請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7002完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡欣穆(Hsin-Mu Tsai) | |
| dc.contributor.author | Ming-Wei Hsu | en |
| dc.contributor.author | 徐名蔚 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:23:38Z | - |
| dc.date.available | 2015-08-27 | |
| dc.date.available | 2021-05-17T09:23:38Z | - |
| dc.date.copyright | 2012-08-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-20 | |
| dc.identifier.citation | [1]. nomotida.empa.ch, http://nomotida.empa.ch/images/StorkBridgeSetUpMed.png
[2]. coalcreekaml.com, http://www.coalcreekaml.com/images/Cross%20Mtn%20Mine%20Map_small.JPG [3]. B. Radunovic and J. Y. L. Boudec, “Joint scheduling, power control and routing in symmetric, one-dimensional, multi-hop wireless networks,” in Proc. Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, Mar. 2003, pp. 3-5. [4]. T. ElBatt and A. Ephremides, “Joint scheduling and power control for wireless ad hoc networks,” IEEE Trans. Wireless Commun., vol. 1, pp. 74-85, Jan. 2004. [5]. M. Pursley, “Performance evaluation for phase-coded spread-spectrum multiple-access communication—part I: System analysis,” IEEE Trans. Commun., vol. COM-25, no. 8, pp. 795-799, Aug. 1977 [6]. O. D. Incel, A. Ghosh, B. Krishnamachari, and K. Chintalapudi, 'Fast Data Collection in Tree-Based Wireless Sensor Networks,' IEEE Transactions on Mobile Computing, vol.11, no.1, pp.86-99, Jan. 2012. [7]. F. Baccelli, N. Bambos, and C. Chan, “Optimal Power, Throughput and Routing for Wireless Link Arrays,” in Proc. IEEE INFOCOM, Apr. 2006, pp. 1-12. [8]. J. Zander, “Distributed cochannel interference control in cellular radio systems,” IEEE Trans. Veh. Technol., vol. 41, no. 3, pp. 305-311, Aug. 1992. [9]. G. J. Foschini and Z. Miljanic, “A simple distributed autonomous power control algorithm and its convergence,” IEEE Trans. Veh. Technol., vol. 42, no. 4, pp. 641-646, Nov. 1993. [10]. C. Xiao, Y. R. Zheng, and N. C. Beaulieu, “Novel sum-of-sinusoids simulation models for Rayleigh and Rician fading channels,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3667-3679, Dec. 2006. [11]. C. Florens, M. Franceschetti, and R. J. McEliece, “Lower Bounds on Data Collection Time in Sensory Networks,” IEEE J. Selected Areas in Comm., vol. 22, no. 6, pp. 1110-1120, Aug. 2004. [12]. Y. Zhang, S. Gandham, and Q. Huang, “Distributed Minimal Time Convergecast Scheduling for Small or Sparse Data Sources,” in Proc. IEEE RTSS ’07, Dec. 2007, pp. 301-310. [13]. C. Joo, J.-G. Choi, and N. B. Shroff, “Delay performance of scheduling with data aggregation in wireless sensor networks,” in Proc. IEEE INFOCOM, Mar. 2010, pp. 1-9. [14]. J. Zander, “Performance of optimum transmitter power control in cellular radio systems,” IEEE Trans. Veh. Technol., vol. 41, no. 1, pp. 57-62, Feb. 1992. [15]. K. Bilstrup, E. Uhlemann, E. G. Strom, and U. Bilstrup, “Evaluation of the IEEE 802.11p MAC method for vehicle-to-vehicle communication,” in IEEE Vehicular Technology Conference (VTC), Sept. 2008, pp. 1-5. [16]. W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An Application-Specific Protocol Architecture for Wireless Microsensor Networks,” IEEE Trans. Wireless Comm., vol. 1, no. 4, pp. 660-670, Oct. 2002. [17]. B. H. Liu, N. Bulusu, H. Pham, and S. Jha, “CSMAC: a novel DSCDMA based MAC protocol for wireless sensor networks,” in Proc. IEEE Global Telecommunications Conference Workshops (GLOBECOM 2004), Nov. 2004, pp. 33-38. [18]. B. H. Liu, C. T. Chou, J. Limpman, and S. Jha, “Using frequency division to reduce MAI in DS-CDMA wireless sensor networks,” In Proc. IEEE Wireless Communications and Networking Conf. (WCNC), Mar. 2005, vol. 2, pp. 657-663. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7002 | - |
| dc.description.abstract | 無線感測網路(Wireless Sensor Network)是由眾多的無線感測節點與數個閘道器所組成的無線網路系統。感測節點收集環境中的資料後將其送到閘道器,再由閘道器轉送到伺服器做進一步的處理分析。無線感測網路最初是由美軍發展用於戰場上,後來此項技術繼續發展及應用在不同的用途上,如科學調查、溫濕度監控、火災預報等。
我們觀察到有許多跟安全相關的無線感測網路應用,例如偵測橋樑上的異常振動或張力、礦坑內的易燃氣體濃度等等,其網路拓樸由一些長細狀的分支所組成,呈現”長細拓樸”(long-thin topology)狀。在一般的運作下,感測網路只需定期取得感測節點收集的資料以偵測異常狀況。然而,若發生事故,需要傳送大量資料時,感測網路則需要進入不同的運作模式,例如在礦坑內發生爆炸,感測節點使用更快的速率傳輸則能更快速決定受困礦工之位置,且無線感測網路能被用於傳送受困礦工的聲音和影像以幫助救災行動。 在緊急狀況運作下,無線感測網路需要較大的吞吐量,但目前常見應用在無線感測網路之媒體存取控制協定(MAC protocol)通常為分時多重存取(Time Division Multiple Access)或載波感測多重存取(Carrier Sense Multiple Access)協定,其受到在接收節點的接收範圍內只能有單一傳輸節點做傳輸的限制,整體的吞吐量因此大幅減少。在一般運作下的協定設計目標通常是優化能源消耗的情況下,前面的限制並不構成問題。然而,原有的協定很明顯並不適用於緊急狀況的需求。 分碼多重存取(Code Division Multiple Access)的運作是將原始訊息以偽雜訊碼(Pseudo-noise code)展開成寬頻訊號。此系統除去了前述的限制,並允許多個感測節點在接收節點的接受範圍內同時傳送訊號,因此在使用分碼多重存取之下整體的吞吐量應能得到相當程度的改善。在這篇論文中,我們研究如何設計應用在長細拓樸下的雙模式無線感測網路系統之分碼多重存取協定。此系統在一般運作模式下使用分時多重存取或載波感測多重存取協定,而在轉換到緊急模式時則使用分碼多重存取協定。 我們研究了單鍊(Single-Chain)拓樸及多鍊(Multi-Chain)拓樸。對於單鍊拓樸,我們提出一個實作簡單的啟發式功率分配方法,其所需的開銷少且在吞吐量的表現上較最大功率配置方法好。對於多鍊(Multi-Chain)拓樸,我們提出一個啟發式的排程原則,能增加同個時槽內同時傳輸到閘道器的傳輸數量並得到顯著提升的吞吐量。模擬結果顯示在長細拓樸下使用分碼多重存取協定較分時多重存取得到了約略兩倍的吞吐量。 關鍵詞:分碼多重存取、分時多重存取、無線感測網路、長細拓樸、功率調控、排程 | zh_TW |
| dc.description.abstract | Wireless Sensor Networks (WSNs) are a type of wireless network systems which consist of a large number of wireless sensor nodes and a few gateways. Sensor nodes gather information about the environments and then forward it to the gateways, which in turn relay the information to a server for further processing and analysis. WSNs are initially developed for battlefield purposes by the U.S. military. In the past ten years, the technology continues to develop and begins to serve different purposes, such as scientific investigation, temperature and humidity control, fire forecasting, etc.
We observed that for a number of safety-related WSN applications, e.g., abnormal vibration or tension detection on the bridge, flammable gas density monitoring within the mine pit, the network topology consists of a few long and thin branches, or exhibits a “long-thin topology.” During the regular operation, the network only needs to obtain the sensor reading periodically, so that anomaly can be detected. However, if an accident happens, the network instead needs to enter a different operation mode where a much larger amount of data needs to be transferred. For example, when a gas explosion occurs in the mine pit, the sensor nodes transmit at a much faster rate, so that the positions of the trapped miners can be quickly determined, and the WSN can be used to relay voice and video transmissions from the miners to assist the rescue operation. During the emergency operation, the WSNs require a large amount of throughput, but the common MAC protocols used in WSNs, usually a variant of the Time Division Multiple Access (TDMA) protocol or the Carrier Sense Multiple Access (CSMA) protocol, have the constraint that only one node can transmit within the receiving range of a node. The throughput is therefore greatly reduced. As the design objective for protocol during the regular operation is often optimized to reduce energy consumption, this does not pose a problem. However, the original protocol is obviously not feasible for the emergency purposes. The operation of Code Division Multiple Access (CDMA) spreads the original message into a wideband signal by modulating it with a pseudo-noise (PN) code. The scheme removes the aforementioned constraint, and allows multiple nodes to transmit simultaneously within the receiving range of a node. As a result, with a CDMA-based protocol, the throughput could be significantly improved. In this thesis, we investigate how to design a CDMA-based protocol for a dual-mode WSN system with long-thin topologies. The system would use a TDMA- or CSMA-based protocol during its regular operation and the CDMA-based protocol when switching to the emergency mode. Two most commonly used long-thing topologies, single-chain and multi-chain topologies, are studied in this thesis. For single-chain topologies, we propose an easy-to-implement heuristic power allocation scheme, which has low overhead and outperforms the full power allocation scheme in terms of throughput. For multi-chain topologies, we propose a heuristic scheduling principle, which can increase the number of simultaneous transmissions to the gateway in the same time slot and produces significantly higher throughput. Evaluation results suggest that the use of the CDMA-based protocol in WSNs with long-thin topologies approximately doubles the throughput compared to that of TDMA-based protocol. Keywords: CDMA, TDMA, wireless sensor networks, long-thin topologies, power control, scheduling | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:23:38Z (GMT). No. of bitstreams: 1 ntu-101-R98922118-1.pdf: 1206521 bytes, checksum: e4b9722567845f65bd2e60e50ea36625 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii Abstract v List of Figure ix Chapter 1 Introduction 1 Chapter 2 Related Works 7 Chapter 3 System Model 12 3.1. DS-CDMA Signal Representation 12 3.2. Topology 14 3.3. Scheduling 16 3.4. PN Code Sequence Correlation 22 3.5. Performance Metrics 25 3.6. Path Loss Model 31 3.7. Power Allocation 32 Chapter 4 Results 35 4.1. Single-Chain Topology 35 (a) Performance of CDMA and TDMA using the full power allocation scheme 36 (b) Performance comparison in non-fading environments 43 (c) Performance comparison in fading environments 45 4.2. Multi-Chain Topology 49 (a) Performance comparison between full power allocation scheme and ElBatt’s algorithm 49 (b) Performance comparison of CDMA using different schedules and TDMA 52 Chapter 5 Conclusion and Future Work 56 Reference 58 | |
| dc.language.iso | en | |
| dc.title | 長細拓樸下CDMA無線感測網路之效能評估 | zh_TW |
| dc.title | Performance Evaluation of CDMA-based Wireless Sensor Networks with Long-Thin Topologies | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 逄愛君(Ai-Chun Pang),周承復(Cheng-Fu Chou),周俊廷(Chun-Ting Chou) | |
| dc.subject.keyword | 分碼多重存取,分時多重存取,無線感測網路,長細拓樸,功率調控,排程, | zh_TW |
| dc.subject.keyword | CDMA,TDMA,wireless sensor networks,long-thin topologies,power control,scheduling, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 1.18 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
