Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70023
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭彥彬
dc.contributor.authorYi-Fang Chenen
dc.contributor.author陳怡芳zh_TW
dc.date.accessioned2021-06-17T03:39:21Z-
dc.date.available2018-02-22
dc.date.copyright2018-02-22
dc.date.issued2018
dc.date.submitted2018-02-08
dc.identifier.citationChapter 1
1. Slatore CG, Au DH, Gould MK; American Thoracic Society Disparities in Healthcare Group. An official American Thoracic Society systematic review: insurance status and disparities in lung cancer practices and outcome. Am J Respir Crit Care Med. 2010; 182: 1195-1205.
2. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990; 82: 4-6.
3. Folkman J. Clinical applications of research on angiogenesis. N Engl J Med. 1995; 333:1757-1763.
4. Weidner N. Intratumoral microvessel density as a prognostic factor in cancer. Am J Pathol. 1995; 147: 9-19.
5. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A , et al. Paclitaxelcarboplatin alone or with bevacizumab for non-smallcell lung cancer. N Engl J Med. 2006; 355:2542-2550.
6. Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAiL. J Clin Oncol. 2009; 27:1227-1234.
7. Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, et al. Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: Results from a randomised phase III trial (AVAiL). Ann Oncol. 2010; 21: 1804-1809.
8. Shane Rogosin, Alan B. Sandler. Beyond Bevacizumab: Antiangiogenic Agents. Clin Lung Cancer. 2012; 13(5): 326–333.
9. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer togefitinib. N Engl J Med. 2004; 350: 2129-39.
10. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004; 304: 1497-1500.
11. PaoW, MillerV, Zakowski M, Doherty J, Politi K, Sarkaria I, et al. EGF receptor gene mutations are common in lung cancers from ‘‘never smokers’’ and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci. 2004; 101: 13306-13311.
12. Sasaki H, Endo K, Takada M, Kawahara M, Kitahara N, Tanaka H, et al.
L858R EGFR mutation status correlated with clinico-pathological features of Japanese lung cancer. Lung Cancer. 2006; 54: 103-108.
13. Kris MG, Natale RB, Herbst RS, Lynch TJ Jr, Prager D, Belani CP, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patientswith non-small cell lung cancer: a randomized trial. JAMA. 2003; 290: 2149-2158.
14. Perez-Soler R, Chachoua A, Hammond LA, Rowinsky EK, Huberman M, Karp D, et al. Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. J Clin Oncol. 2004; 22: 3238-3247.
15. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005; 353:123-132.
16. Thatcher N, Chang A, Parikh P, Pemberton K, Archer V. Results of a phase III placebo-controlledstudy (ISEL) of gefitinib (IRESSA) plus best supportive care (BSC) in patients with advanced non-small-cell lung cancer (NSCLC) who had received 1 or 2 prior chemotherapy regimens. In: Proceedings of the AACAR. Anaheim (CA); 2005, Abstract LB -6.
17. Dingemans AM, de Langen AJ, van den Boogaart V, Marcus JT, Backes WH, Scholtens HT, et al. First-line erlotinib and bevacizumab in patients with locally advanced and/or metastatic non-small-cell lung cancer: a phase II study including molecular imaging. Ann Oncol. 2011; 22: 559-566.
18. Seto T, Kato T, Nishio M, Goto K, Atagi S, Hosomi Y, et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol. 2014; 15(11): 1236-1244.
19. Rosell R, Dafni U, Felip E, Curioni-Fontecedro A, Gautschi O, Peters S, et al. Erlotinib and bevacizumab in patients with advanced non-small-cell lung cancer and activating EGFR mutations (BELIEF): an international, multicentre, single-arm, phase 2 trial. Lancet Respir Med. 2017; 5: 435-444.
20. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000; 92(3): 205-216.
21. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009; 50: 122S-150S.
22. Nahmia C, Hanna WT, Wahl LM, Long MJ, Hubner KF, Townsend DW. Time course of early response to chemotherapy in non-small cell lung cancer patients with 18F-FDG PET/CT. J Nucl Med. 2007;48(5): 744-751.
23. Padhani AR, Husband JE. Are current tumour response criteria relevant for the 21st century? Br J Radiol. 2000; 73: 1031-1033.
24. Padhani AR, Miles KA. Multiparametric imaging of tumor response to therapy. Radiology. 2010; 256: 348-364.
25. Turkbey B, Pinto PA, Mani H, Bernardo M, Pang Y, McKinney YL, et al. Prostate cancer: value of multiparametric MR imaging at 3T for detection- histopathologic correlation. Radiology. 2010; 255(1): 89-99.
26. Baren R, Altomonte J, Settles M, Neff F, Esposito I, Ebert O, et al. Validation of preclinical multiparametric imaging for prediction of necrosis in hepatocellular carcinoma after embolization. J Hepatol. 2011; 55(5): 1034-1040.
27. Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med. 1991; 17(2): 357-367.
28. Chang YC, Huang CS, Liu YJ, Chen JH, Lu YS, Tseng WY. Angiogenic response of locally advanced breast cancer to neo-adjuvant chemotherapy evaluated with parametric histogram from dynamic contrast-enhanced MRI. Phys Med Biol. 2004; 49(16): 3593-3602.
29. Kurdziel KA, Lindenberg L, Choyke PL. Oncologic angiogenesis imaging in the clinic---how and why. Imaging Med. 2011; 3(4): 445-457.
30. Padhani AR, Liu G, Koh DM, Chenevert TL, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009; 11(2): 102-125.
31. Sinkus R, Van Beers BE, Vilgrain V, DeSouza N, Waterton JC. Apparent diffusion coefficient from magnetic resonance imaging as a biomarker in oncology drug development. Eur J Cancer. 2012; 48(4): 425-431.
32. Bonekamp S, Corona-Villalobos CP, Kamel IR. Oncologic applications of diffusion-weighted MRI in the body. J Magn Reson Imaging. 2012; (2): 257-79.
33. Chang YC, Yu CJ, Chen CM, Hu FC, Hsu HH, Tseng WY, et al. Dynamic contrast enhanced magnetic resonance imaging in advanced non-small cell lung cancer patients treated with first-line bevacizumab, gemcitabine and cisplatin. J Magn Reson Imag. 2012; 36(2): 387-396.
34. Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005; 352(8): 786-792.
35. Horn L, Sandler A. Epidermal growth factor receptor inhibitors and anti-angiogenic agents for the treatment of non-small cell lung cancer. Clin Cancer Res. 2009; 15: 5040-5048.
36. Sequist LV, Martins RG, Spigel D, Grunberg SM, Spira A, Jänne PA, et al. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGRF mutations. J Clin Oncol. 2008; 26(15): 2442-2449.
37. Keedy VL, Temin S, Somerfield MR, Beasley MB, Johnson DH, McShane LM, et al. American Society of Clinical Oncology provisional clinical opinion: epidermal gowth factor receptor (EGFR) mutation testing for patients with advanced non-small cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy. J Clin Oncol. 2011; 29(15): 2121-2127.
38. Riely GJ, Pao W, Pham D, Li AR, Rizvi N, Venkatraman ES, et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res. 2006; 12: 839-844.
39. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007; 316(5827): 1039-1043.
40. Furugaki K, Fukumura J, Iwai T, Yorozu K, Kurasawa M, Yanagisawa M, et al. Impact of bevacizumab in combination with erlotinib on EGFR-mutated non-small cell lung cancer xenograft models with T790M mutation or MET amplification. Int J Cancer. 2016; 15; 138(4): 1024-1032.
41. Le Bihan D. Molecular diffusion nuclear magnetic resonance imaging. Magn Reson Q. 1991; 7: 1-30.
42. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007; 11(1): 83-95.
43. Schnell CR, Stauffer F, Allegrini PR, O'Reilly T, McSheehy PM, Dartois C, et al. Effects of the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 on the tumor vasculature: implications for clinical imaging. Cancer Res. 2008; 68(16): 6598-6607.
44. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, et al.
Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005; 2(3): e73.
45. Balak MN, Gong Y, Riely GJ, Somwar R, Li AR, Zakowski MF, et al. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res. 2006; 12: 6494-6501.
46. Cheng JC, Yuan A, Chen JH, Lu YC, Cho KH, Wu JK, et al. Lung carcinoma tumor control by irradiation using diffusion-weighted and dynamic contrast-enhanced MRI. PLoS One. 2013; 8(5): e62762.
47. Costa DB, Halmos B, Kumar A, Schumer ST, Huberman MS, Boggon TJ, et al. BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancer with oncogenic EGFR mutations. PLoS Med. 2007; 4(10):1669-1679.
48. Deng J, Shimamura T, Perera S, Carlson NE, Cai D, Shapiro GI, et al. Proapoptotic BH3-only bcl-2 family protein BIM connects death signaling from epidermal growth factor receptor inhibition to the mitochondrion. Cancer Res. 2007; 67(24): 11867–11875.
49. Subramanian J, Morgensztern D, Govindan R. Vascular endothelial growth factor receptor tyrosine kinase inhibitors in non–small-cell lung cancer. Clin Lung Cancer. 2010; 11(5): 311-319.
50. Jahangiri A, Aghi MK, Carbonell WS. β1 integrin: critical path to antiangiogenic therapy resistance and beyond. Cancer Res. 2014; 74: 3-7.
Chapter 2
1. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003; 9: 653-660
2. Folkman J. Role of angiogenesis in tumor growth and metastasis. Seminars in oncology. 2002; 29: 15-18.
3. Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011; 17: 1359-1370.
4. Folkman J. Tumor angiogenesis theraperutic implications. N Engl J Med. 1971; 285:1182-1186.
5. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005; 23: 1011-1027.
6. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA: a cancer journal for clinicians. 2014; 64: 9-29.
7. Herbst RS, Onn A, Sandler A. Angiogenesis and lung cancer: prognostic and therapeutic implications. J Clin Oncol. 2005; 23(14):3243-56.
8. Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011; 144(5):646-74.
9. Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the
composition of malignancy. Genes Dev. 2016; 30(9):1002-1019.
10. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 2006; 25: 315-322.
11. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacological reviews. 2004; 56: 549-580.
12. Fontanini G, Vignati S, Boldrini L, et al: Vascular endothelial growth factor is associated with neovascularization and influences progression of non-small cell lung carcinoma. Clin Cancer Res.1997; 3:861-865.
13. Mattern J, Koomagi R, Volm M: Association of vascular endothelial growth factor expression with intratumoral microvessel density and tumour cell proliferation in human epidermoid lung carcinoma. Br J Cancer. 1996; 73:931-934.
14. Bose D, Meric-Bernstam F, Hofstetter W, Reardon DA, Flaherty KT, Ellis LM. Vascular endothelial growth factor targeted therapy in the perioperative setting: implications for patient care. Lancet Oncol. 2010; 11: 373-382.
15. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011; 473: 298-307.
16. Fumarola C, Bonelli MA, Petronini PG, Alfieri RR. Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem Pharmacol. 2014; 90(3):197-207.
17. Pérez-Ramírez C, Cañadas-Garre M, Molina MÁ, Faus-Dáder MJ, Calleja-Hernández MÁ. PTEN and PI3K/AKT in non-small-cell lung cancer. Pharmacogenomics. 2015; 16(16):1843-1862.
18. Andrew C. Dudley Tumor Endothelial Cells. Cold Spring Harb Perspect Med. 2012; 2(3): a006536.
19. Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R, Wu CW. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol. 1997; 17: 353-360.
20. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4:44-57.
21. Rousseaux S, Debernardi A, Jacquiau B, Vitte AL, Vesin A, Nagy-Mignotte H, Moro-Sibilot D, Brichon PY, Lantuejoul S, Hainaut P, et al. Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers. Sci Transl Med. 2013;5:186ra166.
22. Rousseaux S, Debernardi A, Jacquiau B, Vitte AL, Vesin A, Nagy-Mignotte H, Moro-Sibilot D, Brichon PY, Lantuejoul S, Hainaut P, et al. Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers. Sci Transl Med. 2013; 5:186ra166.
23. Mroue R, Bissell MJ. Three-Dimensional Cultures of Mouse Mammary Epithelial Cells. In: Randell HS, Fulcher LM, editors. Epithelial Cell Culture Protocols: Second Edition. Humana Press: Totowa, NJ; 2013; 221-50.
24. Ferrara N, Gerber HP, LeCouter J: The biology of VEGF and its receptors. Nat Med. 2003; 9: 669-676.
25. Blanco R, Gerhardt H. VEGF and NOTCH in tip and stalk cell selection. Cold Spring Harb Perspect Med. 2013; 3: a006569.
26. Shijubo N, Kojima H, Nagata M, Ohchi T, Suzuki A, Abe S, Sato N. Tumor angiogenesis of non-small cell lung cancer. Microsc Res Tech. 2003; 60:186-198.
27. Manna SK, Ramesh GT. Interleukin-8 induces nuclear transcription factor-kappaB through a TRAF6-dependent pathway. J Biol Chem. 2005; 280:7010-7021.
28. Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol. 2009; 78:539-552.
29. Tu ML, Wang HQ, Chen LJ, Lu JC, Jiang F, Liang JH, Xu DG, Li DS. Involvement of Akt1/protein kinase Balpha in tumor conditioned medium-induced endothelial cell migration and survival in vitro. J Cancer Res Clin Oncol. 2009; 135:1543-1550.
30. Nobes, C. D. and Hall, A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol. 1999; 144, 1235-1244.
31. Kraynov, V. S., Chamberlain, C., Bokoch, G. M., Schwartz, M. A., Slabaugh, S. and Hahn, K. M. Localized Rac activation dynamics visualized in living cells. Science. 2000; 290, 333-337.
32. Small, J. V., Stradal, T., Vignal, E. and Rottner, K. The lamellipodium: where motility begins. Trends Cell Biol. 2002; 12, 112-120.
33. Zhu YM, Azahri NS, Yu DC, Woll PJ. Effects of COX-2 inhibition on expression of vascular endothelial growth factor and interleukin-8 in lung cancer cells. BMC Cancer. 2008; 8: 218.
34. Wolff H, Saukkonen K, Anttila S, Karjalainen A, Vainio H, Ristimaki A: Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res. 1998; 58: 4997-5001.
35. Brown JR, DuBois RN: Cyclooxygenase as a target in lung cancer. Clin Cancer Res. 2004; 10: 4266s-4269s.
36. Petkova DK, Clelland C, Ronan J, Pang L, Coulson JM, Lewis S, Knox AJ: Overexpression of cyclooxygenase-2 in non-small cell lung cancer. Respir Med. 2004; 98: 164-172.
37. Yuan A, Yu CJ, Shun CT, Luh KT, Kuo SH, Lee YC, Yang PC: Total cyclooxygenase-2 mRNA levels correlate with vascular endothelial growth factor mRNA levels, tumor angiogenesis and prognosis in non-small cell lung cancer patients. Int J Cancer. 2005; 115: 545-555.
38. Pold M, Zhu LX, Sharma S, Burdick MD, Lin Y, Lee PP, Pold A, Luo J, Krysan K, Dohadwala M, Mao JT, Batra RK, Strieter RM, Dubinett SM: Cyclooxygenase-2-dependent expression of angiogenic CXC chemokines ENA-78/CXC Ligand (CXCL) 5 and interleukin-8/CXCL8 in human non-small cell lung cancer. Cancer Res. 2004; 64: 1853-1860.
39. Sui W, Zhang Y, Wang Z, Wang Z, Jia Q, Wu L, Zhang W. Antitumor effect of a selective COX-2 inhibitor, celecoxib, may be attributed to angiogenesis inhibition through modulating the PTEN/PI3K/Akt/HIF-1 pathway in an H₂₂ murine hepatocarcinoma model. Oncol Rep. 2014; 31(5):2252-2260.
40. Xiong YQ, Sun HC, Zhang W, Zhu XD, Zhuang PY, Zhang JB, Wang L, Wu WZ, Qin LX, Tang ZY. Human hepatocellular carcinoma tumor-derived endothelial cells manifest increased angiogenesis capability and drug resistance compared with normal endothelial cells. Clin Cancer Res. 2009; 15:4838-4846.
41. Shahid M, Choi TG, Nguyen MN, Matondo A, Jo YH, Yoo JY, Nguyen NN, Yun HR, Kim J, Akter S, et al. An 8-gene signature for prediction of prognosis and chemoresponse in non-small cell lung cancer. Oncotarget. 2016; 7:86561-86572.
42. Krzystanek M, Moldvay J, Szuts D, Szallasi Z, Eklund AC. A robust prognostic gene expression signature for early stage lung adenocarcinoma. Biomark Res. 2016; 4:4.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70023-
dc.description.abstractLung cancer is the most common cause of cancer death in Taiwan and other industrialized countries. It is a very important issue to study the mechanism of lung cancer response and treatment response to different treatment strategies and to develop new treatments. Dynamic contrast-enhanced (DCE) magnetic resonance imaging provides important pharmacokinetic parameters that detect the dynamic distribution after contrast agents injection and thus be able to measure sensitive pathological and physiological characteristics that are considered as non-invasive indicators of angiogenesis. Diffusion-weighted (DW) magnetic resonance imaging can be used to calculate the apparent diffusion coefficient (ADC) of water molecules that is correlated with the direction of fibers and tumor cellularity. The design of lung cancer mouse model is to study the biological characteristics of non-small cell lung cancer. Tyrosine kinase inhibitors and anti-angiogenesis drugs are the recent advances in the treatment of non-small cell lung cancer. Therefore, assessing the biologic therapeutic response in lung cancer mouse models and the clinical application of these targeted agents are important oncology studies. The purpose of chapter 1 of this study is to investigate the therapeutic response in lung cancer mice model and testing new treatment paradigms of lung cancer to EGFR TKI and anti-angiogenesis agent using DCE and DW MRI. Lung cancer mice model with HCC827 (gefitinib sensitive) and HCC827R (gefitinib resistant) was used for all studies for evaluate the response of TKI and anti-angiogenesis therapy, including: comparison among control group, erlotinib and combined erlotinib and bevacizumab. All animal studies from baseline to follow-up periods were performed using a 7T dedicated animal MR scanner (BioSpec, Bruker, Germany). Analysis of DCE-MRI was carried out using the Tofts model and commercial software. The parameters derived from the dynamic data included the volume transfer constant Ktrans (min-1/1000), rate constant Kep (min-1), extracellular extravascular space (EES) volume fraction (ve), and plasma volume fraction (vp) , initial area under the curve (iAUC). After completing the final MR study, the implanted tumors were excised and the specimens were examined by microvessel (CD31) and cleaved Parp stain. The results showed that tumor growth was significantly controlled by TKI and combined with antiangiogenesis drugs in HCC827 (gefitinib sensitive) model, and dynamic MR parameters such as Ktrans, Kep, and iAUC are significantly reduced, while apparent ADC values also increase early in diffusion MR imaging. These results are consistent with tumor vascular density analysis, including staining of necrotic cells seen in the treatment group. However, progressive enlargement of the tumors but no significant differences in DCE parameters or ADC were noted in the HCC827R model. Therefore, the use of non-invasive imaging technique can be used to assess the lung cancer mouse model of EGFR TKI and anti-angiogenesis drugs, further as an early diagnosis and predicted indicators of clinical imaging. Early detection of vascular changes within the microenvironment of the tumor by assessing the vascular perfusion and permeability will facilitate future clinical application. In addition, extend this issue of angiogenesis, a multi-steps process that involves interactions between cancer cells and their surrounding microenvironment. In the chapter 2 of this study, we found the morphology of human umbilical vein endothelial cells (HUVECs) was changed and richer capillary-like tubular structures were formed after interactions with human lung adenocarcinoma CL1-5 cells in the co-culture system. Then we performed the microarray system to analyze the change of the gene expression profile in HUVECs after co-culture with CL1-5 and survey the significant gene expression and the interactions between HUVECs and CL1-5 cells as well as to investigate the morphological and molecular mechanisms of HUVECs. Furthermore, a publicly available microarray dataset of 293 non-small-cell lung cancer (NSCLC) patients was employed to evaluate the prognostic potential of the gene signatures derived from HUVECs. The interaction between HUVECs and lung cancer cells changed the morphology of HUVECs, leading to a mesenchymal-like morphology and cytoskeleton rearrangement. Additionally, HUVECs showed increased cell motility and microvessel tubular formation ability and a decreased apoptotic percentage after co-culture with lung cancer cells. Transcriptomic profiling of HUVECs also revealed that several survival, apoptosis and angiogenesis-related genes were differentially expressed after interactions with lung cancer cells. Further investigations showed that PI3K/Akt signalling pathway and COX-2 are involved in endothelial tubular formation under the stimulation of lung cancer cells. The enhanced endothelial cell motility through the increased formation of lamellipodia and filopodia might due to Rac-1 activation. The inhibitors of PI3K and COX-2 could reverse the increased tube formation and induced the apoptosis of HUVECs. Moreover, the gene signatures derived from the DEGs in HUVECs could predict overall survival and disease-free survival of NSCLC patients and could serve as an independent prognostic factor potentially. These results demonstrated that lung cancer cells can promote endothelial cell tubular formation and survival, at least in part, through the PI3K/Akt signalling pathway and change the microenvironment to benefit tumor progression. The gene signatures from HUVECs are associated with the clinical outcome of NSCLC patients. The experiments of chapter 2 including cell culture, migration assay, F-actin stain, tubular formation, western Blotting, and Rac-1 activation assay were completed by Yi-Fang, Chen and the others experiments and data integration were done by Hao-Wei, Cheng.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:39:21Z (GMT). No. of bitstreams: 1
ntu-107-D98422004-1.pdf: 2920060 bytes, checksum: 1263c080335b3779f114526b9826b4d7 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents中文摘要……………………………………………………………….….1 Abstract……………………………………………………………….…....4
Chapter 1: Functional evaluation of therapeutic response of HCC827 lung cancer to bevacizumab and erlotinib targeted therapy using dynamic contrast-enhanced and diffusion-weighted MRI........................................9
Introduction…………………………………..……………………….…...10Materials & Methods……...……………………………….……………...15 Results ……………………………………………………….…….……..21 Discussion…………………………………………………………….…...25 Results Figures & Tables……....…………….…………….……………...33
References…………………………….....……………………………......47
Chapter 2: Cancer cells increase endothelial cell tube formation and survival by activating the PI3K/Akt signalling pathway..............................54
Introduction………………………………………………………….….....55Materials & Methods……...……………………………….……………...59 Results ……………………………………………………….…….……..67 Discussion…………………………………………………………….…...75 Results Figures & Tables……....…………….…………….……………...81
References…………………………….....……………………………......93
dc.language.isoen
dc.subject細胞凋亡zh_TW
dc.subject內皮細胞zh_TW
dc.subject血管新生zh_TW
dc.subject酪胺酸激?抑制劑zh_TW
dc.subject擴散權重磁振造影影像zh_TW
dc.subject灌流磁振造影影像zh_TW
dc.subject訊息傳導zh_TW
dc.subject肺癌zh_TW
dc.subjectsignalling pathwayen
dc.subjectlung canceren
dc.subjectperfusion MR imagingen
dc.subjectdiffusion-weighted MR imagingen
dc.subjecttyrosine kinase inhibitorsen
dc.subjectangiogenesisen
dc.subjectendothelial cellen
dc.subjectapoptosisen
dc.title血管新生與標靶藥物於腫瘤治療之應用:磁振造影灌流與擴散影像之功能性評估及血管內皮細胞存活之訊息傳導zh_TW
dc.titleApplication of angiogenesis and targeted therapy in cancer treatment:functional evaluation by dynamic contrast-enhanced and diffusion-weighted MRI and activation the survival pathway of vascular endothelial cellen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.oralexamcommittee林欽塘,張允中,陳健尉,袁昂
dc.subject.keyword肺癌,灌流磁振造影影像,擴散權重磁振造影影像,酪胺酸激?抑制劑,血管新生,內皮細胞,細胞凋亡,訊息傳導,zh_TW
dc.subject.keywordlung cancer,perfusion MR imaging,diffusion-weighted MR imaging,tyrosine kinase inhibitors,angiogenesis,endothelial cell,apoptosis,signalling pathway,en
dc.relation.page97
dc.identifier.doi10.6342/NTU201800322
dc.rights.note有償授權
dc.date.accepted2018-02-09
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved