Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70027
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾琬瑜(Wan-Yu Tseng)
dc.contributor.authorShang-Chan Chiuen
dc.contributor.author邱上展zh_TW
dc.date.accessioned2021-06-17T03:39:34Z-
dc.date.available2020-08-26
dc.date.copyright2020-08-26
dc.date.issued2020
dc.date.submitted2020-08-19
dc.identifier.citation1. Branemark, P.I., Vital microscopy of bone marrow in rabbit. Scand J Clin Lab Invest, 1959. 11 Supp 38: p. 1-82.
2. Diaz-Marcos, J., Bone response to decontamination treatments for dental biomaterials, in Bone Response to Dental Implant Materials. 2017. p. 163-184.
3. <Dental Implants Market Size Growth, Industry Report, 2020-2027.pdf>. Available from: https://www.grandviewresearch.com/industry-analysis/dental-implants-market.
4. Albrektsson, T. and C. Johansson, Osteoinduction, osteoconduction and osseointegration. European spine journal, 2001. 10(2): p. S96-S101.
5. Albrektsson, T., et al., Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthopaedica Scandinavica, 1981. 52(2): p. 155-170.
6. Parithimarkalaignan, S. and T.V. Padmanabhan, Osseointegration: an update. J Indian Prosthodont Soc, 2013. 13(1): p. 2-6.
7. Vaidya, P., et al., Osseointegration- A Review. IOSR Journal of Dental and Medical Sciences, 2017. 16(01): p. 45-48.
8. Jafary, F., P. Hanachi, and K. Gorjipour, Osteoblast differentiation on collagen scaffold with immobilized alkaline phosphatase. International journal of organ transplantation medicine, 2017. 8(4): p. 195.
9. Tsao, Y.-T., et al., Osteocalcin mediates biomineralization during osteogenic maturation in human mesenchymal stromal cells. International journal of molecular sciences, 2017. 18(1): p. 159.
10. Boyan, B., et al., Implant surface design regulates mesenchymal stem cell differentiation and maturation. Advances in dental research, 2016. 28(1): p. 10-17.
11. CT Scanning and Dental Implant.
12. Le Guehennec, L., et al., Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater, 2007. 23(7): p. 844-54.
13. Malo, P., et al., Immediate Function of Anodically Oxidized Surface Implants (TiUnite) for Fixed Prosthetic Rehabilitation: Retrospective Study with 10 Years of Follow-Up. Biomed Res Int, 2016. 2016: p. 2061237.
14. Ionescu, A.C., et al., Laser microtextured titanium implant surfaces reduce in vitro and in situ oral biofilm formation. PLoS One, 2018. 13(9): p. e0202262.
15. Larsson, C., et al., Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials, 1996. 17(6): p. 605-616.
16. Vanden Bogaerde, L., et al., Early function of splinted implants in maxillas and posterior mandibles using Brånemark System® machined‐surface implants: an 18‐month prospective clinical multicenter study. Clinical implant dentistry and related research, 2003. 5: p. 21-28.
17. Turkyilmaz, I., Implant dentistry: a rapidly evolving practice. 2011: BoD–Books on Demand.
18. Babbush, C.A., J.N. Kent, and D.J. Misiek, Titanium plasma-sprayed (TPS) screw implants for the reconstruction of the edentulous mandible. Journal of Oral and Maxillofacial Surgery, 1986. 44(4): p. 274-282.
19. Chappuis, V., et al., Long‐term outcomes of dental implants with a titanium plasma‐sprayed surface: a 20‐year prospective case series study in partially edentulous patients. Clinical implant dentistry and related research, 2013. 15(6): p. 780-790.
20. Rudawska, A., et al., The effect of sandblasting on surface properties for adhesion. International Journal of Adhesion and Adhesives, 2016. 70: p. 176-190.
21. Gehrke, S.A., et al., A comparative evaluation between aluminium and titanium dioxide microparticles for blasting the surface titanium dental implants: an experimental study in rabbits. Clinical oral implants research, 2018. 29(7): p. 802-807.
22. Juodzbalys, G., M. Sapragoniene, and A. Wennerberg, New acid etched titanium dental implant surface. Stomatologija, Baltic Dental and Maxillofacial Journal, 2003. 5: p. 101-105.
23. Cho, S.-A. and K.-T. Park, The removal torque of titanium screw inserted in rabbit tibia treated by dual acid etching. Biomaterials, 2003. 24(20): p. 3611-3617.
24. Junker, R., et al., Effects of implant surface coatings and composition on bone integration: a systematic review. Clinical oral implants research, 2009. 20: p. 185-206.
25. Cochran, D.L., et al., The use of reduced healing times on ITI® implants with a sandblasted and acid‐etched (SLA) surface: Early results from clinical trials on ITI® SLA implants. Clinical oral implants research, 2002. 13(2): p. 144-153.
26. Buser, D., et al., Enhanced bone apposition to a chemically modified SLA titanium surface. Journal of dental research, 2004. 83(7): p. 529-533.
27. Wennerberg, A., S. Galli, and T. Albrektsson, Current knowledge about the hydrophilic and nanostructured SLActive surface. Clinical, cosmetic and investigational dentistry, 2011. 3: p. 59.
28. Marticorena, M., et al., Laser surface modification of Ti implants to improve osseointegration. Journal of Physics: Conference Series, 2007. 59: p. 662-665.
29. Al Mugeiren, O.M. and M.A. Baseer, Dental implant bioactive surface modifiers: An update. Journal of International Society of Preventive Community Dentistry, 2019. 9(1): p. 1.
30. Shirkhanzadeh, M., Calcium phosphate coatings prepared by electrocrystallization from aqueous electrolytes. Journal of Materials Science: Materials in Medicine, 1995. 6(2): p. 90-93.
31. Buser, D., et al., 10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: a retrospective study in 303 partially edentulous patients. Clin Implant Dent Relat Res, 2012. 14(6): p. 839-51.
32. Alla, R.K., et al., Surface roughness of implants: a review. Trends in Biomaterials and Artificial Organs, 2011. 25(3): p. 112-118.
33. Dank, A., et al., Effect of dental implant surface roughness in patients with a history of periodontal disease: a systematic review and meta-analysis. Int J Implant Dent, 2019. 5(1): p. 12.
34. Albrektsson, T. and A. Wennerberg, The impact of oral implants-past and future, 1966-2042. J Can Dent Assoc, 2005. 71(5): p. 327.
35. De Bruyn, H., et al., Implant surface roughness and patient factors on long‐term peri‐implant bone loss. Periodontology 2000, 2017. 73(1): p. 218-227.
36. Puurunen, R.L., A Short History of Atomic Layer Deposition: Tuomo Suntola's Atomic Layer Epitaxy. Chemical Vapor Deposition, 2014. 20(10-11-12): p. 332-344.
37. Ahonen, M., M. Pessa, and T. Suntola, A study of ZnTe films grown on glass substrates using an atomic layer evaporation method. Thin Solid Films, 1980. 65(3): p. 301-307.
38. Rossnagel, S. and H. Kim. From PVD to CVD to ALD for interconnects and related applications. in Proceedings of the IEEE 2001 International Interconnect Technology Conference (Cat. No. 01EX461). 2001. IEEE.
39. Zhu, S., J. Liu, and J. Sun, Growth of ultrathin SnO2 on carbon nanotubes by atomic layer deposition and their application in lithium ion battery anodes. Applied Surface Science, 2019. 484: p. 600-609.
40. Grillo, F., et al., Nanoparticle sintering in atomic layer deposition of supported catalysts: Kinetic modeling of the size distribution. Catalysis Today, 2018. 316: p. 51-61.
41. Vitiello, J., F. Piallat, and L. Bonnet, Alternative deposition solution for cost reduction of TSV integration. International Symposium on Microelectronics, 2017. 2017(1): p. 000135-000139.
42. Kretsinger, R.H., V.N. Uversky, and E.A. Permyakov, Encyclopedia of Metalloproteins. 2013.
43. <Tin for the Future>. Available from: https://www.internationaltin.org/reports/tin-for-the-future/.
44. Pfuner, F., et al., Optical properties of TiN thin films close to the superconductor–insulator transition. New Journal of Physics, 2009. 11(11).
45. Prasad, R.G., et al., Biocompatible and Antibacterial SnO2 Nanowire Films Synthesized by E-Beam Evaporation Method. J Biomed Nanotechnol, 2015. 11(6): p. 942-50.
46. Rushe, N., et al., Cytocompatibility of novel tin oxide thin films. Journal of materials science: Materials in medicine, 2005. 16(3): p. 247-252.
47. Cell Viability Assay based on Metabolic Activity. Available from: http://www.abpbio.com/product/cell-viability-assay-based-on-metabolic-activity/.
48. Novaes Jr, A.B., et al., Influence of implant surfaces on osseointegration. Brazilian dental journal, 2010. 21(6): p. 471-481.
49. Buser, D., et al., Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. Journal of biomedical materials research, 1991. 25(7): p. 889-902.
50. Rosa, A.L. and M.M. Beloti, Effect of cpTi surface roughness on human bone marrow cell attachment, proliferation, and differentiation. Brazilian dental journal, 2003. 14(1): p. 16-21.
51. Cheng, H.-E., D.-C. Tian, and K.-C. Huang, Properties of SnO2 films grown by atomic layer deposition. Procedia Engineering, 2012. 36: p. 510-515.
52. Elam, J.W., et al., Atomic layer deposition of tin oxide films using tetrakis (dimethylamino) tin. Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films, 2008. 26(2): p. 244-252.
53. Hamid, R., et al., Comparison of alamar blue and MTT assays for high through-put screening. Toxicology in vitro, 2004. 18(5): p. 703-710.
54. Gonzalez, J. and J. Mirza-Rosca, Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. Journal of Electroanalytical Chemistry, 1999. 471(2): p. 109-115.
55. Ratner, B.D., A perspective on titanium biocompatibility, in Titanium in medicine. 2001, Springer. p. 1-12.
56. Steinemann, S.G., Titanium—the material of choice? Periodontology 2000, 1998. 17(1): p. 7-21.
57. Zhao, S.f., et al., Effects of magnesium‐substituted nanohydroxyapatite coating on implant osseointegration. Clinical oral implants research, 2013. 24: p. 34-41.
58. Farley, J.R. and D.J. Baylink, Skeletal alkaline phosphatase activity as a bone formation index in vitro. Metabolism-Clinical and Experimental, 1986. 35(6): p. 563-571.
59. Mozumder, M.S., J. Zhu, and H. Perinpanayagam, TiO2-enriched polymeric powder coatings support human mesenchymal cell spreading and osteogenic differentiation. Biomedical Materials, 2011. 6(3): p. 035009.
60. Owen, T.A., et al., Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. Journal of cellular physiology, 1990. 143(3): p. 420-430.
61. Ong, J., et al., Osteoblast precursor cell activity on HA surfaces of different treatments. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 1998. 39(2): p. 176-183.
62. Schneider, G.B., et al., Differentiation of preosteoblasts is affected by implant surface microtopographies. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2004. 69(3): p. 462-468.
63. Mussano, F., et al., Ceramic Biomaterials for Dental Implants: Current Use and Future Perspectives. 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70027-
dc.description.abstract影響骨整合的因素很多,其中最重要的一個因素即是植體的表面處理。過去的研究顯示,植體表面經過微米等級處理後可以提高生物相容性及骨整合能力;而奈米數值範圍的表面處理可以增加細胞分化速度以及功能性表現。原子層沉積技術能在物體表面形成原子等級、厚度均勻且覆蓋率佳的鍍膜層,因此我們選擇使用原子層沉積技術作為本實驗的鍍膜方法。首先我們選用粗糙度與市面植體相仿,介於1-1.5 μm的商業級純鈦和鈦六鋁四釩之金屬試片,分別鍍上20 nm、50 nm、100 nm的氧化錫,接著進行材料分析及生物相容性的實驗:材料分析包含以電子顯微鏡觀察表面形態、原子力顯微鏡量測奈米等級粗糙度及3D形態、細微形狀測定儀測量微米等級粗糙度;細胞實驗部分包含第1、4、7、10、14天細胞存活率、第4、7、10、14天鹼性磷酸酶試驗、第4、7、10、14天骨鈣素試驗以及第1、4、7、10、14天免疫螢光染色。
掃描式電子顯微鏡可以觀測到未鍍膜試片表面具有各種大小,各種尺寸的不規則孔洞,鍍膜後的氧化錫顆粒,散佈在各種孔洞之中,隨著鍍膜厚度增加,顆粒堆積也相對明顯。在原子力顯微鏡下量測奈米等級粗糙度,發現鍍膜會增加表面粗糙度。細微形狀測定儀量測微米等級粗糙度,鍍膜後表面粗糙度反而下降。細胞存活率結果顯示,不論有無鍍膜皆有良好的生物相容性。在鹼性磷酸酶試驗中,所有組別均較控制組為佳,未鍍膜試片表現最好,氧化錫鍍膜組隨著厚度增加而遞減。骨鈣素試驗中,第14天未鍍膜組表現低於鍍膜組。免疫螢光染色結果顯示,控制組的細胞貼附完整且紡錘狀明顯,金屬試片組別的細胞骨架和偽足較為模糊,可能因為試片表面孔洞導致細胞往垂直方向生長,紡錘狀不明顯較偏向細梭狀。
綜合以上結果,因為20 nm鍍膜組在骨鈣素試驗表現較未鍍膜組佳,在其餘實驗中表性又較其餘鍍膜厚度佳,因此實際應用上可考慮20 nm氧化錫鍍膜組。
zh_TW
dc.description.abstractThe surface treatment of dental implant plays an important role in osseointegration. According to the previous researches, the surface treatment of micron-scale can increase the biocompatibility and the osseointegration, while nano-level can increase performance of the cell differentiation. The atomic layer deposition technique provides uniform layer-by-layer film growth in atomic-level with excellent step coverage and conformal deposition on high aspect ratio structures. The uncoating and coating thickness in 20 nm, 50 nm, and 100 nm Tin oxide on Titanium and Ti-6Al-4V with roughness between 1-1.5 μm. The surface analysis was includes the observation of the surface morphology using scanning electron microscope, the roughness in nano-scale and the 3D configuration with atomic force microscope, and the roughness in micron-scale with surfcorder. The biocompatibility tests were including alamar Blue assay to measure of cell survival and growth, alkaline phosphatase assay and osteocalcin assay to valuate the mineralized markers in early and late stage respectively, and immunofluorescence assay to observe the cell morphology.
The observation from scanning electron microscope indicated that the accumulation of particles increased with the rising coating thickness. When the thickness of coating was increased, the roughness in nanoscale was increased under the atomic force microscope. However, the surface roughness in micron-scale decreased under the sufcorder test. The results of alamar Blue assay, there were good biocompatibility in all groups. The results of ALP assay revealed that all groups a better outcome compared with TCPS, while the group without coating showed the best performance. The ALP level was decreased when the thickness of coating was increased. From the results of OCN assay, the uncoating groups showed least osteocalcin on 14th day. We can find out the cell adhesion and spindle-like shape are complete and significant in the control group with the observation from immunofluorescence assay. In the others group, the cytoskeleton and pseudopodium were not clear; it might be because the pores where HEMP grew were located in vertical wall of metal samples, and the cell body or pseudopodium was situated in the lateral surface of samples. Therefore, when the staining observed from the top view, the cytoskeleton and pseudopodium were defocused.
To conclude, because the group of 20 nm in thickness performed better results of OCN than uncoated group, and better results of alarm Blue and ALP assays than other coating groups, we suggest 20 nm-SnO2 coating is best in practice.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:39:34Z (GMT). No. of bitstreams: 1
U0001-1708202020313600.pdf: 7949629 bytes, checksum: ca5de4d41a9d555a34b09906ac676aa4 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsChapter 1 文獻回顧……………………………………………………..………….….1
1.1 牙科植體……………………………………………………………………...1
1.1.1 牙科植體之歷史演進……………………………………………………1
1.1.2 牙科植體之市場發展……………………………………………………1
1.2 骨整合………………………………………………………………………...3
1.2.1 骨整合……………………………………………………………………3
1.2.2 癒合過程…………………………………………………………………4
1.2.3 植體穩定度………………………………………………………………5
1.3 植體表面處理………………………………………………………………...6
1.3.1 機械加工植體表面………………………………………………………6
1.3.2 鈦電漿噴覆植體表面……………………………………………………7
1.3.3 噴砂處理植體表面………………………………………………………7
1.3.4 酸蝕處理植體表面………………………………………………………8
1.3.5 噴砂及酸蝕植體表面……………………………………………………9
1.3.6 雷射處理植體表面……………………………………………………..10
1.3.7 陽極氧化處理植體表面………………………………………………..11
1.3.8 生物活性物質披覆植體表面…………………………………………..12
1.3.9 各植體表面處理之比較………………………………………………..12
1.4 粗糙度……………………………………………………………………….13
1.5 原子層沉積技術…………………………………………………………….14
1.6 錫…………………………………………………………………………….17
Chapter 2 研究動機與目的………………………………………………..…………20
2.1 研究動機……………………………………………………………………..20
2.2 研究目的……………………………………………………………………..20
Chapter 3 實驗材料及方法……………………………………………………..……22
3.1 各項名詞縮寫………………………………………………………………..22
3.2 實驗流程圖…………………………………………………………………..22
3.3 實驗材料製備………………………………………………………………..23
3.4 實驗細胞及培養環境………………………………………………………..24
3.5 掃描式電子顯微鏡…………………………………………………………..25
3.5.1 說明……………………………………………………………………...25
3.5.2 實驗步驟………………………………………………………………...25
3.6 原子力顯微鏡………………………………………………………………..26
3.6.1 說明……………………………………………………………………...26
3.6.2 實驗步驟………………………………………………………………...26
3.7 細微形狀測定機……………………………………………………………..27
3.7.1 說明……………………………………………………………………...27
3.7.2 實驗步驟………………………………………………………………...27
3.8 Alamar Blue assay…………………………………………………………….28
3.8.1 說明……………………………………………………………………...28
3.8.2 實驗步驟………………………………………………………………...29
3.9 鹼性磷酸酶試驗……………………………………………………………..30
3.9.1 說明……………………………………………………………………...30
3.9.2 實驗步驟………………………………………………………………...30
3.10 骨鈣素試驗…………………………………………………………………32
3.10.1 說明…………………………………………………………………….32
3.10.2 實驗步驟……………………………………………………………….33
3.11 免疫螢光染色試驗…………………………………………………………34
3.11.1 說明…………………………………………………………………….34
3.11.2 實驗步驟……………………………………………………………….34
3.12 統計分析……………………………………………………………………36
Chapter 4 實驗結果……………………………………………………………..……37
4.1 掃描式電子顯微鏡…………………………………………………………..37
4.2 原子力顯微鏡………………………………………………………………..40
4.2.1 表面粗糙度……………………………………………………………...40
4.2.2 3D表面粗糙度分佈圖…………………………………………………..41
4.3 細微形狀測定機……………………………………………………………..42
4.4 Alamar Blue assay…………………………………………………………….43
4.5 鹼性磷酸酶試驗……………………………………………………………..46
4.6 骨鈣素試驗…………………………………………………………………..49
4.7 免疫螢光染色試驗…………………………………………………………..52
Chapter 5 討論………………………………………………………………………..57
5.1 材料測試……………………………………………………………………..57
5.2 細胞實驗……………………………………………………………………..60
5.2.1 生物相容性……………………………………………………………...60
5.2.2 骨礦化能力分析………………………………………………………...62
5.2.3 細胞形態………………………………………………………………...64
Chapter 6 結論與未來研究方向…………………………………………..…………66
參考文獻……………………………………………………………………………….68
附錄…………………………………………………………………………………….73
dc.language.isozh-TW
dc.subject植體表面處理zh_TW
dc.subject原子層沉積技術zh_TW
dc.subject氧化錫zh_TW
dc.subject粗糙度zh_TW
dc.subject生物相容性zh_TW
dc.subjectbiocompatibilityen
dc.subjectatomic layer deposition techiniqueen
dc.subjectTin dioxideen
dc.subjectimplant surface treatmenten
dc.subjectroughnessen
dc.title植體表面以原子層沉積技術奈米鍍膜氧化錫後之表現zh_TW
dc.titleThe Performance of Dental Implant Surface Coating with nano-SnO2 using Atomic Layer Deposition Techniqueen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪志遠(Chi-Yuan Hong),林立德(Li-Deh Lin)
dc.subject.keyword植體表面處理,原子層沉積技術,氧化錫,粗糙度,生物相容性,zh_TW
dc.subject.keywordimplant surface treatment,atomic layer deposition techinique,Tin dioxide,biocompatibility,roughness,en
dc.relation.page83
dc.identifier.doi10.6342/NTU202003856
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1708202020313600.pdf
  未授權公開取用
7.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved