Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70005
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蔡宛珊(Christina Tsai)
dc.contributor.authorMin-Liang Linen
dc.contributor.author林旻樑zh_TW
dc.date.accessioned2021-06-17T03:38:26Z-
dc.date.available2020-08-24
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citationBroecker, W. S. (1975). Climatic change: are we on the brink of a pronounced global warming? Science, 189(4201), 460-463.
Broomhead, D. S., Lowe, D. (1988). Radial basis functions, multi-variable functional interpolation and adaptive networks. Complex Systems, 2, 327-355.
Chen, S., Grant, P., Cowan, C. (1992). Orthogonal least-squares algorithm for training multioutput radial basis function networks. Paper presented at the IEE Proceedings F (Radar and Signal Processing).
Chen, V. C., Qian, S. (1996). Time-frequency transform vs. Fourier transform for radar imaging. Paper presented at the Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96).
Chen, C. M., Wang, F. R. (2000). 台灣地區長期暖化現象與太平洋海溫變化之關係. 大氣科學, 28(3), 221-241.
Chen, T. C., Wang, S. Y., Yen, M. C. (2007). Enhancement of afternoon thunderstorm activity by urbanization in a valley: Taipei. Journal of Applied Meteorology and Climatology, 46(9), 1324-1340.
Chen, C. C., Lu, M. M. (2007). 台灣極端降雨氣候事件判定方法. 大氣科學, 35(2), 105-117.
Dombaycı, Ö. A., Gölcü, M. (2009). Daily means ambient temperature prediction using artificial neural network method: A case study of Turkey. Renewable Energy, 34(4), 1158-1161.
Ding, T., Qian, W., Yan, Z. (2010). Changes in hot days and heat waves in China during 1961–2007. International Journal of Climatology, 30(10), 1452-1462.
Di, C., Yang, X., Wang, X. (2014). A four-stage hybrid model for hydrological time series forecasting. PloS one, 9(8), e104663.
Endo, N., Matsumoto, J., Lwin, T. (2009). Trends in precipitation extremes over Southeast Asia. Sola, 5, 168-171.
Flandrin, P., Rilling, G., Goncalves, P. (2004). Empirical mode decomposition as a filter bank. IEEE signal processing letters, 11(2), 112-114.
Fujibe, F. (2009). Detection of urban warming in recent temperature trends in Japan. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(12), 1811-1822.
Foster, G., Rahmstorf, S. (2011). Global temperature evolution 1979–2010. Environmental Research Letters, 6(4), 044022.
Gonzalez, R.C., Woods, R.E. (2002). Digital Image Processing, second ed. Pearson Education, Inc. publishing as Prentice-Hall, Englewood Cliffs, NJ.
Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., Russell, G. (1981). Climate impact of increasing atmospheric carbon dioxide. Science, 213(4511), 957-966.
Huang, Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., . . . Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, 454(1971), 903-995.
Hydrology, ASCE Task Committee on Application of Artificial Neural Networks (2000). Artificial neural networks in hydrology. I: Preliminary concepts. Journal of Hydrologic Engineering, 5(2), 115-123.
Hsu, H. H., Chen, C. T. (2002). Observed and projected climate change in Taiwan. Meteorology and Atmospheric Physics, 79(1-2), 87-104.
He, J., Liu, J., Zhuang, D., Zhang, W., Liu, M. (2007). Assessing the effect of land use/land cover change on the change of urban heat island intensity. Theoretical and Applied Climatology, 90(3-4), 217-226.
Hart, M. A., Sailor, D. J. (2008). Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theoretical and Applied Climatology, 95(3-4), 397-406.
Huang, N. E., Shen, Z., Long, S. R. (1999). A new view of nonlinear water waves: the Hilbert spectrum. Annual review of fluid mechanics, 31(1), 417-457.
Huang, N. E. (2001). Computer implemented empirical mode decomposition method, apparatus, and article of manufacture for two-dimensional signals.
IPCC, 2013: climate change 2013: the physical science basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. In: Cambridge Univ. Press..
Jansenberger, E. M., Staufer-Steinnocher, P. (2004). Dual kernel density estimation as a method for describing spatio-temporal changes in the upper Austrian food retailing market. The 7th AGILE Conference on Geographic Information Science.
Jang, J. D., Viau, A., Anctil, F. (2004). Neural network estimation of air temperatures from AVHRR data. International Journal of Remote Sensing, 25(21), 4541-4554.
Jusuf, S. K., Wong, N. H., Hagen, E., Anggoro, R., Hong, Y. (2007). The influence of land use on the urban heat island in Singapore. Habitat international, 31(2), 232-242.
Ji, F., Wu, Z., Huang, J., Chassignet, E. P. (2014). Evolution of land surface air temperature trend. Nature Climate Change, 4(6), 462-466. doi:10.1038/nclimate2223
Kumar, R., Ahmad, K., Debnath, L. (2001). On Fourier transforms of wavelet packets. Zeitschrift für Analysis und ihre Anwendungen, 20(3), 579-588.
Lin, S.D., Chen, K.T. Kuo, S.C. (2001). 台灣中型都市熱島現象與土地利用之觀測解析. 規劃學報(28), 47-64.
Lin, S.D., Sun, J.I., Li, K.P., Kuo, S.C. (2005). 台南地區都市規模與都市熱島強度之研究. 都市與計劃, 32(1), 83-97.
Liu, X., Zhang, A., Shi, C., Wang, H. (2009). Filtering and multi-scale RBF prediction model of rainfall based on EMD method. Paper presented at the 2009 First International Conference on Information Science and Engineering.
Li, T. H., Hsu, H. S. (2017). 台灣熱浪特性分析與變遷推估. 大氣科學, 45(4), 281-304.
Linderhed, A. (2005). Variable sampling of the empirical mode decomposition of two-dimensional signals. International journal of wavelets, multiresolution and information processing, 3(03), 435-452
Liebmann, B., Dole, R. M., Jones, C., Bladé, I., Allured, D. (2010). Influence of choice of time period on global surface temperature trend estimates. Bulletin of the American Meteorological Society, 91(11), 1485-1492.
Liu, X.L., Lai, M.C. (2011). 都市化與氣候暖化關係之研究─ 以台北都會區為例. Journal of Taiwan Land Research, 14(2), 39-66.
Levermore, G., Parkinson, J., Lee, K., Laycock, P., Lindley, S. (2018). The increasing trend of the urban heat island intensity. Urban Climate, 24, 360-368.
Meehl, G. A., Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305(5686), 994-997.
Nunes, J. C., Bouaoune, Y., Delechelle, E., Niang, O., Bunel, P. (2003). Image analysis by bidimensional empirical mode decomposition. Image and vision computing, 21(12), 1019-1026.
Nunes, J. C., Guyot, S., Deléchelle, E. (2005). Texture analysis based on local analysis of the bidimensional empirical mode decomposition. Machine Vision and applications, 16(3), 177-188.
Nairn, J., Fawcett, R., Ray, D. (2009). Defining and predicting excessive heat events, a national system. Paper presented at the Extended Abstracts, Modelling and Understanding High Impact Weather, Third CAWCR Modelling Workshop. Centre for Australian Weather and Climate Research. CAWCR Technical Report.
Nastos, P., Paliatsos, A., Koukouletsos, K., Larissi, I., Moustris, K. (2014). Artificial neural networks modeling for forecasting the maximum daily total precipitation at Athens, Greece. Atmospheric Research, 144, 141-150.
Oke, T. R. (1973). City size and the urban heat island. Atmospheric Environment (1967), 7(8), 769-779.
Perkins, S., Alexander, L., Nairn, J. (2012). Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophysical Research Letters, 39(20).
Perkins, S. E., Alexander, L. V. (2013). On the measurement of heat waves. Journal of Climate, 26(13), 4500-4517.
Pietrafesa, L., Gallagher, C., Bao, S., Gayes, P. (2019). Global Surface Temperature Variability and Trends and Attribution to Carbon Emissions. J Environ Sci Curr Res, 2, 013.
Ramírez-Aguilar, E. A., Lucas Souza, L. C. (2019). Urban form and population density: Influences on Urban Heat Island intensities in Bogotá, Colombia. Urban Climate, 29.
Rehman, N., Mandic, D. P. (2010a). Empirical mode decomposition for trivariate signals. IEEE Transactions on Signal Processing, 58(3), 1059-1068.
Rehman, N., Mandic, D. P. (2010b). Multivariate empirical mode decomposition. Paper presented at the Proceedings of The Royal Society of London A: Mathematical, Physical and Engineering Sciences.
Rehman, N., Mandic, D. P. (2011). Filter bank property of multivariate empirical mode decomposition. IEEE Transactions on Signal Processing, 59(5), 2421-2426.
Serrano, A., Mateos, V., Garcia, J. (1999). Trend analysis of monthly precipitation over the Iberian Peninsula for the period 1921–1995. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 24(1-2), 85-90.
Salleh, S. A., Latif, Z. A., Mohd, W. M. N. W., Chan, A. (2013). Factors contributing to the formation of an urban heat island in Putrajaya, Malaysia. Procedia-Social and Behavioral Sciences, 105, 840-850.
Su, S.H., Chen, Y.H., Yang, Y.T., Hsu, L.H., Kuo, H.G. (2017). 氣候變遷下台灣颱風豪雨之變化與機制探討. 大氣科學, 45(4), 305-331.
Tryhorn, L., Risbey, J. (2006). On the distribution of heat waves over the Australian region. Australian Meteorological Magazine, 55(3), 169-182.
Tanaka, T., Mandic, D. P. (2007). Complex empirical mode decomposition. IEEE Signal Processing Letters, 14(2), 101-104.
Tecer, L. H., Cerit, O. (2009). Temperature trends and changes in Rize, Turkey, for the period 1975 to 2007. CLEAN–Soil, Air, Water, 37(2), 150-159.
Ustaoglu, B., Cigizoglu, H. K., Karaca, M. (2008). Forecast of daily mean, maximum and minimum temperature time series by three artificial neural network methods. Meteorological Applications, 15(4), 431-445. doi:10.1002/met.83
Wang, W. C., Chau, K. W., Qiu, L., Chen, Y. B. (2015). Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. Environmental research, 139, 46-54.
Wu, Z., Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(01), 1-41.
Wu, Z., Huang, N. E., Chen, X. (2009). The multi-dimensional ensemble empirical mode decomposition method. Advances in Adaptive Data Analysis, 1(03), 339-372.
Wen, T.H., Liu, T. C., Lin, M.H. (2010). Crime Mapping and Hotspot Analysis: A Case Study of Residential Burglaries in Taipei City, 1998-2007. Journal of Geographical Research, 52, 43-63.
Wang, S.P. Yang, C.D. (2012). 臺灣地區月降雨及溫度 1 公里網格資料庫之建立(1960-2009)及其在近未來(2015-2039)的氣候推估應用. 大氣科學, 40(4), 349-369.
Wu, X. J., Jiang, G. C., Wang, X. J., Fang, N., Zhao, L., Ma, Y. M., Luo, S. J. (2013). Prediction of reservoir sensitivity using RBF neural network with trainable radial basis function. Neural Computing and Applications, 22(5), 947-953.
Wang, W. C., Chau, K. W., Qiu, L., Chen, Y. B. J. E. r. (2015). Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. 139, 46-54.
Wang, S. Y. S., Zhao, L., Gillies, R. R. (2016). Synoptic and quantitative attributions of the extreme precipitation leading to the August 2016 Louisiana flood. Geophysical Research Letters, 43(22), 11,805-811,814.
Wu, Y.C., Kung, C.Y., Wang, A. X., Yu, Y.C. (2016) 台灣地區短延時強降雨事件氣候特性分析. 國家災害防救中心
Wang, S.P. Yang, C.D. (2018). 臺灣地區日降雨網格化資料庫(1960~2015)之建置與驗證. Taiwan Water Conservancy, 66(4), 33-52.
Wu, Y. c., Wang, S. Y. S., Yu, Y. C., Kung, C. Y., Wang, A. H., Los, S. A., Huang, W. R. (2019). Climatology and change of extreme precipitation events in Taiwan based on weather types. International Journal of Climatology, 39(14), 5351-5366.
Yeh, D. D., Chen, K. H., Hong, J. S., Fong, C. S. (2014). 由溫度、水氣、降雨量分析大臺北地區之熱島效應. 國立台北大學.
Yu, P. S., Yang, T. C., Kuo, C. C. (2006). Evaluating long-term trends in annual and seasonal precipitation in Taiwan. Water Resources Management, 20(6), 1007-1023.
Yue, S., Hashino, M. (2007). Probability distribution of annual, seasonal and monthly precipitation in Japan. Hydrological sciences journal, 52(5), 863-877.
Yeh, J. R., Shieh, J.-S., Huang, N. E. (2011). Complementary Ensemble Empirical Mode Decomposition: A Novel Noise Enhanced Data Analysis Method. Advances in Adaptive Data Analysis, 02(02), 135-156.
Yu, L., Wang, S., Lai, K. K. (2008). Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. Energy Economics, 30(5), 2623-2635.
Zhang, M., Wu, Z., Qiao, F. (2018). Deep Atlantic Ocean Warming Facilitated by the Deep Western Boundary Current and Equatorial Kelvin Waves. Journal of Climate, 31(20), 8541-8555. doi:10.1175/jcli-d-18-0255.1
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70005-
dc.description.abstract全球的氣候正在面臨嚴重的暖化現象,然而台灣在過去的100年間暖化的速度則高於全球增溫的平均值,可見暖化對台灣氣候而言一直都非常的顯著,如何因應對台灣氣溫不斷上升的趨勢是對災害防範非常重要的一個課題。然而傳統計算趨勢的統計方法,例如: 直線趨勢法或Mann–Kendall趨勢檢測法,無法有效地顯示出不同空間尺度上的暖化隨著時間的變化。因此在本研究中,根據時頻分析希伯特黃轉換中的經驗模態分解(Empirical Mode Decomposition),引入了多維度經驗模態分解法Multi-dimensional Complementary Ensemble Empirical Mode Decomposition (MCEEMD)應用於台灣長時間的網格化觀測資料來檢測全台灣於各個城市過去58年(1960~2017)暖化的趨勢。本研究發現自2000年開始大部分的區域除了東部地區皆有變暖的現象,然而台北,台中以及高雄市等較高度發展的都市其暖化的速度則又更加快速。故根據以上區域差異的特性,調查了溫度上升與影響都市熱島效應的參數進行相關性分析。
上述各城市暖化現象以及熱島效應伴隨極端天氣事件頻繁發生的衝擊越來越明顯。本研究係以不同極端氣候的門檻值來分析台灣於過去58年熱浪、極端低溫與極端降雨事件發生的趨勢,發現熱浪發生的頻率在暖化較嚴重的地區皆有明顯的上升,然而在大部分地區之極端低溫發生的事件數則皆隨著時間下降。 在極端降雨方面,根據會產生不同程度災害警戒的門檻值來評估大雨(日降雨>80mm)以及豪雨事件(日降雨> 200mm)的發生在暖化情況下的趨勢。除此之外,本研究也根據CMIP5模式的資料調查了暖化最為嚴重的台北地區進行未來熱浪事件在夏天(7~9月)的推估。在RCP4.5暖化情境下,可看出熱浪到了21世紀末頻率以及延時在全台皆有明顯的增強。然而在暖化程度最強的情境RCP8.5下,全台到了21世紀末熱浪發生的頻率下降,反之延時則增長到20天以上,可看出在夏季一次熱浪事件可能會持續一個月以上。
然而熱浪會引發許多熱相關的傷害以及疾病,在暖化以及都市熱島效應下,使得高度發展以及人口集中的城市為高度風險區。為了預防這類相關的災害使當局能夠做出相對應政策,預測未來極端高溫的準確性是非常重要的。故本研究最後也引入了MCEEMD-RBFNN預測模型來對台北市未來7天的日高溫進行預測。預測的結果於相關係數(R) 、均方根誤差(RMSE)以及平均絕對百分比誤差(MAPE)表現上皆顯示此模型在預測未來7天的日高溫誤差非常的低,並在前三天完美地捕捉了極端的日高溫值。
zh_TW
dc.description.abstractThe climate of Taiwan has experienced a temperature increase of 1-1.4 °C in the past century, which is higher than the global average. Such a warming trend corresponding to climate change increases the probability of extreme weather events. However, the spatial and temporal characteristics of such warming are difficult to evaluate using traditional trend detection techniques. Therefore, a method of Multi-dimensional Complementary Ensemble Empirical Mode Decomposition (MCEEMD) is introduced in this study to deal with the gridded climate data. The spatial and temporal evolution of temperature from year 1960 to 2017 is revealed. Noticeable warming in recent decades occurred in highly developed cities such as Taipei and Kaohsiung city. Based on the results, the correlation between the accumulated warming and the essential urban indicators are quantified at urban and rural stations in five representative cities.
On the other hand, the characteristic timescale of daily maximum/minimum and precipitation data is identified. The spatial and temporal trend of extreme weather events, including heat wave, extreme cold events and extreme precipitation, are also examined from 1960 to 2017. Meanwhile, the heat wave trend in the future in Taiwan is estimated by applying the CMIP5 model data. Under the RCP4.5 warming scenario, the variation of frequency and duration of heat wave events is demonstrated in the mid and end of the 21st century. Under the RCP8.5 warming scenario, all regions of Taiwan may experience a month of heat wave at the end of the 21st century.
Moreover, in order to prevent heat-related hazards, the Radial Basis Function Neural Network (RBFNN) model coupled with the MCEEMD algorithm, is proposed for the next 7 days' daily maximum temperature forecasting in Taipei. Considering two cases of 7 and 14-days input values, the number of neural nodes in the hidden layer is determined. The forecasting results by the MCEEMD-RBFNN model perform much better in capturing the extreme value of daily maximum temperature than the predictions by RBFNN model.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:38:26Z (GMT). No. of bitstreams: 1
U0001-1708202020500600.pdf: 7334165 bytes, checksum: 38431466818a5b5ec9153dba87afc2ea (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract IV
Content VI
List for Figures VIII
List for Tables XIV
Chapter I. Introduction 1
1.1 Problem Statement 1
1.2 Motivation and Objectives of the Study 5
1.3 Overview of the Thesis 9
Chapter II. Literature Review 11
2.1 Overview of the HHT 11
2.2 Climate Change 18
2.3 Urban Heat Island (UHI) Effect 24
2.4 Artificial Neural Network (ANN) 26
Chapter III. Methodology 29
3.1 Hilbert-Huang Transform (HHT) 29
3.2 EMD for multidimensional data 37
3.3 Urban Characteristic Indicators 46
3.4 Extreme events indices 48
3.5 MCEEMD-RBFNN Model 52
Chapter IV. Application of MCEEMD to Analyze the Climate Gridded Data 59
4.1 The evolution of warming 60
4.2 Extreme weather events 82
4.3 Long-term estimated Heat Wave in the future 102
4.4 Summary and Discussions 112
Chapter V. Application to the MCEEMD-RBFNN Model 115
5.1 Data Processing 115
5.2 Forecasting Results 116
5.3 Summary and Discussions 131
Chapter VI. Conclusion and Recommendations 132
6.1 Conclusions 132
6.2 Recommendation for Future work 134
REFERENCES 136
APPENDIX 148
dc.language.isoen
dc.title以多維度經驗模態分解應用於台灣各城市溫度上升以及極端事件調查之研究
zh_TW
dc.titleSpatiotemporal Trend and Variability of Warming and Extreme Weather Events in Taiwan Based on Multi-dimensional Complementary Ensemble Empirical Mode Decomposition (MCEEMD)
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee施上粟(Shang-Shu Shih),余化龍(Hwa-Lung Yu),周瑞生(Jui-Sheng Chou)
dc.subject.keyword全球暖化,極端天氣事件,熱島效應,時空間尺度趨勢檢測,多維度經驗模態分解,人工神經網路,zh_TW
dc.subject.keywordMulti-dimensional Complementary Ensemble Empirical Mode Decomposition (MCEEMD),Radial Basis Function Neural Network (RBFNN),global warming,urban heat island (UHI) effect,extreme weather event,en
dc.relation.page153
dc.identifier.doi10.6342/NTU202003860
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
Appears in Collections:土木工程學系

Files in This Item:
File SizeFormat 
U0001-1708202020500600.pdf
  Restricted Access
7.16 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved