Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69969
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝志豪(Chih-Hao Hsieh)
dc.contributor.authorGuo-Sheng Lyuen
dc.contributor.author呂國聖zh_TW
dc.date.accessioned2021-06-17T03:36:35Z-
dc.date.available2018-03-02
dc.date.copyright2018-03-02
dc.date.issued2018
dc.date.submitted2018-02-11
dc.identifier.citationAlbers, C. S., Kattner, G. & Hagen, W. The compositions of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepods: evidence of energetic adaptations. Marine Chemistry, 55, 347–358 (1996).
Alfaro, A. C., Thomas, F., Sergent, L. & Duxbury, M. Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Estuarine, Coastal and Shelf Science, 70, 271–286 (2006).
Álvarez, E., López-Urrutia, Á., Nogueira, E. & Fraga, S. How to effectively sample the plankton size spectrum? A case study using FlowCAM. Journal of Plankton Research, 33, 1119–1133 (2011).
Barton, A. D. , Pershing, A. J., Litchman, E., Record, N. R., Edwards, K. F., Finkel, Z. V., Kiørboe, T. & Ward, B. A. The biogeography of marine plankton traits. Ecology letters, 16, 522–34 (2013).
Brose, U., Jonsson, T., Berlow, E. L., Warren, P., Banasek-Richter, C., Bersier, L.-F., Blanchard, J. L., Brey, T., Carpenter, S. R., Blandenier, M.-F. C., Cushing, L., Dawah, H. A., Dell, T., Edwards, F., Harper-Smith, S., Jacob, U., Ledger, M. E., Martinez, N. D., Memmott, J., Mintenbeck, K., Pinnegar, J. K., Rall, B. C., Rayner, T. S., Reuman, D. C., Ruess, L., Ulrich, W., Williams, R. J., Woodward, G. & Cohen, J. E. Consumer-resource body-size relationships in natural food webs. Ecology, 87, 2411–7 (2006).
Brown, J. H. & Maurer, B. A. Macroecology: the division of food and space among species on continents. Science, 243, 1145–50 (1989).
Budge, S. M., Parrish, C. C. & Mckenzie, C. H. Fatty acid composition of phytoplankton, settling particulate matter and sediments at a sheltered bivalve aquaculture site. Marine Chemistry, 76, 285–303 (2001).
Cass, C. J., Daly, K. L. & Wakeham, S. G. Assessment of storage lipid accumulation patterns in eucalanoid copepods from the eastern tropical Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 93, 117–130 (2014).
Chang, Y. L., Wu, C. R. & Oey, L. Y. Bimodal behavior of the seasonal upwelling off the northeastern coast of Taiwan. Journal of Geophysical Research: Oceans, 114, (2009).
Chang, K. J. L., Mansour, M. P., Dunstan, G. A., Blackburn, S. I., Koutoulis, A., & Nichols, P. D. Odd-chain polyunsaturated fatty acids in thraustochytrids. Phytochemistry, 72, 1460-1465 (2011).
Chen, Y. L. L. Comparisons of primary productivity and phytoplankton size structure in the marginal regions of southern East China Sea. Continental Shelf Research, 20, 437–458 (2000).
Chen, Y. L. L., Chen, H. Y., Gong, G. C., Lin, Y. H., Jan, S., & Takahashi, M. Phytoplankton production during a summer coastal upwelling in the East China Sea. Continental Shelf Research, 24, 1321–1338 (2004).
Cowles, T. J., Olson, R. J. & Chisholm, S. W. Food selection by copepods: discrimination on the basis of food quality. Marine Biology, 100, 41–49 (1988).
Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D. & Hagen, W. Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology, 46, 225–340 (2003).
El-Sabaawi, R., Dower, J. F., Kainz, M. & Mazumder, A. Characterizing dietary variability and trophic positions of coastal calanoid copepods: insight from stable isotopes and fatty acids. Marine biology, 156, 225–237 (2009).
Furuya, K., Hayashi, M., Yabushita, Y. & Ishikawa, A. Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures. Deep Sea Research Part II: Topical Studies in Oceanography, 50, 367–387 (2003).
Galloway, A. W. E., Eisenlord, M. E., Dethier, M. N., Holtgrieve, G. W., & Brett, M. T. Quantitative estimates of isopod resource utilization using a Bayesian fatty acid mixing model. Marine Ecology Progress Series, 507, 219–232 (2014).
Galloway, A. W. E., Brett, M. T., Holtgrieve, G. W., Ward, E. J., Ballantyne, A. P., Burns, C. W., Kainz, M. J., Müller-Navarra, D. C., Persson, J., Strandberg, U., Taipale, S. J., Alhgren, G. A fatty acid based bayesian approach for inferring diet in aquatic consumers. PLoS One 10, 1–19 (2015).
Gonçalves, A. M. M., Azeiteiro, U. M., Pardal, M. A. & De Troch, M. Fatty acid profiling reveals seasonal and spatial shifts in zooplankton diet in a temperate estuary. Estuarine, Coastal and Shelf Science, 109, 70–80 (2012).
Graeve, M., Kattnar, G. & Hagen, W. Diet-induced changes in the fatty acid composition of artic herbivorous copepods: experimental evidence of trophic markers. Journal of Experimental Marine Biology and Ecology, 182, 97–110 (1994a).
Graeve, M., Hagen, W. & Kattner, G. Herbivorous or omnivorous? On the significance of lipid compositions as trophic markers in Antarctic copepods. Deep Sea Research Part I: Oceanographic Research Papers, 41, 915–924 (1994b).
Guo, S., Feng, Y., Wang, L., Dai, M., Liu, Z., Bai, Y., & Sun, J. Seasonal variation in the phytoplankton community of a continental-shelf sea: The East China Sea. Marine Ecology Progress Series, 516, 103–126 (2014).
Hansen, B., Bjornsen, P. K., & Hansen, P. J. The size ratio between planktonic predators and their prey. Limnology and Oceanography, 39, 395–403 (1994).
Henschke, N., Everett, J. D., Suthers, I. M., Smith, J. A., Hunt, B. P., Doblin, M. A., & Taylor, M. D. Zooplankton trophic niches respond to different water types of the western Tasman Sea: A stable isotope analysis. Deep Sea Research Part I: Oceanographic Research Papers, 104, 1–8 (2015).
Huete-Ortega, M., Cermeño, P., Calvo-Díaz, A., & Marañón, E. Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton. Proceedings of the Royal Society of London B: Biological Sciences, 279, 1815–1823 (2012).
Iverson, S. J., Field, C., Don Bowen, W. & Blanchard, W. Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecological Monographs, 74, 211–235 (2004).
Kattner, G., Gercken, G. &Eberlein, K. Development of lipids during a spring plankton bloom in the northern North Sea. Marine Chemistry, 14, 149–162 (1983).
Kelly, J. & Scheibling, R. E. Fatty acids as dietary tracers in benthic food webs. Marine Ecology Progress Series, 446, 1–22 (2012).
Kim, J. Y., Kim, H., Choi, M.-S., Lee, H. M. &Bai, S. C. Spatial and temporal variations of the trophodynamics of anchovy (Engraulis japonicus) in the southern coastal waters of Korea using fatty acid trophic markers. Animal Cells and Systems, (Seoul). 18, 425–434 (2014).
Kutluhan, A, Uĝraş, S., Berktş, M., Dílek, H. F., Akpolat, N., & Inalkaç, E. Possible value of nasal smear in acute maxillary sinusitis: an experimental study. Acta oto-laryngologica, 117, 414–9 (1997).
Ladhar, C., Ayadi, H., Denis, F., Tastard, E. & Sellami, I. The effect of environmental factors on the fatty acid composition of copepods and Artemia in the Sfax solar saltern (Tunisia). Biochemical Systematics and Ecology, 56, 237–245 (2014).
Lee, R. F., Nevenzel, J. C. & Paffenhöfer, G. A. Importance of wax esters and other lipids in the marine food chain: Phytoplankton and copepods. Marine Biology, 9, 99–108 (1971).
Léveillé, J. C., Amblard, C. & Bourdier, G. Fatty acids as specific algal markers in a natural lacustrian phytoplankton. Journal of Plankton Research, 19, 469–490 (1997).
Li, X., Fan, X., Han, L. & Lou, Q. Fatty acids of some algae from the Bohai Sea. Phytochemistry, 59, 157–61 (2002).
Litchman, E., Ohman, M. D. & Kiørboe, T. Trait-based approaches to zooplankton communities. Journal of Plankton Research, 35, 473–484 (2013).
McDonald, J. H. Handbook of Biological Statistics (3rd ed.). Sparky House Publishing, Baltimore, Maryland. (2014)
Meunier, C. L., Boersma, M., Wiltshire, K. H. & Malzahn, A. M. Zooplankton eat what they need: copepod selective feeding and potential consequences for marine systems. Oikos, 125, 50–58 (2016).
Meunier, C. L. Hantzsche, F. M., Cunha-Dupont, A. Ö., Haafke, J., Oppermann, B., Malzahn, A. M., & Boersma, M. Intraspecific selectivity, compensatory feeding and flexible homeostasis in the phagotrophic flagellate Oxyrrhis marina: three ways to handle food quality fluctuations. Hydrobiologia, 680, 53–62 (2012).
Parrish, C. C. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. I. Lipid classes. Organic Geochemistry, 29, 1531–1545 (1998).
Rajendran, N., Matsuda, O., Urushigawa, Y. & Simidu, U. Characterization of microbial community structure in the surface sediment of Osaka Bay, Japan, by phospholipid fatty acid analysis. Applied and Environmental Microbiology, 60, 248–57 (1994).
Reuss, N. & Poulsen, L. Evaluation of fatty acids as biomarkers for a natural plankton community. A field study of a spring bloom and a post-bloom period off West Greenland. Marine Biology 141, 423-434 (2002).
Sargent, J. R. The structure, metabolism and function of lipids in marine organisms. Biochemical and Biophysical Perspectives in Marine Biology 3, 149–212 (1976).
Schukat, A., Auel, H., Teuber, L., Lahajnar, N. & Hagen, W. Complex trophic interactions of calanoid copepods in the Benguela upwelling system. Journal of Sea Research, 85, 186–196 (2014).
Sieburth, J. M., Smetacek, V. & Lenz, J. Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnology and Oceanography, 23, 1256–1263 (1978).
Sofía Dutto, M., Kopprio, G. A., Hoffmeyer, M. S., Alonso, T. S., Graeve, M., & Kattner, G. Planktonic trophic interactions in a human-impacted estuary of Argentina: A fatty acid marker approach. Journal of Plankton Research, 36, 776–787 (2014).
Tang, D., Kester, D. R., Ni, I. H., Kawamura, H. & Hong, H. Upwelling in the Taiwan Strait during the summer monsoon detected by satellite and shipboard measurements. Remote Sensing of Environment, 83, 457–471 (2002).
Tonon, T., Harvey, D., Larson, T. R., & Graham, I. A. Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry, 61, 15-24 (2002).
Tseng, L. C., Dahms, H. U., Chen, Q. C. & Hwang, J. S. Copepod feeding study in the upper layer of the tropical South China Sea. Helgoland Marine Research, 63, 327–337 (2009).
Vestal, J. R. & White, D. C. Lipid analysis in microbial ecology. Bioscience, 39, 535–541 (1989).
Volkman, J. K., Johns, R. B., Gillan, F. T., Perry, G. J. & Bavor, H. J. Microbial lipids of an intertidal sediment—I. Fatty acids and hydrocarbons. Geochimica et Cosmochimica Acta, 44, 1133–1143 (1980).
Wilson, S. E., Steinberg, D. K., Chu, F. L. & Bishop, J. K. B. Feeding ecology of mesopelagic zooplankton of the subtropical and subarctic North Pacific Ocean determined with fatty acid biomarkers. Deep Sea Research Part I: Oceanographic Research Papers, 57, 1278–1294 (2010).
Yang, H. L., Lu, C. K., Chen, S. F., Chen, Y. M. & Chen, Y. M. Isolation and characterization of Taiwanese heterotrophic microalgae: Screening of strains for docosahexaenoic acid (DHA) production. Marine Biotechnology, 12, 173–185 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69969-
dc.description.abstract在海洋食物網中,浮游動物扮演能量傳遞的重要角色。過去研究指出浮游動物的食性會隨著其體型大小以及環境中食物組成而有所變化。然而先前較少研究同時探討體型大小及環境中食物組成對浮游動物食性之影響。在本篇研究中我們利用脂肪酸營養標記 (fatty acid trophic marker, FATM) 來探討浮游動物的食性變化。我們於2016年5月在東海五個不同測站中採集樣本,並從2012~2013年間於基隆嶼周圍海域採集共九個月份的樣本,來分別比較浮游動物食性在空間與時間上的變化。在空間上不同測站的採樣中,我們將浮游動物從1000微米到50微米分成五個大小,而在基隆嶼海域則將浮游動物從 >2000微米到50微米共分成七個大小層級,並利用這些不同大小浮游動物體內的脂肪酸組成推論其食性。此外我們在各採樣點同時也收集水體中的浮游生物,來與浮游動物食性做比較。此研究測試兩個假說:一、浮游動物食性主要受其體型大小決定,亦即較大的浮游動物主要攝食各種大型藻類(例如:雙邊毛藻與矽藻),相對較小的浮游動物則是只能攝食細菌或是原生動物。二、浮游動物食性主要受環境中食物組成決定。研究結果發現,大於 363 μm 的浮游動物主要食用大型浮游植物,小於 200 μm 的浮游動物則主要食用依靠細菌為食的微浮游動物,而在 363~200 μm 的浮游動物食性则依環境食物組成而有所不同。然而當環境中的食物多樣性變少時,浮游動物的食性便會被環境中的食物所限制。在此研究中可以發現浮游動物的食性主要依照其體型大小不同而有所變化,但是在特別的環境中食物多樣性明顯降低時,環境中的食物組成便會限制所有大小浮游動物的食性。zh_TW
dc.description.abstractZooplankton play an important role in transferring energy from primary producers to higher trophic levels. Their diet has been suggested affected by their body size and food composition in the environment. However, few studies examined simultaneously how zooplankton diet varies with respect to their size and environmental food composition in marine ecosystems. To tackle this issue, I collected zooplankton with 5 size classes in a transect of 5 stations in May 2016 in the southern East China Sea (ECS) for examining spatial variation and 7 size classes in 9 months from July 2012 to August 2013 at Keelung Island for examining temporal variation through analyzing diets of zooplankton using fatty acid trophic markers (FATM). Meanwhile, plankton were collected to represent food composition in the environment. I tested two hypotheses. First, zooplankton diet is determined by their body size; specifically, larger zooplankton ingest more larger phytoplankton such as dinoflagellates or diatoms, whereas smaller zooplankton prefer bacteria or protists. Second, zooplankton diet is affected by the environmental food composition. My results show that generally zooplankton of body size larger than 363 μm mainly feed on large phytoplankton and those of body size smaller than 200 μm mainly forage on bacteria-derived food sources, while the diets of zooplankton of body size between 363~200 μm vary depending on food composition in the environment. However, when food diversity in the environment is low, for example, when phytoplankton are over-abundant or nutrient condition is oligotrophic, the diet of zooplankton in all size classes is restricted by the environmental food composition. These results indicated that both hypotheses are supported to some extent: the diet of zooplankton is significantly influenced by their body size; however, in some specific conditions of low food diversity, zooplankton would change their diet in accordance of food composition in the environment.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:36:35Z (GMT). No. of bitstreams: 1
ntu-107-R04b44018-1.pdf: 6195828 bytes, checksum: 2049f4009075ace145fd7f892e626616 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書…………………………………………..........................................Ⅰ
致謝…..........................................................................................................................Ⅱ
中文摘要......................................................................................................................Ⅲ
Abstract........................................................................................................................Ⅴ
Introduction....................................................................................................................1
Materials & Methods......................................................................................................4
Study Site....................................................................................................................4
Zooplankton diet analysis...........................................................................................4
Zooplankton collection.......................................................................................4
Fatty acid extraction and detection.....................................................................5
Environmental food compositions..............................................................................6
Fatty acid trophic marker selection...........................................................................6
Data analysis..............................................................................................................7
Results............................................................................................................................9
Spatial variation of zooplankton diet and the food composition................................9
Temporal variation of zooplankton diet and the food composition..........................10
The relationship between zooplankton diet and zooplankton body size classes.......11
Discussion....................................................................................................................13
Effect of environmental food composition on zooplankton diet...............................13
Diet variation dependents on zooplankton body size classes...................................14
Food composition restricts diet of zooplankton in different body size classes.........15
Limitation of fatty acid in this study……………………………………………….........16
Conclusions..................................................................................................................18
References....................................................................................................................41
dc.language.isoen
dc.title浮游動物食性在東海中隨體型大小與環境食物組成之變化zh_TW
dc.titleDiet variation of zooplankton depends on body size and environmental food composition in the southern East China Seaen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee何傳愷,陳宗岳,任秀慧,陳逸民
dc.subject.keyword浮游動物食性,個體大小,環境食物組成,脂肪酸營養標記,zh_TW
dc.subject.keywordZooplankton diet,Body size,Environmental food composition,Fatty acid trophic marker,en
dc.relation.page46
dc.identifier.doi10.6342/NTU201800450
dc.rights.note有償授權
dc.date.accepted2018-02-12
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
6.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved