Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 基因體暨蛋白體醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69932
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳佑宗(You-Tzung Chen)
dc.contributor.authorJin-Bon Hongen
dc.contributor.author洪楨邦zh_TW
dc.date.accessioned2021-06-17T03:34:44Z-
dc.date.available2023-03-07
dc.date.copyright2018-03-07
dc.date.issued2018
dc.date.submitted2018-02-13
dc.identifier.citation1. Garbe C, Leiter U. Melanoma epidemiology and trends. Clin Dermatol 2009;27:3-9.
2. Chang JW. Cutaneous melanoma: Taiwan experience and literature review. Chang Gung Med J 2010;33:602-12.
3. Taiwan (R.O.C.) Cancer registry annual report. Taipei2006.
4. Shoo BA, Kashani-Sabet M. Melanoma arising in African-, Asian-, Latino- and Native-American populations. Semin Cutan Med Surg 2009;28:96-102.
5. Chen YJ, Wu CY, Chen JT, Shen JL, Chen CC, Wang HC. Clinicopathologic analysis of malignant melanoma in Taiwan. J Am Acad Dermatol 1999;41:945-9.
6. Sheen YS, Liao YH, Lin MH, et al. Clinicopathological features and prognosis of patients with de novo versus nevus-associated melanoma in Taiwan. PLoS One 2017;12:e0177126.
7. Lavie A, Desouches C, Casanova D, et al. [Surgical management of cutaneous malignant melanoma. Review]. Ann Chir Plast Esthet 2007;52:1-13.
8. Essner R. Surgical treatment of malignant melanoma. Surg Clin North Am 2003;83:109-56.
9. Ives NJ, Stowe RL, Lorigan P, Wheatley K. Chemotherapy compared with biochemotherapy for the treatment of metastatic melanoma: a meta-analysis of 18 trials involving 2,621 patients. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2007;25:5426-34.
10. Treisman J, Garlie N. Systemic therapy for cutaneous melanoma. Clin Plast Surg 2010;37:127-46.
11. Krauthammer M, Kong Y, Bacchiocchi A, et al. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat Genet 2015;47:996-1002.
12. Mouriaux F, Kherrouche Z, Maurage CA, Demailly FX, Labalette P, Saule S. Expression of the c-kit receptor in choroidal melanomas. Melanoma Res 2003;13:161-6.
13. Cancer Genome Atlas N. Genomic Classification of Cutaneous Melanoma. Cell 2015;161:1681-96.
14. Hodis E, Watson IR, Kryukov GV, et al. A landscape of driver mutations in melanoma. Cell 2012;150:251-63.
15. Leclerc J, Ballotti R, Bertolotto C. Pathways from senescence to melanoma: focus on MITF sumoylation. Oncogene 2017;36:6659-67.
16. Montone KT, van Belle P, Elenitsas R, Elder DE. Proto-oncogene c-kit expression in malignant melanoma: protein loss with tumor progression. Mod Pathol 1997;10:939-44.
17. Larue L, Dougherty N, Porter S, Mintz B. Spontaneous malignant transformation of melanocytes explanted from Wf/Wf mice with a Kit kinase-domain mutation. Proc Natl Acad Sci U S A 1992;89:7816-20.
18. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949-54.
19. Villanueva J, Vultur A, Lee JT, et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer cell 2010;18:683-95.
20. Ni S, Huang D, Chen X, et al. c-kit gene mutation and CD117 expression in human anorectal melanomas. Human pathology 2011.
21. Heakal Y, Kester M, Savage S. Vemurafenib (PLX4032): an orally available inhibitor of mutated BRAF for the treatment of metastatic melanoma. The Annals of pharmacotherapy 2011;45:1399-405.
22. Vultur A, Villanueva J, Herlyn M. BRAF inhibitor unveils its potential against advanced melanoma. Cancer cell 2010;18:301-2.
23. Bauer S, Duensing A, Demetri GD, Fletcher JA. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene 2007;26:7560-8.
24. Sawyers C. Targeted cancer therapy. Nature 2004;432:294-7.
25. Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. The New England journal of medicine 2010;363:809-19.
26. Keniry M, Parsons R. The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene 2008;27:5477-85.
27. Paraiso KH, Xiang Y, Rebecca VW, et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer research 2011;71:2750-60.
28. Yang JY, Chang CJ, Xia W, et al. Activation of FOXO3a is sufficient to reverse mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor chemoresistance in human cancer. Cancer research 2010;70:4709-18.
29. Gopal YN, Deng W, Woodman SE, et al. Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer research 2010;70:8736-47.
30. Whittaker S, Kirk R, Hayward R, et al. Gatekeeper mutations mediate resistance to BRAF-targeted therapies. Science translational medicine 2010;2:35ra41.
31. Nazarian R, Shi H, Wang Q, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 2010;468:973-7.
32. Bollag G, Hirth P, Tsai J, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 2010;467:596-9.
33. Fedorenko IV, Paraiso KH, Smalley KS. Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma. Biochemical pharmacology 2011;82:201-9.
34. Montagut C, Sharma SV, Shioda T, et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer research 2008;68:4853-61.
35. Shi H, Moriceau G, Kong X, et al. Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun 2012;3:724.
36. Greger JG, Eastman SD, Zhang V, et al. Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Molecular cancer therapeutics 2012;11:909-20.
37. Villanueva J, Vultur A, Herlyn M. Resistance to BRAF inhibitors: unraveling mechanisms and future treatment options. Cancer research 2011;71:7137-40.
38. Hartsough E, Shao Y, Aplin AE. Resistance to RAF inhibitors revisited. J Invest Dermatol 2014;134:319-25.
39. Long GV, Eroglu Z, Infante J, et al. Long-Term Outcomes in Patients With BRAF V600-Mutant Metastatic Melanoma Who Received Dabrafenib Combined With Trametinib. J Clin Oncol 2017:JCO2017741025.
40. Johnson DB, Childress MA, Chalmers ZR, et al. BRAF internal deletions and resistance to BRAF/MEK inhibitor therapy. Pigment Cell Melanoma Res 2017.
41. Gowrishankar K, Snoyman S, Pupo GM, Becker TM, Kefford RF, Rizos H. Acquired resistance to BRAF inhibition can confer cross-resistance to combined BRAF/MEK inhibition. J Invest Dermatol 2012;132:1850-9.
42. Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014;343:84-7.
43. Whittaker SR, Theurillat JP, Van Allen E, et al. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov 2013;3:350-62.
44. Johannessen CM, Johnson LA, Piccioni F, et al. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 2013;504:138-42.
45. Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015;517:583-8.
46. Liu X, Li N, Hu X, et al. Efficient production of transgenic chickens based on piggyBac. Transgenic research 2013;22:417-23.
47. Rostovskaya M, Naumann R, Fu J, et al. Transposon mediated BAC transgenesis via pronuclear injection of mouse zygotes. Genesis 2013;51:135-41.
48. Zhang X, Xue R, Cao G, et al. Effects of egt gene transfer on the development of Bombyx mori. Gene 2012;491:272-7.
49. Su H, Liu X, Yan W, et al. piggyBac transposon-mediated transgenesis in the apicomplexan parasite Eimeria tenella. PloS one 2012;7:e40075.
50. Martins S, Naish N, Walker AS, et al. Germline transformation of the diamondback moth, Plutella xylostella L., using the piggyBac transposable element. Insect molecular biology 2012;21:414-21.
51. Furushima K, Jang CW, Chen DW, Xiao N, Overbeek PA, Behringer RR. Insertional mutagenesis by a hybrid piggyBac and sleeping beauty transposon in the rat. Genetics 2012;192:1235-48.
52. Dubois E, Bischerour J, Marmignon A, Mathy N, Regnier V, Betermier M. Transposon Invasion of the Paramecium Germline Genome Countered by a Domesticated PiggyBac Transposase and the NHEJ Pathway. International journal of evolutionary biology 2012;2012:436196.
53. O'Brochta DA, Alford RT, Pilitt KL, Aluvihare CU, Harrell RA, 2nd. piggyBac transposon remobilization and enhancer detection in Anopheles mosquitoes. Proceedings of the National Academy of Sciences of the United States of America 2011;108:16339-44.
54. Nagy K, Sung HK, Zhang P, et al. Induced pluripotent stem cell lines derived from equine fibroblasts. Stem cell reviews 2011;7:693-702.
55. Li J, Zhang JM, Li X, et al. A piggyBac transposon-based mutagenesis system for the fission yeast Schizosaccharomyces pombe. Nucleic acids research 2011;39:e40.
56. Kim S, Saadeldin IM, Choi WJ, et al. Production of transgenic bovine cloned embryos using piggybac transposition. The Journal of veterinary medical science / the Japanese Society of Veterinary Science 2011;73:1453-7.
57. Crabb BS, de Koning-Ward TF, Gilson PR. Toward forward genetic screens in malaria-causing parasites using the piggyBac transposon. BMC biology 2011;9:21.
58. Wen H, Lan X, Zhang Y, et al. Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Molecular biology reports 2010;37:1815-21.
59. Warren IA, Fowler K, Smith H. Germline transformation of the stalk-eyed fly, Teleopsis dalmanni. BMC molecular biology 2010;11:86.
60. Chen YT, Furushima K, Hou PS, et al. PiggyBac transposon-mediated, reversible gene transfer in human embryonic stem cells. Stem cells and development 2010;19:763-71.
61. Trauner J, Schinko J, Lorenzen MD, et al. Large-scale insertional mutagenesis of a coleopteran stored grain pest, the red flour beetle Tribolium castaneum, identifies embryonic lethal mutations and enhancer traps. BMC biology 2009;7:73.
62. Morales ME, Mann VH, Kines KJ, et al. piggyBac transposon mediated transgenesis of the human blood fluke, Schistosoma mansoni. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2007;21:3479-89.
63. Wu SC, Meir YJ, Coates CJ, et al. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 2006;103:15008-13.
64. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 2005;122:473-83.
65. Gonzalez-Estevez C, Momose T, Gehring WJ, Salo E. Transgenic planarian lines obtained by electroporation using transposon-derived vectors and an eye-specific GFP marker. Proceedings of the National Academy of Sciences of the United States of America 2003;100:14046-51.
66. Ikadai H, Shaw Saliba K, Kanzok SM, et al. Transposon mutagenesis identifies genes essential for Plasmodium falciparum gametocytogenesis. Proceedings of the National Academy of Sciences of the United States of America 2013;110:E1676-84.
67. Schetelig MF, Handler AM. Germline transformation of the spotted wing drosophilid, Drosophila suzukii, with a piggyBac transposon vector. Genetica 2013;141:189-93.
68. Mitra R, Fain-Thornton J, Craig NL. piggyBac can bypass DNA synthesis during cut and paste transposition. The EMBO journal 2008;27:1097-109.
69. Kim H, Kim K, Kim J, Kim SH, Yim J. Mutagenesis by imprecise excision of the piggyBac transposon in Drosophila melanogaster. Biochemical and biophysical research communications 2012;417:335-9.
70. Rostovskaya M, Fu J, Obst M, et al. Transposon-mediated BAC transgenesis in human ES cells. Nucleic acids research 2012;40:e150.
71. Li MA, Turner DJ, Ning Z, et al. Mobilization of giant piggyBac transposons in the mouse genome. Nucleic acids research 2011;39:e148.
72. Luo G, Ivics Z, Izsvak Z, Bradley A. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America 1998;95:10769-73.
73. Wang W, Lin C, Lu D, et al. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America 2008;105:9290-5.
74. Wilson MH, Coates CJ, George AL, Jr. PiggyBac transposon-mediated gene transfer in human cells. Molecular therapy : the journal of the American Society of Gene Therapy 2007;15:139-45.
75. Cadinanos J, Bradley A. Generation of an inducible and optimized piggyBac transposon system. Nucleic acids research 2007;35:e87.
76. Kong J, Wang F, Brenton JD, Adams DJ. Slingshot: a PiggyBac based transposon system for tamoxifen-inducible 'self-inactivating' insertional mutagenesis. Nucleic acids research 2010;38:e173.
77. Esnault C, Palavesam A, Pilitt K, O'Brochta DA. Intrinsic characteristics of neighboring DNA modulate transposable element activity in Drosophila melanogaster. Genetics 2011;187:319-31.
78. Bellen HJ, Levis RW, He Y, et al. The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics 2011;188:731-43.
79. Balu B, Chauhan C, Maher SP, et al. piggyBac is an effective tool for functional analysis of the Plasmodium falciparum genome. BMC microbiology 2009;9:83.
80. Thibault ST, Singer MA, Miyazaki WY, et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nature genetics 2004;36:283-7.
81. Chen L, Stuart L, Ohsumi TK, et al. Transposon activation mutagenesis as a screening tool for identifying resistance to cancer therapeutics. BMC cancer 2013;13:93.
82. Schuldiner O, Berdnik D, Levy JM, et al. piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Developmental cell 2008;14:227-38.
83. Huang Y, Pettitt SJ, Guo G, et al. Isolation of homozygous mutant mouse embryonic stem cells using a dual selection system. Nucleic acids research 2012;40:e21.
84. You L, Chang D, Du HZ, Zhao YP. Genome-wide screen identifies PVT1 as a regulator of Gemcitabine sensitivity in human pancreatic cancer cells. Biochemical and biophysical research communications 2011;407:1-6.
85. Wang W, Hale C, Goulding D, et al. Mannosidase 2, alpha 1 deficiency is associated with ricin resistance in embryonic stem (ES) cells. PloS one 2011;6:e22993.
86. Landrette SF, Cornett JC, Ni TK, Bosenberg MW, Xu T. piggyBac transposon somatic mutagenesis with an activated reporter and tracker (PB-SMART) for genetic screens in mice. PloS one 2011;6:e26650.
87. Guo G, Huang Y, Humphreys P, Wang X, Smith A. A PiggyBac-based recessive screening method to identify pluripotency regulators. PloS one 2011;6:e18189.
88. Rad R, Rad L, Wang W, et al. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 2010;330:1104-7.
89. Guo G, Smith A. A genome-wide screen in EpiSCs identifies Nr5a nuclear receptors as potent inducers of ground state pluripotency. Development 2010;137:3185-92.
90. Albieri I, Onorati M, Calabrese G, et al. A DNA transposon-based approach to functional screening in neural stem cells. Journal of biotechnology 2010;150:11-21.
91. Wang W, Bradley A, Huang Y. A piggyBac transposon-based genome-wide library of insertionally mutated Blm-deficient murine ES cells. Genome Res 2009;19:667-73.
92. Galvan DL, Nakazawa Y, Kaja A, et al. Genome-wide mapping of PiggyBac transposon integrations in primary human T cells. Journal of immunotherapy 2009;32:837-44.
93. Sun LV, Jin K, Liu Y, et al. PBmice: an integrated database system of piggyBac (PB) insertional mutations and their characterizations in mice. Nucleic acids research 2008;36:D729-34.
94. Wu S, Ying G, Wu Q, Capecchi MR. Toward simpler and faster genome-wide mutagenesis in mice. Nature genetics 2007;39:922-30.
95. Pettitt SJ, Rehman FL, Bajrami I, et al. A genetic screen using the PiggyBac transposon in haploid cells identifies Parp1 as a mediator of olaparib toxicity. PloS one 2013;8:e61520.
96. Ni J, Clark KJ, Fahrenkrug SC, Ekker SC. Transposon tools hopping in vertebrates. Briefings in functional genomics & proteomics 2008;7:444-53.
97. Di Matteo M, Belay E, Chuah MK, Vandendriessche T. Recent developments in transposon-mediated gene therapy. Expert opinion on biological therapy 2012;12:841-58.
98. Meir YJ, Wu SC. Transposon-based vector systems for gene therapy clinical trials: challenges and considerations. Chang Gung medical journal 2011;34:565-79.
99. Meir YJ, Weirauch MT, Yang HS, Chung PC, Yu RK, Wu SC. Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy. BMC biotechnology 2011;11:28.
100. Belay E, Dastidar S, VandenDriessche T, Chuah MK. Transposon-mediated gene transfer into adult and induced pluripotent stem cells. Current gene therapy 2011;11:406-13.
101. Urschitz J, Kawasumi M, Owens J, et al. Helper-independent piggyBac plasmids for gene delivery approaches: strategies for avoiding potential genotoxic effects. Proceedings of the National Academy of Sciences of the United States of America 2010;107:8117-22.
102. Kahlig KM, Saridey SK, Kaja A, Daniels MA, George AL, Jr., Wilson MH. Multiplexed transposon-mediated stable gene transfer in human cells. Proceedings of the National Academy of Sciences of the United States of America 2010;107:1343-8.
103. Huang X, Guo H, Tammana S, et al. Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T cells. Molecular therapy : the journal of the American Society of Gene Therapy 2010;18:1803-13.
104. Grabundzija I, Irgang M, Mates L, et al. Comparative analysis of transposable element vector systems in human cells. Molecular therapy : the journal of the American Society of Gene Therapy 2010;18:1200-9.
105. Claeys Bouuaert C, Chalmers RM. Gene therapy vectors: the prospects and potentials of the cut-and-paste transposons. Genetica 2010;138:473-84.
106. VandenDriessche T, Ivics Z, Izsvak Z, Chuah MK. Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood 2009;114:1461-8.
107. Nakazawa Y, Huye LE, Dotti G, et al. Optimization of the PiggyBac transposon system for the sustained genetic modification of human T lymphocytes. Journal of immunotherapy 2009;32:826-36.
108. Feschotte C. The piggyBac transposon holds promise for human gene therapy. Proceedings of the National Academy of Sciences of the United States of America 2006;103:14981-2.
109. Yang R, Jiang M, Kumar SM, et al. Generation of melanocytes from induced pluripotent stem cells. The Journal of investigative dermatology 2011;131:2458-66.
110. Yusa K, Rad R, Takeda J, Bradley A. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nature methods 2009;6:363-9.
111. Woltjen K, Michael IP, Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009;458:766-70.
112. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 2009;458:771-5.
113. Yusa K, Rashid ST, Strick-Marchand H, et al. Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 2011;478:391-4.
114. Zayed H, Izsvak Z, Walisko O, Ivics Z. Development of hyperactive sleeping beauty transposon vectors by mutational analysis. Molecular therapy : the journal of the American Society of Gene Therapy 2004;9:292-304.
115. Baus J, Liu L, Heggestad AD, Sanz S, Fletcher BS. Hyperactive transposase mutants of the Sleeping Beauty transposon. Molecular therapy : the journal of the American Society of Gene Therapy 2005;12:1148-56.
116. Yant SR, Park J, Huang Y, Mikkelsen JG, Kay MA. Mutational analysis of the N-terminal DNA-binding domain of sleeping beauty transposase: critical residues for DNA binding and hyperactivity in mammalian cells. Molecular and cellular biology 2004;24:9239-47.
117. Mates L, Chuah MK, Belay E, et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nature genetics 2009;41:753-61.
118. Yusa K, Zhou L, Li MA, Bradley A, Craig NL. A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci U S A 2011;108:1531-6.
119. Dupuy AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 2005;436:221-6.
120. Stanford WL, Cohn JB, Cordes SP. Gene-trap mutagenesis: past, present and beyond. Nat Rev Genet 2001;2:756-68.
121. Guo G, Wang W, Bradley A. Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells. Nature 2004;429:891-5.
122. Collier LS, Largaespada DA. Hopping around the tumor genome: transposons for cancer gene discovery. Cancer research 2005;65:9607-10.
123. DeNicola GM, Karreth FA, Adams DJ, Wong CC. The utility of transposon mutagenesis for cancer studies in the era of genome editing. Genome Biol 2015;16:229.
124. Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. The New England journal of medicine 2012;366:707-14.
125. Doherty JE, Huye LE, Yusa K, Zhou L, Craig NL, Wilson MH. Hyperactive piggyBac gene transfer in human cells and in vivo. Human gene therapy 2012;23:311-20.
126. Kettlun C, Galvan DL, George AL, Jr., Kaja A, Wilson MH. Manipulating piggyBac transposon chromosomal integration site selection in human cells. Molecular therapy : the journal of the American Society of Gene Therapy 2011;19:1636-44.
127. Mattis AN, Willenbring H. A ZFN/piggyBac step closer to autologous liver cell therapy. Hepatology 2012;55:2033-5.
128. Maragathavally KJ, Kaminski JM, Coates CJ. Chimeric Mos1 and piggyBac transposases result in site-directed integration. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2006;20:1880-2.
129. Owens JB, Urschitz J, Stoytchev I, et al. Chimeric piggyBac transposases for genomic targeting in human cells. Nucleic acids research 2012;40:6978-91.
130. Ammar I, Gogol-Doring A, Miskey C, et al. Retargeting transposon insertions by the adeno-associated virus Rep protein. Nucleic acids research 2012;40:6693-712.
131. Li X, Burnight ER, Cooney AL, et al. piggyBac transposase tools for genome engineering. Proceedings of the National Academy of Sciences of the United States of America 2013;110:E2279-87.
132. Makkerh JP, Dingwall C, Laskey RA. Comparative mutagenesis of nuclear localization signals reveals the importance of neutral and acidic amino acids. Curr Biol 1996;6:1025-7.
133. Ray M, Tang R, Jiang Z, Rotello VM. Quantitative tracking of protein trafficking to the nucleus using cytosolic protein delivery by nanoparticle-stabilized nanocapsules. Bioconjug Chem 2015;26:1004-7.
134. Peitz M, Pfannkuche K, Rajewsky K, Edenhofer F. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proceedings of the National Academy of Sciences of the United States of America 2002;99:4489-94.
135. Lee CY, Li JF, Liou JS, Charng YC, Huang YW, Lee HJ. A gene delivery system for human cells mediated by both a cell-penetrating peptide and a piggyBac transposase. Biomaterials 2011;32:6264-76.
136. Ponti D, Troiano M, Bellenchi GC, Battaglia PA, Gigliani F. The HIV Tat protein affects processing of ribosomal RNA precursor. BMC cell biology 2008;9:32.
137. Herrmann CH, Mancini MA. The Cdk9 and cyclin T subunits of TAK/P-TEFb localize to splicing factor-rich nuclear speckle regions. J Cell Sci 2001;114:1491-503.
138. Pendergrast PS, Wang C, Hernandez N, Huang S. FBI-1 can stimulate HIV-1 Tat activity and is targeted to a novel subnuclear domain that includes the Tat-P-TEFb-containing nuclear speckles. Mol Biol Cell 2002;13:915-29.
139. Matera AG, Ward DC. Nucleoplasmic organization of small nuclear ribonucleoproteins in cultured human cells. J Cell Biol 1993;121:715-27.
140. Hong JB, Chou FJ, Ku AT, et al. A nucleolus-predominant piggyBac transposase, NP-mPB, mediates elevated transposition efficiency in mammalian cells. PLoS One 2014;9:e89396.
141. Chen YT, Liu P, Bradley A. Inducible gene trapping with drug-selectable markers and Cre/loxP to identify developmentally regulated genes. Molecular and cellular biology 2004;24:9930-41.
142. Mikkers H, Allen J, Knipscheer P, et al. High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet 2002;32:153-9.
143. Uren AG, Mikkers H, Kool J, et al. A high-throughput splinkerette-PCR method for the isolation and sequencing of retroviral insertion sites. Nat Protoc 2009;4:789-98.
144. Zhang H, Meltzer P, Davis S. RCircos: an R package for Circos 2D track plots. BMC Bioinformatics 2013;14:244.
145. Dev VG, Tantravahi R, Miller DA, Miller OJ. Nucleolus organizers in Mus musculus subspecies and in the RAG mouse cell line. Genetics 1977;86:389-98.
146. Kurihara Y, Suh DS, Suzuki H, Moriwaki K. Chromosomal locations of Ag-NORs and clusters of ribosomal DNA in laboratory strains of mice. Mamm Genome 1994;5:225-8.
147. Berry CC, de la Fuente JM, Mullin M, Chu SW, Curtis AS. Nuclear localization of HIV-1 tat functionalized gold nanoparticles. IEEE transactions on nanobioscience 2007;6:262-9.
148. Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. The Journal of biological chemistry 1997;272:16010-7.
149. Edenhofer F. Protein transduction revisited: novel insights into the mechanism underlying intracellular delivery of proteins. Current pharmaceutical design 2008;14:3628-36.
150. Caron NJ, Quenneville SP, Tremblay JP. Endosome disruption enhances the functional nuclear delivery of Tat-fusion proteins. Biochemical and biophysical research communications 2004;319:12-20.
151. Tunnemann G, Martin RM, Haupt S, Patsch C, Edenhofer F, Cardoso MC. Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2006;20:1775-84.
152. Yang Y, Ma J, Song Z, Wu M. HIV-1 TAT-mediated protein transduction and subcellular localization using novel expression vectors. FEBS letters 2002;532:36-44.
153. Caron NJ, Torrente Y, Camirand G, et al. Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Molecular therapy : the journal of the American Society of Gene Therapy 2001;3:310-8.
154. Marcello A, Lusic M, Pegoraro G, Pellegrini V, Beltram F, Giacca M. Nuclear organization and the control of HIV-1 transcription. Gene 2004;326:1-11.
155. Wei P, Garber ME, Fang SM, Fischer WH, Jones KA. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 1998;92:451-62.
156. Das C, Edgcomb SP, Peteranderl R, Chen L, Frankel AD. Evidence for conformational flexibility in the Tat-TAR recognition motif of cyclin T1. Virology 2004;318:306-17.
157. De Luca A, De Falco M, Baldi A, Paggi MG. Cyclin T: three forms for different roles in physiological and pathological functions. Journal of cellular physiology 2003;194:101-7.
158. Fraldi A, Licciardo P, Majello B, Giordano A, Lania L. Distinct regions of cyclinT1 are required for binding to CDK9 and for recruitment to the HIV-1 Tat/TAR complex. Journal of cellular biochemistry Supplement 2001;Suppl 36:247-53.
159. Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science 2009;326:1501.
160. Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009;326:1509-12.
161. Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F. A transcription activator-like effector toolbox for genome engineering. Nature protocols 2012;7:171-92.
162. Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing. Nature biotechnology 2011;29:143-8.
163. Lovly CM, Dahlman KB, Fohn LE, et al. Routine multiplex mutational profiling of melanomas enables enrollment in genotype-driven therapeutic trials. PLoS One 2012;7:e35309.
164. Bae SI, Cheriyath V, Jacobs BS, Reu FJ, Borden EC. Reversal of methylation silencing of Apo2L/TRAIL receptor 1 (DR4) expression overcomes resistance of SK-MEL-3 and SK-MEL-28 melanoma cells to interferons (IFNs) or Apo2L/TRAIL. Oncogene 2008;27:490-8.
165. Nordenberg J, Perlmutter I, Lavie G, et al. Anti-proliferative activity of haloperidol in B16 mouse and human SK-MEL-28 melanoma cell lines. International journal of oncology 2005;27:1097-103.
166. Hubner B, Eckert K, Garbe C, Maurer HR. Synergistic interactions between interferon beta and carboplatin on SK-MEL 28 human melanoma cell growth inhibition in vitro. Journal of cancer research and clinical oncology 1995;121:84-8.
167. Guo G, Yang J, Nichols J, et al. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 2009;136:1063-9.
168. Starr TK, Allaei R, Silverstein KA, et al. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 2009;323:1747-50.
169. de Ridder J, Uren A, Kool J, Reinders M, Wessels L. Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screens. PLoS Comput Biol 2006;2:e166.
170. de Jong J, de Ridder J, van der Weyden L, et al. Computational identification of insertional mutagenesis targets for cancer gene discovery. Nucleic acids research 2011;39:e105.
171. Brett BT, Berquam-Vrieze KE, Nannapaneni K, Huang J, Scheetz TE, Dupuy AJ. Novel molecular and computational methods improve the accuracy of insertion site analysis in Sleeping Beauty-induced tumors. PloS one 2011;6:e24668.
172. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011;12:323.
173. Abell AN, Rivera-Perez JA, Cuevas BD, et al. Ablation of MEKK4 Kinase Activity Causes Neurulation and Skeletal Patterning Defects in the Mouse Embryo. Molecular and cellular biology 2005;25:8948-59.
174. Craig EA, Stevens MV, Vaillancourt RR, Camenisch TD. MAP3Ks as central regulators of cell fate during development. Developmental Dynamics 2008;237:3102-14.
175. Mobley RJ, Raghu D, Duke LD, et al. MAP3K4 Controls the Chromatin Modifier HDAC6 during Trophoblast Stem Cell Epithelial-to-Mesenchymal Transition. Cell Rep 2017;18:2387-400.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69932-
dc.description.abstract在相對應的跳躍酶協助下,跳躍子有兩種主要的特徵,一是擁有簡單插入DNA的機轉,二是有承載很大段DNA序列於跳躍子內的能力. 飛蛾跳躍系統在哺乳類細胞中相當有活性,因此對於基因交付,與藉由插入性突變而來的基因發掘,皆是很有用的工具。為了改善跳躍效率,前人努力地嘗試增進跳躍酶的活性。而我們藉由將核仁優先的訊號胜肽,接在經哺乳類密碼子優化過的飛蛾跳躍酶,製造了一種核仁優先型的飛蛾跳躍酶,可以在胚胎幹細胞與癌細胞中,增進跳躍的效率約三倍。這種跳躍酶的主要分布在核仁上。其所協助的插入點位,則如同原本的飛蛾跳躍酶一般,散布於整個基因體之中,此特色適合拿來作基因發掘之用。
BRAF突變是黑色素瘤最主要的驅動突變,BRAF抑製劑已被證明對攜帶BRAF V600E突變的晚期黑色素瘤有效。但是,大多數患者的腫瘤最終還是產生了抗藥性。為了尋找逆轉抗藥性的關鍵,高通量篩選是很有價值的實驗方法。在這個CRISPR-Cas9的時代,可藉由破壞基因而有效地作一失去活性的篩選,另外,增加活性的篩選則可以由帶有活化子的CRISPR-Cas9系統及病毒cDNA庫所執行。這些是屬於反向型基因篩選的方式,需要一些既有的知識去設計sgRNA、cDNA病毒,或是RNA干擾,才能去鎖定特定基因,因此,很難保證這類篩選的全面性與表達的平等性。我們提出另一種篩選方式,以增加活性的跳躍子製作突變庫,成為一種正向基因篩選的方法,來篩選BRAF抑制劑的抗藥基因,我們使用對BRAF抑制劑敏感的SK-MEL-28黑色素瘤細胞株,來建立跳躍子突變庫,建立後用BRAF抑製劑vemurafenib與encorafenib各別篩選後,直到對照組的敏感細胞已無明顯細胞集落,而篩選後仍發現突變庫有抗藥性細胞集落存活,接著對原始突變庫與篩選後存活的細胞作架設型聚合酶連鎖反應(splinkerette PCR)並做次世代定序。由於發現encorafenib的篩選比vemurafenib更完整,因此主要選擇encorafenib篩選組的結果做驗證,經由方向性導向的KC-RBM研究方式來分析常見插入點的位置,我們發現存活細胞的跳躍子插入點,特別集中於MITF, USP47, MAP3K4等候選基因的位置。為了驗證候選基因的重要性,我們經過6個月的BRAF抑制劑處理,建立了黑色素瘤SK-MEL-28與A375的抗藥株,兩者皆發現MAP3K4蛋白量的上升,RNA-Seq合併GSEA分析,發現JNK訊息路徑在抗藥的情況下是被激活的。西方點墨法實驗在抗藥細胞發現了JNK與p38的活化。而MAP3K4是JNK與p38的已知共同調控者,我們進一步在原本帶有敏感性的黑色素瘤細胞中高表達MAP3K4,結果細胞的抗藥性明顯增加。反之,在抗藥細胞中,以RNA干擾技術抑制MAP3K4的表達則可以減少抗藥性,這個抗藥性的減少,主要是因為細胞凋亡的增加。另外,在原本敏感的黑色素瘤細胞中去抑制MAP3K4的表現,則對藥物敏感性與細胞凋亡沒有太大的影響。這些結果顯示BRAF抑制劑的抗藥性是複雜的,而MAP3K4與JNK及p38訊息路徑的協同,在抗藥性中是重要的,因此是一個有潛力去反轉BRAF抑制劑抗藥性的標靶。
zh_TW
dc.description.abstractWith the corresponding transposase, the transposon has the features of simple DNA integration machinery and large cargo capacity. The piggyBac transposition system, which is active in the mammalian cells, is a useful tool for gene delivery as well as gene discovery by insertional mutagenesis. To improve the efficiency of transposition, several efforts were made to improve the activity of transposase. By fusing nucleolus-predominant (NP) peptide to mammalian codon-optimized PBase (mPB), we created NP-mPB. NP-mPB increased the DNA integration efficiency by about 3 folds in embryonic stem cells and cancer cells. The subcellular localization of NP-mPB was mainly distributed in the nucleolus. The insertional mutagenesis mediated by NP-mPB was found across the whole genome, like that mediated by mPB. This feature was suitable for gene discovery.
BRAF mutation is the major melanoma driver mutation and BRAF inhibitor was proved effective for late-stage melanoma carrying BRAF V600E mutation. However, most patients finally developed tumor resistance. To find the key to reverse the resistance, high-throughput screening was valuable. In the era of CRISPR-Cas9, loss-of-function screening can be done efficiently by directly disrupting the genes. Gain-of-function screening can also be done by the CRISPR-Cas9 system carrying gene activator as well as lentiviral cDNA library. These screening methods were of reverse genetics, requiring a priori knowledge to design sgRNA, cDNA virus, or RNA interference, to specifically target the genes. Therefore, these systems are difficult to assure the comprehensiveness and equal expression. We proposed an alternative screen method by gain-of-function transposon mutagenesis, a forward genetic approach, to screen for genes offering resistance to BRAF inhibitor. The transposon mutagenesis library was established in the sensitive SK-MEL-28 melanoma cell line and then treated with BRAF inhibitors, vemurafenib and encorafenib, respectively until the original sensitive cells, as the control, had no visible surviving colony. At the selection endpoint, there were still surviving colonies in the mutagenesis library. After next-generation sequencing of the splinkerette PCR products from the baseline mutagenesis library and post-selection cells, insertion sites were mapped. Because the encorafenib selection was more complete than the vemurafenib selection, we primarily chose the results from encorafenib selection for further validation. The analysis for common insertion sites by orientation-directed Kernel Convolved Rule-Based Mapping (KC-RBM) method identified targeted genes in the surviving cells were MITF, USP47, MAP3K4 and other genes. To validate the screening results and the resistance to BRAF inhibitor, we established resistant melanoma cell lines by treating SK-MEL-28 and A375 melanoma cells with vemurafenib for 6 months. The resistant cell lines were proved to have increased MAP3K4 protein expression. RNA-Seq with GSEA was performed in resistant cells and found that JNK signaling pathway was activated in the resistant cell. Western blot for MAPK pathway showed that the resistant cells had activated JNK pathway and p38 pathway. Overexpression of their common upstream mediator, MAP3K4, offered resistance in the sensitive melanoma cells. Suppression of their common upstream mediator, MAP3K4, by RNAi reverse the resistance of both resistant cell lines. The reversal of the resistance was mainly due to the markedly increase apoptosis. Suppression of MAP3K4 in the parental melanoma cells did not significantly alter the drug sensitivity or the level of apoptosis. The results suggest that the development of resistance to the BRAF inhibitor is complex. MAP3K4 with coordination of JNK and p38 pathways is important in the resistance, which is a potential target to reverse the resistance to BRAF inhibitor.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:34:44Z (GMT). No. of bitstreams: 1
ntu-107-D00455001-1.pdf: 11085965 bytes, checksum: 79d5336baf7b5013b1f004441773d383 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 i
誌謝 ii
中文摘要 iv
ABSTRACT vi
CONTENTS viii
LIST OF FIGURES xii
LIST OF TABLES xiv
ABBREVIATIONS xv
Chapter 1 Background 1
1.1 Melanoma and BRAF inhibitor (BRAFi) 1
1.1.1 Melanoma as the leading cause of skin cancer death in Taiwan 1
1.1.2 Difficulty in management of malignant melanoma 1
1.1.3 Driver mutation and target therapy for melanoma 2
1.1.4 Proposed mechanisms of intrinsic BRAFi resistance 3
1.1.5 Proposed mechanisms of acquired BRAFi resistance 3
1.1.6 BRAFi and MEK inhibitor 4
1.1.7 Limitation of current screening methods for drug resistance to BRAFi 5
1.2 Transposon mutagenesis 6
1.2.1 PiggyBac transposase and its applications 6
1.2.2 Modification of transposases for better activity 8
1.2.3 Transposon-based mutagenesis for resistance gene discovery 9
1.3 Tables and figures 11
Chapter 2 Statement of specific aims 13
2.1 Specific Aim 1. Establishment of an efficient piggyBac transposon mutagenesis system 14
2.2 Specific Aim 2. Transposon mutagenesis screening for genes offering drug resistance to BRAFi 14
Chapter 3 Establishment of an efficient piggyBac transposon mutagenesis system 15
3.1 Introduction 15
3.2 Method 17
3.2.1 Transposase vector construction 17
3.2.2 Cell culture 17
3.2.3 Measurement of transposition efficiency in mouse and human ES cells 18
3.2.4 Identification of the transposon insertion site by splinkerette PCR. 19
3.2.5 Protein extraction and Western blotting 20
3.2.6 Protein stability assay 21
3.2.7 Immunocytochemistry and fluorescent confocal microscopy 21
3.3 Results 22
3.3.1 Construction of the NP-mPB expressing vector 22
3.3.2 The NP-mPB mediated elevated transposition efficiency in both mouse and human embryonic stem cells 22
3.3.3 The NP-mPB mediated transposon insertion across the genome 23
3.3.4 The NP-mPB protein level does not account for the increased transposition in mammalian cells 23
3.3.5 The protein stability of NP-mPB is not increased. 24
3.3.6 The nucleolus signal peptide directed NP-mPB to a nucleoli distribution. 25
3.4 Discussion 26
3.5 Conclusion 29
3.6 Tables and figures 30
Chapter 4 Transposon mutagenesis screening for genes offering drug resistance to BRAFi 39
4.1 Introduction 39
4.2 Methods 40
4.2.1 Study design 40
4.2.2 Cell culture 40
4.2.3 Gain-of-function trap vector: pGG134 transposon 41
4.2.4 Establishment of mutagenesis library and drug resistance screening 41
4.2.5 Data analysis and filtering 42
4.2.6 Common insertion site analysis by KC-RBM 42
4.2.7 Orientation-directed analysis of transposon mutagenesis 43
4.2.8 Cell viability test 44
4.2.9 Western Blotting 44
4.2.10 Flow cytometry analysis for cell cycle and apoptosis 45
4.2.11 Establishment of resistant cell lines and RNA-Sequencing 45
4.2.12 Overexpression of MAP3K4 in sensitive melanoma cells 46
4.2.13 Depletion of MAP3K4 with siRNA in resistant melanoma 47
4.3 Results 47
4.3.1 Results of transposon mutagenesis screening 47
4.3.2 MITF and BRAFi resistance 50
4.3.3 Expression of MAP3K4 and USP47 in the resistant cells. 50
4.3.4 GSEA of RNA-Seq for MAPK and JNK signaling pathway 51
4.3.5 MAP3K4 associated pathways in the resistance to BRAFi 51
4.3.6 Suppression and overexpression of MAP3K4 52
4.4 Discussion 53
4.5 Conclusion 55
4.6 Tables and figures 56
Chapter 5 Perspective 73
5.1 Value of transposon mutagenesis screening 73
5.2 Efforts to conquer resistance to BRAFi 74
Chapter 6 Reference 76
Chapter 7 Appendix 88
7.1 List of publication 88


LIST OF FIGURES
Figure 1.1. Rationale of gain-of-function and loss-of-function gene trapping by piggyBac transposon. 12
Figure 3.1. Constructs for PBase variants and the dual fluorescent UGm transposon. 31
Figure 3.2. The NP-mPB showed a ~3-fold increase in transposon integration efficiency. 32
Figure 3.3. Comparison of transposition efficiency of NP-mPB and mPB of different amounts. 33
Figure 3.4. Landscape of transposon insertions mediated by mPB and NP-PB. 34
Figure 3.5. The confirmation of the mPB protein being expressed. 35
Figure 3.6. The mPB and NP-mPB protein expression profiles in HEK293T cells transfected with mPB and NP-mPB plasmids. 36
Figure 3.7. Stability analysis of PBase protein, facilitated by flow cytometry. 37
Figure 3.8. Subcellular localization of mPB and NP-mPB 38
Figure 4.1. The schematic design for transposon mutagenesis screening. 58
Figure 4.2. The flow chart of the computational analysis for CISs and candidate genes. 59
Figure 4.3. Encorafenib is more efficient in inhibiting the BRAF activity. 60
Figure 4.4. The transposon insertion site analysis for the baseline mutagenesis library by KC-RBM. 61
Figure 4.5. Orientation-directed KC-RBM analysis for CISs in the surviving mutagenized cells after BRAFi selection with encorafenib. 62
Figure 4.6. Orientation-directed KC-RBM analysis for CISs in the surviving mutagenized cells after BRAFi selection with vemurafenib. 63
Figure 4.7. The protein expression of MITF and MAP3K4 in resistant cell lines. 64
Figure 4.8. Confirmation of increased MAP3K4 in resistant cells. 65
Figure 4.9. The MAPK pathway and the MAP3K4-related signaling cascades. 66
Figure 4.10. GSEA for MAPK and JNK signaling pathways. 67
Figure 4.11. Knockdown of MAP3K4 by RNAi reversed the drug resistance in the resistant SK-MEL-28 melanoma cell line. 68
Figure 4.12. Knockdown of MAP3K4 by RNAi increased apoptosis. 69
Figure 4.13. Knockdown of MAP3K4 and pathway alternation. 70
Figure 4.14. Overexpression of MAP3K4 also activated the downstream JNK pathway. 71
Figure 4.15. Validation of MAP3K4 expression in the resistant clones. 72

LIST OF TABLES
Table 1.1. Comparison of high-throughput screening approaches. 11
Table 3.1. Primers and adaptor oligonucleotides for spPCR 30
Table 4.1. IC50 of vemurafenib in different melanoma cell lines carrying BRAF-V600E mutation. 56
Table 4.2. The list of primer mutagens with barcode sequences. 57
dc.language.isoen
dc.title建立跳躍子突變庫來篩選造成BRAF抑制劑抗藥性之基因zh_TW
dc.titleEstablishment of transposon mutagenesis library to screen for
genes offering resistance to BRAF inhibitors
en
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳沛隆(Pei-Lung Chen),華國泰(Kuo-Tai Hua),陳俊銘(Chun-Ming Chen),陳倩瑜(Chien-Yu Chen,)
dc.subject.keyword跳躍子,跳躍?,突變形成,核仁,BRAF抑制劑,MAP3K4,zh_TW
dc.subject.keywordtransposon,transposase,mutagenesis,nucleolus,BRAF inhibitor,MAP3K4,en
dc.relation.page89
dc.identifier.doi10.6342/NTU201800583
dc.rights.note有償授權
dc.date.accepted2018-02-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept基因體暨蛋白體醫學研究所zh_TW
顯示於系所單位:基因體暨蛋白體醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
10.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved