Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69922
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳銘憲(Ming-Syan Chen)
dc.contributor.authorDavid Kaoen
dc.contributor.author高代維zh_TW
dc.date.accessioned2021-06-17T03:34:14Z-
dc.date.available2019-03-01
dc.date.copyright2018-03-01
dc.date.issued2018
dc.date.submitted2018-02-12
dc.identifier.citationWang, Xuesong, et al. 'Zero-shot image classification based on deep feature extraction.' IEEE Transactions on Cognitive and Developmental Systems (2016).
Changpinyo, Soravit, et al. 'Synthesized classifiers for zero-shot learning.' Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
Norouzi, Mohammad, et al. 'Zero-shot learning by convex combination of semantic embeddings.' arXiv preprint arXiv:1312.5650 (2013).
Denton, Emily, et al. 'User conditional hashtag prediction for images.' Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2015.
Weston, Jason, Samy Bengio, and Nicolas Usunier. 'Wsabie: Scaling up to large vocabulary image annotation.' IJCAI. Vol. 11. 2011.
Frome, Andrea, et al. 'Devise: A deep visual-semantic embedding model.' Advances in neural information processing systems. 2013.
Zeiler, Matthew D., and Rob Fergus. 'Visualizing and understanding convolutional networks.' European conference on computer vision. Springer, Cham, 2014.
Stutz, David. 'Understanding convolutional neural networks.' InSeminar Report, Fakultät für Mathematik, Informatik und Naturwissenschaften Lehr-und Forschungsgebiet Informatik VIII Computer Vision (2014).
He, Kaiming, and Jian Sun. 'Convolutional neural networks at constrained time cost.' Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
He, Kaiming, et al. 'Deep residual learning for image recognition.' Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
Targ, Sasha, Diogo Almeida, and Kevin Lyman. 'Resnet in Resnet: generalizing residual architectures.' arXiv preprint arXiv:1603.08029 (2016).
Simonyan, Karen, and Andrew Zisserman. 'Very deep convolutional networks for large-scale image recognition.' arXiv preprint arXiv:1409.1556 (2014).
Szegedy, Christian, et al. 'Going deeper with convolutions.' Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
He, Kaiming, et al. 'Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.' Proceedings of the IEEE international conference on computer vision. 2015.
Deng, Jia, et al. 'Imagenet: A large-scale hierarchical image database.' Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009.
Russakovsky, Olga, et al. 'Imagenet large scale visual recognition challenge.' International Journal of Computer Vision 115.3 (2015): 211-252.
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 'Imagenet classification with deep convolutional neural networks.' Advances in neural information processing systems. 2012.
Zhou, Bolei, et al. 'Places: A 10 million image database for scene recognition.' IEEE transactions on pattern analysis and machine intelligence (2017).
Zhou, Bolei, et al. 'Places: An image database for deep scene understanding.' arXiv preprint arXiv:1610.02055 (2016).
Zhou, Bolei, et al. 'Learning deep features for scene recognition using places database.' Advances in neural information processing systems. 2014.
Xiao, Jianxiong, et al. 'Sun database: Large-scale scene recognition from abbey to zoo.' Computer vision and pattern recognition (CVPR), 2010 IEEE conference on. IEEE, 2010.
Everingham, Mark, et al. 'The pascal visual object classes challenge: A retrospective.' International journal of computer vision 111.1 (2015): 98-136.
Girshick, Ross, et al. 'Rich feature hierarchies for accurate object detection and semantic segmentation.' Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.
Mikolov, Tomas, et al. 'Efficient estimation of word representations in vector space.' arXiv preprint arXiv:1301.3781 (2013).
Mikolov, Tomas, et al. 'Distributed representations of words and phrases and their compositionality.' Advances in neural information processing systems. 2013.
Bengio, Yoshua, et al. 'A neural probabilistic language model.' Journal of machine learning research 3.Feb (2003): 1137-1155.
Mikolov, Tomas, et al. 'Recurrent neural network based language model.' Interspeech. Vol. 2. 2010.
Zhang, Hao, et al. 'SVM-KNN: Discriminative nearest neighbor classification for visual category recognition.' Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on. Vol. 2. IEEE, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69922-
dc.description.abstract此研究主要是針對 Instagram 社群平台而設計的自動化 Hashtag 推薦系統。當使用者在使用 Instagram 上傳新圖片時,可簡化在操作上與手動標籤 Hashtag 的動作。我們使用了卷積神經網絡 (Convolutional Neural Network) 圖像辨識技術來達成圖像歸類 (image classification) 的效果。但現今,Hashtag 的歸類整理還是個未能被完全解決的問題。社群平台上有著層出不窮和大量的 Hashtag 正在推陳出新,如果只使用單一機器學習方法,將會無法達成完整學習的效果。
在這研究中,我們將會探討不同 Hashtag 的語義程度,而導出並不是所有的 Hashtag 都適合推薦給使用者使用的結論。此外,為了擴充 Hashtag 的詞量,我們結合了圖像辨識和語義嵌入 (semantic embedding) 的模型來建構此推薦系統。透過定期詞彙和語義嵌入模型的更新,此系統將會推薦最符合現今所流行的 Hashtag 詞彙供使用者選擇。我們使用 Instagram 上的圖片做實驗,並完整呈現此推薦系統可以有效的推薦和圖像所呼應的 Hashtag 詞彙。
zh_TW
dc.description.abstractThe goal of this research is to design a system that can predict and recommend hashtags to users when they upload new images on Instagram. The system will simplify the picture tagging process for users by automatically suggesting relevant hashtag options when an image is uploaded. Using the image recognition technology like Convolutional Neural Network (CNN), we could achieve the image classification function. However, hashtag prediction is still an open problem due to the large amount of media contents and hashtag categories; using single machine learning method will not be sufficient.
In this research, we show that not all hashtags are equally meaningful, and some are not suitable in recommendation learning. In addition, we combine image classification and semantic embedding models to gain the expansion of recommended hashtags. At the same time, by periodically updating semantic embedding model, we ensure that the hashtags being recommended follow the latest trends. We apply the design to existing image-hashtag pairs on Instagram and demonstrate that the capability of the system can successfully recommend hashtags that are more relevant to the images.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:34:14Z (GMT). No. of bitstreams: 1
ntu-107-R04921100-1.pdf: 4103167 bytes, checksum: 8eca5e03daea1ef8bba87047ea2a196a (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsAcknowledgements ii
摘要 iii
Abstract of the Thesis iv
List of Figures vii
List of Tables ix
Chapter 1 - Introduction 1
1.1 The Problem 2
1.2 Structure of the Thesis 4
Chapter 2 - Related Work 5
2.1 Hashtag Prediction for Images 6
2.2 Visual-Semantic Embedding Model 8
Chapter 3 - Preliminaries 10
3.1 Convolutional Neural Network 10
3.1.1 ResNet 12
3.1.2 ZF Net 14
3.2 CNN Models 16
3.2.1 ImageNet 16
3.2.2 Places 18
3.2.3 PASCAL VOC 20
3.3 Semantic Embedding Modeling 22
3.3.1 Word2Vec 23
3.3.2 Skip-gram Model 24
Chapter 4 - Data 27
4.1 Image Dataset 27
4.2 Hashtag Dataset 32
 
Chapter 5 - Proposed Method 34
5.1 Hashtag Recommendation System 35
Chapter 6 - Experiments and Results 38
6.1 Sampling of Image-Hashtag Pairs 39
6.2 Predicting and Recommending Hashtags 44
6.3 Verification and Inspection 52
Chapter 7 - Conclusion 53
Bibliography 54
dc.language.isoen
dc.subject卷積神經網路zh_TW
dc.subjectSkip-gram模型zh_TW
dc.subjectWord2Veczh_TW
dc.subject深度學習zh_TW
dc.subject資料探勘zh_TW
dc.subjectHashtag推薦zh_TW
dc.subject語義嵌入zh_TW
dc.subjectSkip-gram Modelen
dc.subjectData Miningen
dc.subjectDeep Learningen
dc.subjectConvolutional Neural Network (CNN)en
dc.subjectSemantic Embedding Modelen
dc.subjectWord2Vecen
dc.subjectHashtag Recommendationen
dc.title使用深度學習之Hashtag推薦系統zh_TW
dc.titleHashtag Recommendation using Deep Neural Networksen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王鈺強(Yu-Chiang Wang),王奕翔(I-Hsiang Wang),陳怡伶(Yi-Ling Chen)
dc.subject.keywordHashtag推薦,資料探勘,深度學習,卷積神經網路,語義嵌入,Word2Vec,Skip-gram模型,zh_TW
dc.subject.keywordHashtag Recommendation,Data Mining,Deep Learning,Convolutional Neural Network (CNN),Semantic Embedding Model,Word2Vec,Skip-gram Model,en
dc.relation.page56
dc.identifier.doi10.6342/NTU201800488
dc.rights.note有償授權
dc.date.accepted2018-02-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved