Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70015
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃定洧(Ding-Wei Huang)
dc.contributor.authorShuo Changen
dc.contributor.author張碩zh_TW
dc.date.accessioned2021-06-17T03:38:56Z-
dc.date.available2023-03-02
dc.date.copyright2018-03-02
dc.date.issued2018
dc.date.submitted2018-02-09
dc.identifier.citation[1] X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An Ultra-Wideband Surface Plasmonic Filter in Microwave Frequency,” Applied Physics Letters, Vol. 104, 191603, 2014.
[2] X. N. Ye, and Intel Corp., “Inteintional and Un-Intentional Far End Crosstalk Cancellation in High Speed Differential Link,” IEEE International Symposium on Electromagnetic Compatibility(EMC), 2011.
[3] K. H. Lee, H. K. Jung, H. J. Chi, H. J. Kwon, J. Y. Sim, and H. J. Park, “Serpentine Microstrip Lines with Zero Far-End Crosstalk for Parallel High-Speed DRAM Interface,” IEEE Transactions on Advanced Packaging, Vol. 33, No. 2, 2010.
[4] G. Veronis, and S. Fan, “Guided Subwavelength Plasmonic Mode Supported by a Slot in a Thin Metal Film,” Optics Letters, Vol. 30, pp. 3359-3361, 2005.
[5] Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, T. J. Cui, “Broadband Transmission Between Microstripline and Conformal Surface Plasmon Waveguide,” Journal of Physics D: Applied Physics, Vol. 47, 315103, 2014.
[6] J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband Frequency-Selective Spoof Surface Plasmon Polaritons on Ultrathin Metallic Structure,” Scientific Reports, Vol. 5, 8165, 2015.
[7] Z. H. Han, and S. I. Bozhevolnyi, “Radiation Guiding with Surface Plasmon Polaritons,” Reports on Progress. in Physics, Vol. 76, 016402, 2013.
[8] A. Khavasi, M, Miri, M. Rezaei, K. Mehrany, and B. Rashidian, “Transmission Line Model for Extraction of Transmission Characteristics in Photnics Crystal Waveguides with Stubs: Optical Filter Design,” Optical Letters, Vol. 37, No. 8, pp. 1322-1324, 2012.
[9] X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal Surface Plasmons Propagating on Ultrathin and Flexible Films,” Proceedings of the National Academy of Science, Vol. 110, No. 1, pp. 40-45, 2013.
[10] L. Tsang, and D. Miller, “Coupling of Vias in Electronic Packaging and Printed Circuit Board Structures with Finite Ground Plane,” IEEE Transactions on Advanced Packaging, Vol. 26, No. 4, 2003.
[11] P. Mezzanotte, M. Mongiardo, L. rosella, R. Sorrentino, and W. Heinrich, “Analysis of Packaged Microwave Integrated Circuits by FDTD,” IEEE Transactions on Micorwave Theory and Techniques, Vol. 42, No. 9, 1994.
[12] S. G. Hsu, and R. B. Wu, “Full-Wave Characterization of a Through Hole Via in Multi-Layered Packaging,” IEEE Transactions on Microwave Theory and Techniques, Vol. 43, pp. 1073-1081, 1995.
[13] K. T. Hsu, W. D. Guo, G. H. Shiue, C. M. Lin, T. W. Huang, and R. B. Wu, “Design of Reflectionless Vias Using the neural Network-Based Approach,” IEEE Transactions on Advanced Packaging, Vol. 31. Pp. 211-218, 2008.
[14] D. G. Kam, H. Lee, and J. H. Kim, “Twisted Differential Line Structure on High-Speed Printed Circuit Boards to Reduce Crosstalk and Radiated Emission,” IEEE Transactions on Advanced Packaging, Vol. 27, No. 4, 2004.
[15] W. T. Huang, C. H. Lu, and D. B. Lin, “Suppression of Crosstalk Using Serpentine Guard Trace Vias,” Progress in Electromagnetics Research, Vol. 109, pp. 37-61, 2010.
[16] H. Y. Kao, Y. C. Chi, C. T. Tsai, S. F. Leong, C. Y. Peng, H. Y. Wang, J. J. Huang, J. J. Jou, T. T. Shih, H. C. Kuo, W. H. Cheng, C. H. Wu, and G. R. Lin, “Few-Mode VCSEL Chip for 100-Gb/s Transmission over 100 m Multimode Fiber,” Photonics Research, Vol. 5, No. 5, pp. 507-515, 2017.
[17] Y. F. Huang, Y. C. Chi, H. Y. Kao, C. T. Tsai, H. Y. Wang, H. C. Kuo, S. Nakamura, D. W. Huang, and G. R. Lin, “Blue Laser Diode Based Free-Space Optical Data Transmission Elevated to 18 Gbps over 16 m,” Scientific Reports, Vol. 7, 10478, 2017.
[18] P. H. Fu, Y. C. Tu, and D. W. Huang, “Broadband Optical Waveguide Couplers with Arbitrary Coupling Ratios Designed Using a Genetic Algorithm,” Optics Express, Vol. 24, pp. 30547-30561, 2016.
[19] H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-Dimensional Optics with Surface Plasmon Polaritons,” Applied Physics Letters, Vol. 81, No. 10, 2002.
[20] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel Plasmon Subwavelength Waveguide Components Incouding Inteferometers and Ring Resonantors,” Nature, Vol. 440, pp. 508-511, 2006.
[21] D. S. Citrin, “Plasmon Polaritons in Finite-Length Metal-Nanoparticle Chains: The Role of Chain Length Unravelled,” Nano Letters, Vol. 5, pp. 985-989, 2005.
[22] P. Berini, “Plasmon-Polariton Waves Guided by Thin Lossy Metal Films of Finite Width: Bound Modes of Symmetric Structures,” Physical Review B, Vol. 61, 10484, 2000.
[23] J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a One-Dimensional Optical Beam with Nanometer Diameter,” Optics Letters, Vol. 22, pp. 475-477, 1997.
[24] B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface Plasmon Propagation in Microscale Stripes,” Applied Physics Letters, Vol. 79, pp. 51-53, 2001.
[25] A. Ma, Y. Li, X. P. Zhang, “Coupled Mode Theory for Surface Plasmon Polariton Waveguides,” Plasmonics, Vol. 8, pp. 769-777, 2013.
[26] 國立台灣大學電機系黃定洧教授開授課程積體光學之上課講義。
[27] P. Kaspar, R. Kappeler, D. Erni, and H. Jackel, “Relevance of the Light Line in Planar Photonic Crystal Waveguides with Weak Vertical Confinement,” Optics Express, Vol. 24, No. 24, pp. 24344-24353, 2011.
[28] M. Navarro-Cia, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband Spoof Plasmons and Subwavelength Electromagnetic Energy Confinement on Ultrathin Metafilms,” Optics Express, Vol. 17, No. 20, pp. 18184-18195, 2009.
[29] C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly Confined Guiding of Terahertz Surface Plasmon Polaritons on Structured Metal Surface,” Nature Photonics, Vol. 2, pp. 175-179, 2008.
[30] L. F. Ye, Y. F. Xiao, Y. H. Liu, L. Zhang, G. X. Cai, and Q. H. Liu, “Strongly Confined Spoof Surface Plasmon Polaritons Waveguiding Enabled by Planar Staggered Plasmonic Waveguides,” Scientific Reports, Vol. 6, 38528, 2016.
[31] H. C. Zhang, Q. Zhang, J. F. Liu, W. X. Tang, Y. F. Fan, and T. J. Cui, “Smaller –Loss Planar SPP Transmission Line than Conventional Microstrip in Microwave Frequencies,” Scientific Report, Vol. 6, 23396, 2016.
[32] T. J. Cui, and X. P. Shen, “THz and Microwave Surface Plasmon Polaritons on Ultrathin Corrugated Metallic Strips,” Terahertz Science and Technology, Vol. 6, No. 2, pp. 147-164, 2013.
[33] X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin Dual-Band Surface Plasmonic Polariton Waveguide and Frequency Splitter in Microwave Frequencies,” Applied Physics Letters, Vol. 102, 151912, 2013.
[34] Y. Yang, X. P. Shen, P. Zhao, H. C. Zhang, and T. J. Cui, “Trapping Surface Plasmon Polaritons on Ultrathin Corrugated Metallic Strips in Microwave Frequencies,” Optics Express, Vol. 23, No. 6, pp. 7031-7037, 2015.
[35] P. H. Fu, T. Y. Chiang, N. C. Cheng, Y. F. Ma, and D. W. Huang, “Microring Resonator Composed of Vertical Slot Waveguides with Minimum Polarization Mode Dispersion over a Wide Spectral Range,” Applied Optics, Vol. 55, pp. 3626-3631, 2016.
[36] L. L. Liu, Z. Li, C. Q. Gu, P. P. Ning, B. Z. Xu, Z. Y. Niu, and Y. J. Zhao, “Multi-Channel Composite Spoof Surface Plasmon Polaritons Propagating Along Periodically Corrugated Metallic Thin Films,” Journal of Applied Physics, Vol. 116, 013501, 2014.
[37] X. P. Shen, and T. J. Cui, “Planar Plasmonic Metamaterial on a Thin Film with Nearly Zero Thickness,” Applied Physics Letters, Vol. 102, 211909, 2013.
[38] P. H. He, H. C. Zhang, W. X. Tang, Z. X. Wang, R. T. Yan, and T. J. Cui, “Multi-Layer Spoof Surface Plasmon Polariton Waveguide with Corrugated Ground,” IEEE Access, Vol. 5, pp. 25306-25311, 2017.
[39] H. C. Zhang, T. J. Cui, J. Xu, W. X. Tang, and J. F. Liu, “Real-Time Controls of Designer Surface Plasmon Polaritons Using Programmable Plasmonic Metamaterial,” Advanced Materials Technilogies, Vol. 2, 1600202, 2017.
[40] J. Y. Yin, J. Ren, H. C. Zhang, Q. Zhang, and T. J. Cui, “Capacitive-Coupled Series Spoof Surface Plasmon Polaritons,” Scientific Reports, Vol. 6, 24605, 2016.
[41] D. M. Pozar, Microwave Engineering, Addison-Wesley Publishing Company, 1990.
[42] 國立台灣大學電機系吳瑞北教授開授課程訊號完整度之上課講義。
[43] F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with Holes in Them: New Plasmonic Metamaterials,” Jornal of Optics A: Pure and Applied Optics, Vol. 7, pp. S97-S101, 2005.
[44] H. Z. Yao, and S. C. Zhong, “High-Mode Spoof SPP of Periodic Metal Grooves for Ultra-Sensitive Terahertz Sensing,” Optics Express, Vol. 22, No. 21, pp. 25149-15160, 2014.
[45] Z. Yao, S. C. Zhong, and W. L. Tu, “Performance Analysis of Higher Mode Spoof Surface Plasmon Polaritons for Terahertz Sensing,” Journal of Applied Physics, Vol. 117, 133104, 2015.Y
[46] A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science, Vol. 308, pp. 670-672, 2005.
[47] S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires,” Phisical Review Letters, Vol. 97, 176805, 2006.
[48] R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental Observation of Plasmon-Polariton Waves Supported by a Thin Metal Film of Finite Width,” Optis Letters, Vol. 25, pp. 844-846, 2000.
[49] M. Z. Hu, H. C. Zhang, J. Y. Yin, Z. Ding, J. F. Liu. W. X. Tang, and T. J. Cui, “Ultra-Wideband Filtering of Spoof Surface Plasmon Polaritons Using Deep Subwavelength Planar Structures,” Scientific Reports, Vol. 6, 37605, 2016.
[50] W. X. Yu, M. Ye, and Y. S. Yi, “Impacts of Tapered Sidewall Profile on Subwavelength Grating Wideband Reflectors,” Journal of Nanophotonics, Vol. 9, 093058, 2015.
[51] D. C. Skigin, R. A. Depine, J. A. Monsoriu, and W. D. Furlan, “Diffraction by Fractal Metallic Supergratings,” Optics Express, Vol 15, No. 24, pp. 15628-15636, 2007.
[52] P. Nagpal, N. C. Lindquist, S. H. Oh, D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science, Vol. 325, pp. 594-596, 2009.
[53] J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science, Vol. 305, pp. 847-851, 2004.
[54] H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband Amplification of Spoof Surface Plasmon Polaritons at Microwave Frequencies,” Laser Photonics Reviews, Vol. 9, No. 1, pp. 83-90, 2015.
[55] H. Yi, and S. W. Qu, “Antenna Array Excited by Spoof Planar Plasmonic Waveguide,” IEEE Antennas and Wireless Propagation Letters, Vol. 13, pp. 1227-1230, 2014.
[56] J. Y. Yin, J. Ren. Q. Zhang, H. C. Zhang, Y. Q. Liu, Y. B. Li, X. Wan, and T. J. Cui, “Frequency-Controlled Broad-Angle Beam Scanning of Patch Array Fed by Spoof Surface Plasmon Polaritons,” IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, pp. 5181-5189, 2016.
[57] J. Y. Yin, D. Bao, J. Ren, H. C. Zhang, B. C. Pan, Y. F. Fan, and T. J. Cui, “Endfire Radiations of Spoof Surface Plasmon Polaritons,” IEEE Antennas and Wireless Propagation Letters, Vol. 16 pp. 597-600, 2016.
[58] A. H. Panaretos, and D. H. Werner, “Spoof Plasmon Radiation Using Sinusoidally Modulated Corrugated Reactance Surfaces,” Optics Express, Vol. 24, No. 3, pp. 2443-2456, 2016.
[59] N. Talebi, and M. Shahabadi, “Spoof Surface Plasmons Propagating along a Periodically Corrugated Coaxial Waveguide,” Journal of Physics D: Applied Physics, Vol. 43, 134302, 2010.
[60] Z. Li, L. L. Liu, B. Z. Xu, P. P. Ning, C. Chen, J. Xu. X.L. Chen, C. Q. Gu, and Q. Qing, “High-Contrast Gratings Based Spoof Surface Plasmons,” Scientific Reports, Vol. 6, 21199, 2016.
[61] K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-Range Surface Plasmon Polariton Nanowire Waveguides for Device Applications,” Optics Express, Vol. 14, pp. 314-319, 2006.
[62] R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Integrated Optics Elements Based on Long-Ranging Surface Plasmon Polaritons,” Optics Express, Vol. 13, pp. 977-984, 2005.
[63] J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient Conversion of Surface-Plasmon-Like Modes to Spatial Radiated Modes,” Applied Physics Letters, Vol. 106, 021102, 2015.
[64] B. G. Xiao, S. Kong, J. Chen, and M. Y. Gu, “A Microwave Power Divider Based on Spoof Surface Plasmon Polaritons,” Optical and Quantum Electronics, Vol. 48, DOI. 10.1007, 2016.
[65] A. Kianinejad, Z. N. Chen, and C. W. Qui, “Design and Modeling of Spoof Surface Plasmon Modes-Based Microwave Slow-Wave Transmission Line,” IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 6, 2015.
[66] R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Integrated Optics Elements Based on Long-Ranging Surface Plasmon Polaritons,” Optics Express, Vol. 13, pp. 977-984, 2005.
[67] L. Zhao, X. Zhang, J. Wang, W. H. Yu, J. D. Li, H. Su, and X. P. Shen, “A Novel Broadband Band-Pass Filter Based on Spoof Surface Plasmon Polaritons,” Scientific Reports, Vol. 6, 36069, 2016.
[68] H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and High-Efficiency Conversion from Guided Waves to Spoof Surface Plasmon Polaritons,” Laser Photonics Reviews, Vol. 8, No. 1, pp. 146-151, 2014.
[69] D. F. Guan, P. You, Q. F. Zhang, K. Xiao, and S. W. Yong, “Hybrid Spoof Surface Plasmon Polaritons and Substrate Integrated Waveguide Transmission Line and Its Application in Filter,” IEEE Transactions on Microwave Theory and Techniques, Vol. 65, pp. 4925-4932, 2017.
[70] D. W. Zhang, K. Zhang, Q. Wu, X. M. Ding, and X. J. Sha, “High-Efficiency Surface Plasmonic Polariton Waveguides with Enhanced Low-Frequency Performance in Microwave Frequencies,” Optics Express, Vol. 25, No. 3, pp. 2121-2129, 2017.
[71] D. F. Guan, P. You, Q. F. Zhang, Z. H. Lu, S. W. Yong, and K. Xiao, “A Wide Angle and Circularly Polarized Beam Scanning Antenna Based on Microstrip Spoof Surface Plasmon Polariton Transmission Line” IEEE Antennas and Wireless Propagation Letters, Vol. 16, pp. 2538-2541, 2017.
[72] W. X Tang, H. C. Zhang, J. F. Liu, J. Xu, and T. J. Cui, “Reduction of Radiation Loss at Small-Radius Bend Using Spoof Surface Plasmon Polariton Transmission Line,” Scientific Reports, Vol. 7, 41007, 2017.
[73] J. J. Wu, H. E. Lin, T. J. Yang, H. J. Chang, and I. J. Hsieh, “Low-Frequency Surface Plasmon Polaritons Guided on a Corrugated Metal Striplines with Subwavelength Periodical Inward Slits,” Plasmonics, Vol. 6, pp. 59-65, 2011.
[74] J. J. Wu, D. J. Hou, K. X. Liu, L. F. Shen, C. A. Tsai, C. J. Wu, D. C. Tsai, and T. J. Yang, “Differential Microstrip Lines with Reduced Crosstalk and Common Mode Effect Based on Spoof Surface Plasmon Polaritons,” Optics Express, Vol. 22, No. 22, pp. 26777-26787, 2014.
[75] H. C. Zhang, T. J. Cui, Q. Zhang, Y. Fang, and X. J. Fu, “Breaking the Challenge of Signal Integrity Using Time-Domain Spoof Surface Plasmon Polaritons,” ACS Photonics, Vol. 2, DOI. 10.1021, pp. 1333-1340, 2015.
[76] Ansys HFSS, User Guide.
[77] N. N. Rao, Elements of Engineering Electromagnetics, 6th Edition, Pearson Prentice Hall, 2004.
[78] D. K. Chang, Fundamentals of Engineering Electromagnetics, International Edition, Addison-Wesley Publishing Company, 1993。
[79] H. A. Haus, Wave and Fields in Optoelectronics, Prentice-Hall Inc, 1984.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70015-
dc.description.abstract目前印刷電路板上的單一電訊號傳輸線的數位資料速率已經達到數百Mb/s甚至數個Gb/s,為了使總體傳輸率可以高達數百 Gb/s甚至數個 Tb/s,因此目前印刷電路板的走線密度已經非常高,使得我們無法忽略每條電訊號傳輸線之間的串擾效應,如何降低串擾成為一重要課題。
有學者提出將表面電漿極化子波導的場強度集中特性應用於降低串擾上,透過設計特殊的次波長週期性結構可使金屬波導在微波波段下表現出類似表面電漿的現象,此種設計又稱為仿表面電漿極化子 (Spoof Surface Plasmon Polariton, SSPP) 波導;以仿表面電漿極化子波導作為新型抗串擾波導之研究在近幾年也被發表,但都僅止於以不同結構和微帶線進行比較,無更進一步的改良與討論。本研究首次引入了奇偶模態分析來計算兩相鄰的SSPP波導之間的耦合係數,並藉此優化SSPP波導的結構參數,研究成果相較於已發表的文獻,在頻率為4.5 GHz時串擾降低了35.34 dB,在10 GHz時降低了33.13 dB,超過三個數量級,同時能量穿透之3-dB頻寬可達25.7 GHz,最後以製程容忍度分析來預測製造誤差對波導的表現影響,結果為當誤差為±0.2 mm,在4.5 GHz時,串擾仍然在-40 dB以下,10 GHz時則為-35 dB以下,且在0至10 GHz內的串擾皆低於-30 dB,由此可知本研究所改良的波導性能十分良好,有非常大的應用價值,期望此波導未來在高速數位系統上可普遍被採用。
zh_TW
dc.description.abstractNowadays, the digital data rate of a single electrical signal transmission line on the printed circuit board (PCB) is as high as hundreds of Mb/s and even several Gb/s. To achieve hundreds of Gb/s or up to Tb/s in total, the density of transmission lines on the PCB is very high, which means we can no longer ignore the crosstalk between adjacent transmission lines. Some researchers proposed to apply the properties of surface plasmon polaritons (SPP), the highly concentrated field distribution, on crosstalk reduction. With specially designed subwavelength periodic structures, metal waveguides can behave like SPP in microwave frequencies, which are called spoof surface plasmon polariton (SSPP) waveguides. Studies focusing on crosstalk-reduction waveguides based on SSPP waveguides have been published these years. However, they merely compared different kinds of SSPP structures with microstrip lines, but there is no further discussion and optimization. In this research, we first calculate the coupling coefficient of two adjacent SSPP waveguides and optimize the design parameters by even-odd modes analysis. Compared to published papers, the crosstalk has been reduced by 35.34 dB at frequency of 4.5 GHz, and reduced by 33.13 dB at 10 GHz, more than three orders of magnitude, while its 3-dB bandwidth for transmission is 25.7 GHz. At last, the fabrication tolerance is analyzed to predict the effect of manufacture error on the performance of this waveguide. It shows that when the error is ±0.2 mm, the crosstalk is still below -30 dB from 0 to 10 GHz, particularly below -40 dB at 4.5 GHz, and -35 dB at 10 GHz. In conclusion, the SSPP waveguides optimized in this research performs significantly well on crosstalk reduction, and they are of great value for applications. Hope to see such waveguides to be applied on high-speed digital systems universally.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:38:56Z (GMT). No. of bitstreams: 1
ntu-107-R03941078-1.pdf: 3673031 bytes, checksum: 891207a14403b42508cc4e607c7a1cb7 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
致謝 #
中文摘要 i
ABSTRACT ii
目錄 iii
圖目錄 v
表目錄 ix
第一章 導論與文獻回顧… 1
1.1 研究背景 1
2.2 研究動機 5
第二章 文獻回顧與探討 9
2.1 改變路徑設計與打貫孔(via) 9
2.2 增加蛇紋形屏蔽線 11
2.3 SSPP波導 14
第三章 理論原理 21
3.1 馬克士威爾方程式 21
3.2 表面電漿極化子與仿表面電漿極化子 27
3.3 有限元素法 32
3.4 串音干擾 35
第四章 元件設計結果與討論 38
4.1 SSPP結構之特徵模態(Eigenmode) 38
4.2 SSPP結構之定向耦合器效率分析 46
4.3 SSPP結構降低串擾之設計參數優化 53
第五章 結論與未來展望… 68
參考文獻 70
dc.language.isozh-TW
dc.title仿表面電漿子波導之降低串擾最佳化zh_TW
dc.titleOptimization of Spoof Surface Plasmonic Waveguide for Crosstalk Reductionen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.coadvisor林恭如(Gong-Ru Lin)
dc.contributor.oralexamcommittee林晃巖(Hoang-Yan Lin)
dc.subject.keyword表面電漿波導,微波,超穎材料,串擾,最佳化,zh_TW
dc.subject.keywordSPP waveguide,microwave,metamaterial,crosstalk,optimization,en
dc.relation.page79
dc.identifier.doi10.6342/NTU201800400
dc.rights.note有償授權
dc.date.accepted2018-02-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
3.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved