tsukada, M., and Ohsumi, Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333, 169-174. Vinciguerra, M., Veyrat-Durebex, C., Moukil, M.A., Rubbia-Brandt, L., Rohner-Jeanrenaud, F., and Foti, M. (2008). PTEN down-regulation by unsaturated fatty acids triggers hepatic steatosis via an NF-kappaBp65/mTOR-dependent mechanism. Gastroenterology 134, 268-280. Wang, B., Fu, J., Li, L., Gong, D., Wen, X., Yu, P., and Zeng, Z. (2016a). Medium-chain fatty acid reduces lipid accumulation by regulating expression of lipid-sensing genes in human liver cells with steatosis. International journal of food sciences and nutrition 67, 288-297. Wang, B., Li, L., Fu, J., Yu, P., Gong, D., Zeng, C., and Zeng, Z. (2016b). Effects of Long-Chain and Medium-Chain Fatty Acids on Apoptosis and Oxidative Stress in Human Liver Cells with Steatosis. Journal of food science 81, H794-800. Weidberg, H., Shvets, E., Shpilka, T., Shimron, F., Shinder, V., and Elazar, Z. (2010). LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29, 1792-1802. Wein, S., Wolffram, S., Schrezenmeir, J., Gasperikova, D., Klimes, I., and Sebokova, E. (2009). Medium-chain fatty acids ameliorate insulin resistance caused by high-fat diets in rats. Diabetes Metab Res Rev 25, 185-194. Weyer, C., Tataranni, P.A., Bogardus, C., and Pratley, R.E. (2001). Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development. Diabetes Care 24, 89-94. WHO (2006). Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia - Report of a WHO/IDF Consultation. WHO (2016). Global report on diabetes (World Health Organization). Williams, K.H., Shackel, N.A., Gorrell, M.D., McLennan, S.V., and Twigg, S.M. (2013). Diabetes and nonalcoholic Fatty liver disease: a pathogenic duo. Endocr Rev 34, 84-129. Williamson, R.M., Price, J.F., Glancy, S., Perry, E., Nee, L.D., Hayes, P.C., Frier, B.M., Van Look, L.A., Johnston, G.I., Reynolds, R.M., et al. (2011). Prevalence of and risk factors for hepatic steatosis and nonalcoholic Fatty liver disease in people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Diabetes Care 34, 1139-1144. Wolfson, R.L., and Sabatini, D.M. (2017). The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway. Cell Metab 26, 301-309. Wurzer, B., Zaffagnini, G., Fracchiolla, D., Turco, E., Abert, C., Romanov, J., and Martens, S. (2015). Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy. Elife 4, e08941. Xie, Y., Cui, C., Nie, A., Wang, Y., Ni, Q., Liu, Y., Yin, Q., Zhang, H., Li, Y., Wang, Q., et al. (2017). The mTORC2/PKC pathway sustains compensatory insulin secretion of pancreatic beta cells in response to metabolic stress. Biochim Biophys Acta 1861, 2039-2047. Yajima, Y., Ohta, K., Narui, T., Abe, R., Suzuki, H., and Ohtsuki, M. (1983). Ultrasonographical diagnosis of fatty liver: significance of the liver-kidney contrast. Tohoku J Exp Med 139, 43-50. Yamaguchi, K., Yang, L., McCall, S., Huang, J., Yu, X.X., Pandey, S.K., Bhanot, S., Monia, B.P., Li, Y.X., and Diehl, A.M. (2007). Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45, 1366-1374. Yang, L., Li, P., Fu, S., Calay, E.S., and Hotamisligil, G.S. (2010). Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 11, 467-478. Younossi, Z.M., Koenig, A.B., Abdelatif, D., Fazel, Y., Henry, L., and Wymer, M. (2016). Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73-84. Zhang, Y., Rao, E., Zeng, J., Hao, J., Sun, Y., Liu, S., Sauter, E.R., Bernlohr, D.A., Cleary, M.P., Suttles, J., et al. (2017). Adipose Fatty Acid Binding Protein Promotes Saturated Fatty Acid-Induced Macrophage Cell Death through Enhancing Ceramide Production. J Immunol 198, 798-807. Zhong, J., Gong, W., Lu, L., Chen, J., Lu, Z., Li, H., Liu, W., Liu, Y., Wang, M., Hu, R., et al. (2017). Irbesartan ameliorates hyperlipidemia and liver steatosis in type 2 diabetic db/db mice via stimulating PPAR-gamma, AMPK/Akt/mTOR signaling and autophagy. Int Immunopharmacol 42, 176-184. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70037 | - |
dc.description.abstract | 由於生活作息與飲食習慣的改變,二型糖尿病(Type 2 Diabetes)與非酒精性脂肪肝病(non-alcoholic fatty liver disease, NAFLD)近年在全球的高盛行率已成為重要的臨床醫學議題。在致病機轉上,即便過去已有許多研究指出飽和脂肪酸(saturated fatty acids)相較於不飽和脂肪酸(unsaturated fatty acids)具有較高的毒性於誘發二型糖尿病與非酒精性脂肪肝,但卻鮮少有文獻對於飽和脂肪酸之碳鏈長度在其中所扮演之角色進行探究。雖然先前已有部分研究指出,中鏈脂肪酸(碳鏈長度在6至12碳之間之飽和脂肪酸)具有延緩二型糖尿病與非酒精性脂肪肝之功效,然目前對於其分子機轉仍有許多未知。為了釐清中鏈脂肪酸(medium-chain fatty acid)在保護二型糖尿病與非酒精性脂肪肝之可能機制,我們進行了一系列小鼠活體與離體細胞培養的試驗。利用以椰子油(coconut oil)部分取代高脂飼糧中豬油(lard)的方式,我們增加了小鼠高脂飼糧(high-fat diet)的中鏈脂肪酸比例,並餵飼小鼠16週。試驗結果顯示,增加飲食中的中鏈脂肪酸比例能顯著延緩高脂飼糧引發的二型糖尿病與非酒精性脂肪肝。並且,我們發現中鏈脂肪酸能夠減緩高脂飼糧引發之肝臟脂肪堆積、胰島素阻抗(insulin resistance)、細胞自噬(autophagy)抑制、內質網壓力(ER stress)以及細胞凋亡(apoptosis)。進一步利用離體培養肝臟細胞株HepG2的方式,我們發現中鏈脂肪酸能透過調控肝臟細胞自噬的方式降低長鏈脂肪酸造成之油脂堆積、胰島素阻抗以及脂毒性(lipotoxicity)。更重要的是,我們發現中鏈脂肪酸並非透過活化調控初期細胞自噬(early-stage autophagy)的AMPK/mTOR/ULK1訊息傳遞路徑,而是以降低後期細胞自噬(late-stage autophagy)負調控者Rubicon蛋白之表現量達到回復肝臟細胞自噬流(autophagic flux)之效果。綜上所述,我們在此研究中清楚地證明除了飽和程度以外,脂肪酸之碳鏈長度也在脂肪酸造成的肝臟細胞自噬功能下降與脂毒性產生中扮演重要角色。我們認為本研究提供了對於二型糖尿病與非酒精性脂肪肝致病機轉更新穎的見解,並且也可能借此幫助開發更具效果的臨床治療方法。 | zh_TW |
dc.description.abstract | Due to altered life and eating styles, the high prevalence of Type 2 Diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD) has become an important clinical issue worldwide. Although many previous studies proposed that saturated fatty acids (SFAs) are generally more toxic than unsaturated fatty acids (UFAs) in promoting T2D and NAFLD, few of them had addressed the significance of carbon-chain length in SFA-induced lipotoxicity. Beneficial effects of medium-chain fatty acids (MCFAs, fatty acids with a carbon chain length of 6-12 carbon atoms) on T2D and NAFLD patients have been reported previously. However, the detailed molecular mechanisms of MCFA-mediated protections are still unclear. Here in our study, we used mouse and in vitro cell culture models to investigate the possible molecular mechanisms of MCFA-protected T2D and NAFLD. To confirm the protective effects of MCFAs on T2D and NAFLD, we increased the MCFA/LCFA ratio in a mouse high-fat diet (HFD) by partially replacing the lard with coconut oil, and fed mice for 16 weeks. Our results showed that increasing dietary MCFA/LCFA ratio significantly mitigated HFD-induced T2D and NAFLD in mice. In addition, we found that the increased dietary MCFAs rescued HFD-induced hepatic insulin resistance, autophagy impairment, ER stress, and apoptosis. More importantly, using HepG2 cell line we demonstrated that MCFAs cell-autonomously protected against LCFA-induced fat accumulation, insulin resistance, and lipotoxicity in hepatic cells by reactivating autophagy. It is worth noting that MCFAs rescued hepatic autophagy by mitigating Rubicon-suppressed late-stage autophagy independently of regulating AMPK/mTOR/ULK1-controlled early-stage autophagy induction. In summary, this study highlights the importance of carbon chain length in addition to saturation in fatty acid-induced hepatic steatosis, insulin resistance, and lipotoxicity during T2D and NAFLD development. In addition, our study also demonstrated that MCFAs exert their hepatoprotective effects by rescuing Rubicon-suppressed late-stage autophagy. Our study provided novel insights into the pathogenesis of T2D and NAFLD, which may help in developing alternative clinical therapies. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:40:06Z (GMT). No. of bitstreams: 1 ntu-107-F99626001-1.pdf: 98571686 bytes, checksum: c7c0192207add871fd54cffe05e89133 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | Table of Contents
口試委員會審定書 ------------------------------------------------------------------------------------------ I Acknowledgement -------------------------------------------------------------------------------------------- II 中文摘要 ------------------------------------------------------------------------------------------------------ III Abstract ---------------------------------------------------------------------------------------------------------IV Table of Contents ----------------------------------------------------------------------------------------------V Table Index -----------------------------------------------------------------------------------------------------VI Figure Index ----------------------------------------------------------------------------------------------------VII Materials and Methods ------------------------------------------------------------------------------------- 1 Chapter 1. Background and Aims 1.1. Type 2 Diabetes and non-alcoholic fatty liver disease- ----------------------------------------- 20 1.2. The role of fatty acid-induced lipotoxicity on T2D and NAFLD ------------------------------ 30 1.3. Molecular regulations of autophagy and its role in T2D and NAFLD ------------------------ 33 1.4. Specific aims of this study -------------------------------------------------------------------------- 41 Chapter 2. The Protective Effects of MCFAs on T2D and NAFLD in Mice 2.1. Increasing dietary MCFA ratio delays HFD-induced T2D in mice ---------------------------- 42 2.2. Dietary MCFAs mitigate HFD-induced NAFLD in mice ---------------------------------------51 2.3. MCFAs rescue HFD-induced hepatic insulin resistance, autophagy impairment, and lipotoxicity ------------------------------------------------------------------------------------------- 58 Chapter 3. The Molecular Mechanisms of MCFA-Mediated Hepatoprotection 3.1. Effects of carbon chain length on SFA-induced hepatic insulin resistance, autophagy impairment, and lipotoxicity ---------------------------------------------------------------------- 62 3.2. MCFAs rescue LCFA-induced hepatic fat accumulation, insulin resistance, and lipotoxicity by restoring autophagy -------------------------------------------------------------- 69 3.3. The molecular mechanisms of MCFA-regulated hepatic autophagy -------------------------- 85 3.4. LCFAs and MCFAs differentially regulate Rubicon protein degradation in hepatic cells-- 109 Chapter 4. Discussions -------------------------------------------------------------------------------------- 115 Reference ------------------------------------------------------------------------------------------------------ 123 Appendix Curriculum Vitae of author ------------------------------------------------------------------------------- 135 Full-length article of published papers------------------------------------------------------------------ 138 | |
dc.language.iso | en | |
dc.title | 探討中鏈脂肪酸透過調控肝臟細胞自噬延緩二型糖尿病與非酒精性脂肪肝之分子機制 | zh_TW |
dc.title | Protective Effects and Molecular Mechanisms of Medium-Chain Fatty Acid-Regulated Hepatic Autophagy on Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 鍾德憲,吳兩新,徐慶琳,陳億乘,黃惠君 | |
dc.subject.keyword | 中鏈脂肪酸,細胞自噬,二型糖尿病,非酒精性脂肪肝,Rubicon, | zh_TW |
dc.subject.keyword | medium-chain fatty acids,autophagy,Type 2 Diabetes,NAFLD,Rubicon, | en |
dc.relation.page | 138 | |
dc.identifier.doi | 10.6342/NTU201800379 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-02-08 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 96.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。