請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69917
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳昭瑩 | |
dc.contributor.author | Yu-Ting Shih | en |
dc.contributor.author | 施侑廷 | zh_TW |
dc.date.accessioned | 2021-06-17T03:33:59Z | - |
dc.date.available | 2020-03-01 | |
dc.date.copyright | 2018-03-01 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-02-12 | |
dc.identifier.citation | 1. 安寶真、陳昭瑩。2006。植物誘導性抗病之研究與應用。「符合安全農業之病害防治新技術」研討會專刊:133-155。
2. 陳則安。2017。百合防禦相關蛋白LsGRP1參與水楊酸誘導抗病性及影響光合作用蛋白。台灣大學植物病理與微生物學系碩士論文。 3. 張庭瑜。2011。加工條件對豆漿蛋白質結構與豆腐品質之影響。中國文化大學生活應用科學系碩士論文。 4. 邱安隆。2002。應用生物製劑防治百合灰黴病。花蓮區農業專訊 42:22-25。 5. 黃祥恩。1997。水楊酸誘導百合系統性抗灰黴病之研究。台灣大學植物病理與微生物學習碩士論文。 6. 劉芳瑋。2016。抗菌蛋白LsGRP1之N端區段對百合灰黴病菌之包子發芽促進 作用。台灣大學植物病理與微生物學習碩士論文。 7. 李敏郎、陳隆鐘、陳天枝。2004。百合灰黴病菌之室內藥劑篩選與其田間防治效。植物保護學會會刊 46:1-13。 8. 潘映潔。2015。LsGRP1c誘導百合灰黴病菌之計畫性細胞死亡現象。台灣大學植物病理與微生物學習碩士論文。 9. 謝廷芳、黃振文。1998。百合灰黴病之發生條件與病勢發展。植保會刊 40:227-240。 10. 蔡月夏。2001。台灣原生種百合之繁殖與復育。花蓮區農業專訓 36:11-14。 11. 王瑞芝。2009。中國豆腐釀造 (第二版) :97-99。中國輕工業出版社。 12. 姚銘輝、盧虎生、朱鈞. 2002. 葉綠素螢光與作物生理反應. 科學農業 50:31-41。 13. Abreu, M. E., and Munné-Bosch, S. 2009. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. Journal of Experimental Botany 60:1261-1271. 14. Albert, M. 2013. Peptides as triggers of plant defence. Journal of Experimental Botany 64:5269-5279. 15. Asai, S., and Yoshioka, H. 2009. Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Molecular Plant-Microbe Interactions 22:619-629. 16. Asselbergh, B., Curvers, K., França, S. C., Audenaert, K., Vuylsteke, M., Van Breusegem, F., and Höfte, M. 2007. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiology 144:1863-1877. 17. Balode, A., and Belicka, I. 2004. Estimation of Lilium resistance against grey mold (Botrytis Micheli ex Fr.). Latvian Journal of Agronomy :134-139. 18. BEßER, K., Jarosch, B., Langen, G., and Kogel, K. H. 2000. Expression analysis of genes induced in barley after chemical activation reveals distinct disease resistance pathways. Molecular Plant Pathology 1:277-286. 19. Bhattacharya, R., krishna Koramutla, M., Negi, M., Pearce, G., and Ryan, C. A. 2013. Hydroxyproline-rich glycopeptide signals in potato elicit signalling associated with defense against insects and pathogens. Plant Science 207:88-97. 20. Blush, P., and Carpet, R. 1988. Streaking of lily leaves associated with infection by Botrytis elliptica. Plant Disease 72:859-861. 21. Bocca, S. N., Magioli, C., Mangeon, A., Junqueira, R. M., Cardeal, V., Margis, R., and Sachetto-Martins, G. 2005. Survey of glycine-rich proteins (GRPs) in the Eucalyptus expressed sequence tag database (ForEST). Genetics and Molecular Biology 28:608-624. 22. Boller, T. 1995. Chemoperception of microbial signals in plant cells. Annual Review of Plant Biology 46:189-214. 23. Boller, T., and Felix, G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology 60:379-406. 24. Borges, A. A., and Sandalio, L. M. 2015. Induced resistance for plant defense. Frontiers in Plant Science 6:109. 25. Burketova, L., Trda, L., Ott, P. G., and Valentova, O. 2015. Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnology Advances 33:994-1004. 26. Cao, F. Y., Yoshioka, K., and Desveaux, D. 2011. The roles of ABA in plant–pathogen interactions. Journal of Plant Research 124:489-499. 27. Chastagner, G. A., and Riley, K. 1989. Occurrence and control of benzimidazole and dicarboximide resistant Botrytis spp. on bulb crops in Western Washington and Oregon. V International Symposium on Flower Bulbs 266:437-446. 28. Chen, A.P., Zhong, N.Q., Qu, Z.L., Wang, F., Liu, N., and Xia, G.X. 2007. Root and vascular tissue-specific expression of glycine-rich protein AtGRP9 and its interaction with AtCAD5, a cinnamyl alcohol dehydrogenase, in Arabidopsis thaliana. Journal of Plant Research 120:337-343. 29. Chen, C.-Y., and Huang, H.-E. 1997. Salicylic acid-induced resistance of lily leaves against Botrytis elliptica. Plant Pathol. Bull. 6:76-82. 30. Chen, H.J., Huang, C.S., Huang, G.J., Chow, T.J., and Lin, Y.H. 2013. NADPH oxidase inhibitor diphenyleneiodonium and reduced glutathione mitigate ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression in sweet potato (Ipomoea batatas). Plant Physiology 170:1471-1483. 31. Chen, L., Qian, J., Qu, S., Long, J., Yin, Q., Zhang, C., Wu, X., Sun, F., Wu, T., and Hayes, M. 2008. Identification of specific fragments of HpaGXooc, a harpin from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhance growth in plants. Phytopathology 98:781-791. 32. Chi, E. Y., Krishnan, S., Randolph, T. W., and Carpenter, J. F. 2003. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharmaceutical Research 20:1325-1336. 33. Choudhary, D. K., Prakash, A., and Johri, B. 2007. Induced systemic resistance (ISR) in plants: mechanism of action. Indian Journal of Microbiology 47:289-297. 34. Coley-Smith, J. R., Verhoeff, K., and Jarvis, W. R. 1980. The biology of Botrytis. Academic Press, New York. pp. 318. 35. Davidsson, P. R., Kariola, T., Niemi, O., and Palva, E. T. 2013. Pathogenicity of and plant immunity to soft rot pectobacteria. Frontiers in Plant Science 4:191. 36. Day, B., Dahlbeck, D., and Staskawicz, B. J. 2006. NDR1 interaction with RIN4 mediates the differential activation of multiple disease resistance pathways in Arabidopsis. Plant Cell 18:2782-2791. 37. De Hertogh, A., Schepeen, J., Kamenetsky, R., Le Nard, M., and Okubo, H. 2012. Globalization of Flower Bulb Industry. Ornamental Geophytes: From Basic Science to Sustainable Production 1:1-16. 38. De Jong, P. 1974. Some notes on the evolution of lilies. Lily yearbook 27:23-28. 39. de Souza Cândido, E., Pinto, M. F. S., Pelegrini, P. B., Lima, T. B., Silva, O. N., Pogue, R., Grossi-de-Sá, M. F., and Franco, O. L. 2011. Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms. The FASEB Journal 25:3290-3305. 40. Delledonne, M., Zeier, J., Marocco, A., and Lamb, C. 2001. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences 98:13454-13459. 41. Denancé, N., Sánchez-Vallet, A., Goffner, D., and Molina, A. 2013. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science 4:155. 42. Doss, R. P., Chastagner, G. A., and Riley, K. L. 1986. Screening ornamental lilies for resistance to Botrytis elliptica. Scientia Horticulturae 30:237-246. 43. Doss, R. P., Christian, J. K., and Chastagner, G. A. 1988. Infection of Easter lily leaves from conidia of Botrytis elliptica. Canadian Journal of Botany 66:1204-1208. 44. Duan, C.G., Wang, C.H., and Guo, H.S. 2012. Application of RNA silencing to plant disease resistance. Silence 3:5. 45. Eder, J., and Cosio, E. G. 1994. Elicitors of plant defense responses. International Review of Cytology 148:1-36. 46. Egorov, T. A., Odintsova, T. I., Pukhalsky, V. A., and Grishin, E. V. 2005. Diversity of wheat anti-microbial peptides. Peptides 26:2064-2073. 47. Enyedi, A. J., Yalpani, N., Silverman, P., and Raskin, I. 1992. Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proceedings of the National Academy of Sciences 89:2480-2484. 48. Flor, H. H. 1971. Current status of the gene-for-gene concept. Annual Review of Phytopathology 9:275-296. 49. Fontanilla, M., Montes, M., and De, R. P. 2005. Effects of the foliar-applied protein' Harpin (Ea)'(messenger) on tomatoes infected with Phytophthora infestans. Communications in Agricultural and Applied Biological Sciences 70:41-45. 50. Fu, Z. Q., and Dong, X. 2013. Systemic acquired resistance: turning local infection into global defense. Annual Review of Plant Biology 64:839-863. 51. Fu, Z. Q., Guo, M., Jeong, B.R., Tian, F., Elthon, T. E., Cerny, R. L., Staiger, D., and Alfano, J. R. 2007. A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447:284-288. 52. Gómez‐Gómez, L., Felix, G., and Boller, T. 1999. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant Journal 18:277-284. 53. Gao, X., Cui, Q., Cao, Q. Z., Zhao, Y. Q., Liu, Q., He, H. B., Jia, G. X., and Zhang, D. M. 2018. Evaluation of resistance to Botrytis elliptica in Lilium hybrid cultivars. Plant Physiology and Biochemistry 123:392-399. 54. Grassotti, A., and Gimelli, F. 2010. Bulb and cut flower production in the genus Lilium: current status and the future. II International Symposium on the Genus Lilium 900:21-35. 55. Gutsche, A., Heng-Moss, T., Higley, L., Sarath, G., and Mornhinweg, D. 2009. Physiological responses of resistant and susceptible barley. Hordeum Vulgare:233-240. 56. Hahn, M. G. 1996. Microbial elicitors and their receptors in plants. Annual Review of Phytopathology 34:387-412. 57. He, S. Y. 1996. Elicitation of Plant Hypersensitive Response by Bacteria. Plant Physiology 112:865. 58. Heil, M., and Bostock, R. M. 2002. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Annals of Botany 89:503-512. 59. Heiling, S., Schuman, M. C., Schoettner, M., Mukerjee, P., Berger, B., Schneider, B., Jassbi, A. R., and Baldwin, I. T. 2010. Jasmonate and ppHsystemin regulate key malonylation steps in the biosynthesis of 17-hydroxygeranyllinalool diterpene glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata. Plant Cell 22:273-292. 60. Hsiang, T., Hsieh, T. F., and Chastagner, G. A. 2001. Relative sensitivity to the fungicides benomyl and iprodione of Botrytis elliptica from Taiwan and the Northwestern USA. Plant Pathology Bulletin 10:93-95. 61. Hsieh, T., and Tu, C. 1993. The occurrence of lily leaf blight caused by Botrytis elliptica (Berk.) Cooke in Taiwan. Plant Protection Bulletin 35:355. 62. Huffaker, A., Pearce, G., and Ryan, C. A. 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proceedings of the National Academy of Sciences 103:10098-10103. 63. Humann, J., Andrews, S., and Ream, W. 2006. VirE1-mediated resistance to crown gall in transgenic Arabidopsis thaliana. Phytopathology 96:105-110. 64. Huot, B., Yao, J., Montgomery, B. L., and He, S. Y. 2014. Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Molecular Plant 7:1267-1287. 65. Igarashi, D., Tsuda, K., and Katagiri, F. 2012. The peptide growth factor, phytosulfokine, attenuates pattern‐triggered immunity. Plant Journal 71:194-204. 66. İkinci, N., Oberprieler, C., and Güner, A. 2006. On the origin of European lilies: phylogenetic analysis of Lilium section Liriotypus (Liliaceae) using sequences of the nuclear ribosomal transcribed spacers. Willdenowia 36:647-656. 67. Jacob, F., Vernaldi, S., and Maekawa, T. 2013. Evolution and conservation of plant NLR functions. Frontiers in Immunology 4:297. 68. Jiang, Q., Ma, X., Gong, X., Zhang, J., Teng, S., Xu, J., Lin, D., and Dong, Y. 2014. The rice OsDG2 encoding a glycine-rich protein is involved in the regulation of chloroplast development during early seedling stage. Plant Cell Reports 33:733-744. 69. Jones, J. D., and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. 70. Kamenetsky, R., and Okubo, H. 2012. Ornamental geophytes: from basic science to sustainable production. CRC press. 71. Kariola, T., Palomäki, T. A., Brader, G., and Palva, E. T. 2003. Erwinia carotovora subsp. carotovora and Erwinia-derived elicitors HrpN and PehA trigger distinct but interacting defense responses and cell death in Arabidopsis. Molecular Plant-Microbe Interactions 16:179-187. 72. Kessmann, H., Staub, T., Hofmann, C., Maetzke, T., Herzog, J., Ward, E., Uknes, S., and Ryals, J. 1994. Induction of systemic acquired disease resistance in plants by chemicals. Annual Review of Phytopathology 32:439-459. 73. Kim, J. Y., Kim, W. Y., Kwak, K. J., Oh, S. H., Han, Y. S., and Kang, H. 2010. Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. Journal of Experimental Botany 61:2317-2325. 74. Kromina, K. A., & Dzhavakhiia, V. G. (2006). Expression of the bacterial gene CspD in tobacco plants increases their resistance to fungal and viral pathogens. Molekuliarnaia genetika, mikrobiologiia i virusologiia 1:31-34. 75. Kunkel, B. N., and Brooks, D. M. 2002. Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology 5:325-331. 76. Kunz, C., Vandelle, E., Rolland, S., Poinssot, B., Bruel, C., Cimerman, A., Zotti, C., Moreau, E., Vedel, R., and Pugin, A. 2006. Characterization of a new, nonpathogenic mutant of Botrytis cinerea with impaired plant colonization capacity. New Phytologist 170:537-550. 77. Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., and Felix, G. 2004. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496-3507. 78. Lavallie, E. R., DiBlasio, E. A., Kovacic, S., Grant, K. L., Schendel, P. F., and McCoy, J. M. 1993. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Nature Biotechnology 11:187-193. 79. Lee, S.W., Han, S.W., Sririyanum, M., Park, C.J., Seo, Y.S., and Ronald, P. C. 2009. A type I–secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326:850-853. 80. Li, Y.-R., Ma, W.-X., Che, Y.-Z., Zou, L.-F., Zakria, M., Zou, H.-S., and Chen, G.-Y. 2013. A highly-conserved single-stranded DNA-binding protein in Xanthomonas functions as a harpin-like protein to trigger plant immunity. PLoS One 8:e56240. 81. Lin, C.H., and Chen, C.Y. 2014. Characterization of the Dual Subcellular Localization of Lilium LsGRP1, a Plant Class II Glycine-Rich Protein. Phytopathology 104:1012-1020. 82. Lin, C.H., Chang, M.W., and Chen, C.Y. 2014. A potent antimicrobial peptide derived from the protein LsGRP1 of Lilium. Phytopathology 104:340-346. 83. Lin, T. C., Lin, C. L., Chung, W. C., Chung, K. R., & Huang, J. W. (2017). Pathogenic fungal protein-induced resistance and its effects on vegetable diseases. The Journal of Agricultural Science, 155:1069-1081. 84. Linthorst, H. J., and Van Loon, L. 1991. Pathogenesis‐related proteins of plants. Critical Reviews in Plant Sciences 10:123-150. 85. Liu, F., Liu, H., Jia, Q., Wu, X., Guo, X., Zhang, S., Song, F., and Dong, H. 2006. The internal glycine-rich motif and cysteine suppress several effects of the HpaGXooc protein in plants. Phytopathology 96:1052-1059. 86. Lu, Y.-Y., and Chen, C.-Y. 2005. Molecular analysis of lily leaves in response to salicylic acid effective towards protection against Botrytis elliptica. Plant Science 169:1-9. 87. Lu, Y.-Y., Liu, Y.-H., and Chen, C.-Y. 2007. Stomatal closure, callose deposition, and increase of LsGRP1-corresponding transcript in probenazole-induced resistance against Botrytis elliptica in lily. Plant Science 172:913-919. 88. Lyon, G. D., Goodman, B. A., and Williamson, B. 2007. Botrytis cinerea perturbs redox processes as an attack strategy in plants. Botrytis: Biology, Pathology and Control: 119-141. 89. MacRae, E. A. 1998. Lilies: a guide for growers and collectors. Timber Press. 90. Mangeon, A., Junqueira, R. M., and Sachetto-Martins, G. 2010. Functional diversity of the plant glycine-rich proteins superfamily. Plant Signaling & Behavior 5:99-104. 91. Matsubayashi, Y., Ogawa, M., Morita, A., and Sakagami, Y. 2002. An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 296:1470-1472. 92. Matthews, V. 2007. The international lily register and checklist, 2007. Royal Horticultural Society (RHS). 93. McDowell, J. M., and Dangl, J. L. 2000. Signal transduction in the plant immune response. Trends in biochemical sciences 25:79-82. 94. Miao, W., Wang, X., Li, M., Song, C., Wang, Y., Hu, D., and Wang, J. 2010. Genetic transformation of cotton with a harpin-encoding gene hpa Xoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC Plant Biology 10:67. 95. Mitraki, A., and King, J. 1989. Protein folding intermediates and inclusion body formation. Nature Biotechnology 7:690-697. 96. Molina, A., Mena, M., Carbonero, P., and García-Olmedo, F. 1997. Differential expression of pathogen-responsive genes encoding two types of glycine-rich proteins in barley. Plant Molecular Biology 33:803-810. 97. Mosher, S., and Kemmerling, B. 2013. PSKR1 and PSY1R-mediated regulation of plant defense responses. Plant Signaling & Behavior 8:e24119. 98. Mousavi, A., and Hotta, Y. 2005. Glycine-rich proteins. Applied Biochemistry and Biotechnology 120:169-174. 99. Mur, L. A., Kenton, P., Lloyd, A. J., Ougham, H., and Prats, E. 2007. The hypersensitive response; the centenary is upon us but how much do we know? Journal of experimental Botany 59:501-520. 100. Nürnberger, T. 1999. Signal perception in plant pathogen defense. Cellular and Molecular Life Sciences 55:167-182. 101. Narváez-Vásquez, J., and Ryan, C. A. 2004. The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signaling. Planta 218:360-369. 102. Narváez-Vásquez, J., Pearce, G., and Ryan, C. A. 2005. The plant cell wall matrix harbors a precursor of defense signaling peptides. Proceedings of the National Academy of Sciences of the United States of America 102:12974-12977. 103. Newman, M.-A., Sundelin, T., Nielsen, J. T., and Erbs, G. 2013. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science 4:139. 104. Nomura, H., Komori, T., Uemura, S., Kanda, Y., Shimotani, K., Nakai, K., Furuichi, T., Takebayashi, K., Sugimoto, T., and Sano, S. 2012. Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nature Communications 3:926. 105. Oliver, R. P., and Solomon, P. S. 2010. New developments in pathogenicity and virulence of necrotrophs. Current Opinion in Plant Biology 13:415-419. 106. Oostendorp, M., Kunz, W., Dietrich, B., and Staub, T. 2001. Induced disease resistance in plants by chemicals. European Journal of Plant Pathology 107:19-28. 107. Orozco-Cardenas, M., McGurl, B., and Ryan, C. A. 1993. Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca sexta larvae. Proceedings of the National Academy of Sciences 90:8273-8276. 108. Osbourn, A. E. 1996. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821. 109. Park, A. R., Cho, S. K., Yun, U. J., Jin, M. Y., Lee, S. H., Sachetto-Martins, G., and Park, O. K. 2001. Interaction of the Arabidopsis receptor protein kinase Wak1 with a glycine-rich protein, AtGRP-3. Journal of Biological Chemistry 276:26688-26693. 110. Pietrowska, E., Różalska, S., Kaźmierczak, A., Nawrocka, J., and Małolepsza, U. 2015. Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures—Botrytis cinerea interaction. Protoplasma 252:307-319. 111. Raskin, I., Turner, I. M., and Melander, W. R. 1989. Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid. Proceedings of the National Academy of Sciences 86:2214-2218. 112. Ringli, C., Keller, B., and Ryser, U. 2001. Glycine-rich proteins as structural components of plant cell walls. Cellular and Molecular Life Sciences 58:1430-1441. 113. Rivas-San Vicente, M., and Plasencia, J. 2011. Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany 62:3321-3338. 114. Ross, A. F. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340-358. 115. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H.-Y., and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1809. 116. Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Kloepper, J. W., and Paré, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology 134:1017-1026. 117. Sachetto-Martins, G., Franco, L. O., and de Oliveira, D. E. 2000. Plant glycine-rich proteins: a family or just proteins with a common motif?. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 1492:1-14. 118. Schmelz, E. A., Carroll, M. J., LeClere, S., Phipps, S. M., Meredith, J., Chourey, P. S., Alborn, H. T., and Teal, P. E. 2006. Fragments of ATP synthase mediate plant perception of insect attack. Proceedings of the National Academy of Sciences 103:8894-8899. 119. Sewelam, N., Kazan, K., and Schenk, P. M. 2016. Global plant stress signaling: reactive oxygen species at the cross-road. Frontiers in Plant Science 7:1-21. 120. Shah, J. 2003. The salicylic acid loop in plant defense. Current Opinion in Plant Biology 6:365-371. 121. Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A., and Fatkhutdinova, D. R. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science 164:317-322. 122. Shinozaki, K., and Yamaguchi-Shinozaki, K. 1996. Molecular responses to drought and cold stress. Current Opinion in Biotechnology 7:161-167. 123. Shlezinger, N., Minz, A., Gur, Y., Hatam, I., Dagdas, Y. F., Talbot, N. J., and Sharon, A. 2011. Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection. PLoS Pathogens 7:e1002185. 124. Showalter, A. M. 1993. Structure and function of plant cell wall proteins. Plant Cell 5:9-23. 125. Sivakumaran, A., Akinyemi, A., Mandon, J., Cristescu, S. M., Hall, M. A., Harren, F. J., and Mur, L. A. 2016. ABA suppresses Botrytis cinerea elicited NO production in tomato to influence H2O2 generation and increase host susceptibility. Frontiers in Plant Science 7:709. 126. Staswick, P. E., Su, W., and Howell, S. H. 1992. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proceedings of the National Academy of Sciences 89:6837-6840. 127. Stevens, J., Senaratna, T., and Sivasithamparam, K. 2006. Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regulation 49:77-83. 128. Straus, M. R., Rietz, S., Ver Loren van Themaat, E., Bartsch, M., and Parker, J. E. 2010. Salicylic acid antagonism of EDS1‐driven cell death is important for immune and oxidative stress responses in Arabidopsis. Plant Journal 62:628-640. 129. Terhem, R. B., Staats, M., and Van Kan, J. A. 2015. Mating type and sexual fruiting body of Botrytis elliptica, the causal agent of fire blight in lily. European Journal of Plant Pathology 142:615-624. 130. Thakur, M., and Sohal, B. S. 2013. Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochemistry 2013. 131. Ueki, S., and Citovsky, V. 2002. The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycine-rich protein. Nature Cell Biology 4:478-486. 132. Ueki, S., and Citovsky, V. 2005. Identification of an interactor of cadmium ion-induced glycine-rich protein involved in regulation of callose levels in plant vasculature. Proceedings of the National Academy of Sciences of the United States of America 102:12089-12094. 133. Van Baarlen, P., Staats, M., and Van Kan, J. A. 2004. Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica. Molecular Plant Pathology 5:559-574. 134. Van Baarlen, P., Woltering, E. J., Staats, M., and Van Kan, J. A. 2007. Histochemical and genetic analysis of host and non‐host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Molecular Plant Pathology 8:41-54. 135. Van Loon, L., Pierpoint, W., Boller, T., and Conejero, V. 1994. Recommendations for naming plant pathogenesis-related proteins. Plant Molecular Biology Reporter 12:245-264. 136. Vlot, A. C., Dempsey, D. M. A., and Klessig, D. F. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology 47:177-206. 137. Voigt, C. A. 2014. Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Frontiers in Plant Science 5:168. 138. Wang, J., and Higgins, V. J. 2005. Nitric oxide has a regulatory effect in the germination of conidia of Colletotrichum coccodes. Fungal Genetics and Biology 42:284-292. 139. Wiermer, M., Feys, B. J., and Parker, J. E. 2005. Plant immunity: the EDS1 regulatory node. Current Opinion in Plant Biology 8:383-389. 140. Yalpani, N., Silverman, P., Wilson, T., Kleier, D. A., and Raskin, I. 1991. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3:809-818. 141. Yang, E. J., Oh, Y. A., Lee, E. S., Park, A. R., Cho, S. K., Yoo, Y. J., and Park, O. K. 2003. Oxygen-evolving enhancer protein 2 is phosphorylated by glycine-rich protein 3/wall-associated kinase 1 in Arabidopsis. Biochemical and Biophysical Research Communications 305:862-868. 142. Zaninotto, F., La Camera, S., Polverari, A., and Delledonne, M. 2006. Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiology 141:379-383. 143. Zhang, X., Fu, J., Hiromasa, Y., Pan, H., and Bai, G. 2013. Differentially expressed proteins associated with fusarium head blight resistance in wheat. PLoS One 8:e82079. 144. Zhu, L., Hu, F., and Luo, F. 2010. Identification of disease resistance of Lilium species to lily gray mould. Plant Prod. 36:148-151. 145. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E. J., Jones, J. D., Felix, G., and Boller, T. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764-767. 146. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D., Boller, T., and Felix, G. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749-760. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69917 | - |
dc.description.abstract | 百合為具有高經濟價值的球根花卉,除了土壤傳播性病蟲害外,影響其生產最鉅者為Botrytis elliptica (Berk.) Cooke所引起的百合灰黴病,如何有效地防治灰黴病,便成為農友最關心的問題。植物防禦相關蛋白LsGRP1 (Lilium ‘Star Gazer’ glycine-rich protein 1) 為水楊酸誘發葵百合Lilium cv. Star Gazer 對灰黴病抗性過程大量表現的蛋白。根據前人的研究,LsGRP1可能透過直接抑制微生物而抑制病原菌的侵染,本研究則探討LsGRP1是否能透過誘導抗病機制幫助植物抵抗灰黴病菌,並探討其應用價值與最適化之施用條件。首先將大腸桿菌生產的LsGRP1重組蛋白注射於百合中位葉,評估此處理是否能誘發系統葉組織對灰黴病的抗性,並同時測試施用時間、施用濃度及施用位置對LsGRP1重組蛋白誘導植物抗病之影響。接著為降低防治成本,將胞內表現LsGRP1重組蛋白的大腸桿菌以超音波破菌後直接處理植物,測試其誘發系統抗病性的作用,並評估其用以防治其他台灣重要作物病害,如草莓及番茄灰黴病的可行性。期本研究能協助發展新穎的植物病害防治資材,用以保障農作物生產,促進環境永續發展。 | zh_TW |
dc.description.abstract | Lily is a bulbous flower crop with high economic importance. Beside of soil-borne diseases and pests, gray mold disease caused by Botrytis elliptica, affects lily production enormously. How to effectively control gray mold disease is a main concern of lily farmers. Defense-related protein LsGRP1 (Lilium ‘Star Gazer’ glycine-rich protein 1) is a protein with increased expression in lily which exhibits salicylic acid-induced resistance against gray mold disease. According to previous reports, LsGRP1 may enhance plant immunity via its antimicrobial activity. In this study, the potential of LsGRP1 to induce plant defense against gray mold pathogen and optimal application methods were investigated. At first, LsGRP1-derived recombinant protein produced by Escherichia coli was infiltrated into the middle leaves of lily plants to evaluate its effects on the induction of disease resistance in upper and lower systemic leaves. The time points of application, optimal concentrations, and application sites were determined by comparing the efficacy of disease suppression. In order to reduce the cost, the total lysate of the LsGRP1-derived recombinant protein from sonicated E. coli cells was applied directly to lily plants to examine the effects of systemic resistance induction. On the other hand, the protection effect of crude LsGRP1-derived recombinant protein on the gray mold disease of strawberry and tomato were evaluated. Expectedly, this study would facilitate the development of novel disease control agents suitable for crop production and environmental sustainability. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:33:59Z (GMT). No. of bitstreams: 1 ntu-107-R04645006-1.pdf: 3034287 bytes, checksum: 4201ba6fdbed392a16681d966b2a04e1 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 目錄
壹、中文摘要 VII 貳、英文摘要 VIII 參、前言 1 肆、前人研究 3 一、百合 3 二、百合灰黴病 4 三、植物富含甘胺酸蛋白質 (glycine-rich proteins, GRPs) 5 四、葵百合之水楊酸誘導性富含甘胺酸防禦相關蛋白LsGRP1 6 五、植物誘導性抗病及防禦反應 8 六、植物系統性抗病之誘導物質 11 七、胜肽及蛋白質誘導性抗病之植物病害防治應用 12 伍、材料與方法 15 一、供試植物之栽培 15 1.栽培介質調配 15 2.百合 15 3.番茄 15 4.草莓 15 二、供試真菌之培養、保存與接種源製備 16 1.供試真菌之培養及保存 16 2.供試真菌之接種源製備 16 三、大腸桿菌Escherichia coli表現LsGRP1融合蛋白 17 1.大腸桿菌表現蛋白株之建構與保存 17 2.誘導大腸桿菌表現融合蛋白及蛋白質粗萃取 18 3.蛋白質純化及透析 19 4.冷凍乾燥法濃縮蛋白質 19 5.蛋白質定量及保存 20 四、百合蛋白質粗萃取 20 五、十二烷基硫酸鈉聚丙烯醯胺膠體電泳偵測蛋白 21 1.十二烷基硫酸鈉聚丙烯醯胺膠體電泳 21 2.考馬斯蘭染色法 22 3.西方墨點法 22 六、注射SUMO-LsGRP1ΔSS融合蛋白後誘導百合系統葉抑制灰黴病病斑實驗 23 1.注射SUMO-LsGRP1ΔSS融合蛋白於百合葉片及病原接種 23 2.定量百合葉片病斑面積 23 3.定量百合葉片中真菌族群相對生物量 23 七、注射SUMO-LsGRP1ΔSS融合蛋白促進百合系統葉防禦相關物質及反應測試 25 1.植物細胞死亡造成離子滲漏之測量 25 2.觀察植物葉片接種B.elliptica後累積之癒傷葡聚醣 25 3.觀察植物葉片接種B.elliptica後活性氧物質之產生 26 八、NADPH氧化酶抑制劑二苯基氯化碘鹽抑制活性氧物質影響百合灰黴病病斑發展觀察 26 九、SUMO-LsGRP1ΔSS融合蛋白有效誘導抗病活性之耐熱性測試 26 1.蛋白溶液於熱處理之誘導抗病活性耐熱實驗 26 2.蛋白質乾燥粉末熱處理之誘導抗病活性耐熱實驗 27 十一、澆灌水楊酸及含有SUMO-LsGRP1∆SS融合蛋白的大腸桿菌溶解產物施用原液誘導植物抗病測試 27 1.製備澆灌處理所需之含有SUMO-LsGRP1∆SS融合蛋白的大腸桿菌溶解產物之施用原液 27 2.澆灌處理實驗用植物 28 3.百合栽培種澆灌實驗之抑制病率計算 28 4.草莓罹病度分級 29 十二、評估澆灌水楊酸及SUMO-LsGRP1∆SS施用原液誘導百合葉片LsGRP1相對累積量 29 十三、澆灌LsGRP1∆SS施用原液對植物葉綠素含量及光合作用的影響 30 1.葉綠素相對含量測定 30 2.葉綠素螢光測定 30 十四、將LsGRP1∆SS OAF在田間環境中應用於植物之效果 30 1.亞洲型雜交群食用姬百合之施用效果測試 30 2.草莓苗之施用效果測試 31 十五、數據統計及分析 31 陸、結果 32 一、大腸桿菌表現之LsGRP1衍生性融合蛋白 32 二、注射大腸桿菌表現之SUMO-LsGRP1ΔSS融合蛋白誘導百合系統葉抑制灰黴病病徵發展之效果 32 三、注射SUMO-LsGRP1ΔSS融合蛋白減少百合系統葉於灰黴病菌侵染時之植物細胞死亡現象 34 四、注射SUMO-LsGRP1ΔSS融合蛋白提升百合系統葉於灰黴病菌侵染時之癒傷葡聚醣累積量 35 五、注射SUMO-LsGRP1ΔSS融合蛋白促進百合系統葉於灰黴病菌侵染時之活性氧物質累積 35 六、以二苯基氯化碘鹽抑制活性氧物質產生可抑制百合葉片於接種早期之活性氧物質累積 36 七、SUMO-LsGRP1ΔSS融合蛋白誘導百合抗病活性之耐熱性測試 37 八、澆灌含有SUMO-LsGRP1∆SS融合蛋白的大腸桿菌溶解產物之誘導百合抗灰黴病效果 39 九、澆灌水楊酸及含有SUMO-LsGRP1∆SS融合蛋白的大腸桿菌溶解產物誘導百合自體累積LsGRP1 40 十、澆灌含有SUMO-LsGRP1∆SS融合蛋白的大腸桿菌溶解產物對百合葉片之葉綠素相對含量及光合作用效率之影響 41 十一、澆灌含有SUMO-LsGRP1∆SS融合蛋白的大腸桿菌溶解產物誘導不同百合栽培種抑制灰黴病的效果 42 十二、澆灌含有SUMO-LsGRP1∆SS融合蛋白的大腸桿菌溶解產物於不同植物之抑制灰黴病效果 43 十三、含SUMO-LsGRP1∆SS融合蛋白的大腸桿菌溶解產物於田間環境盆栽植物之抑病效果 44 柒、討論 45 捌、參考文獻 52 玖、圖表集 69 表一、澆灌含有SUMO-LsGRP1∆SS融合蛋白之大腸桿菌溶解產物對不同百合栽培種灰黴病之抑制率 70 圖一、以十二烷基硫酸鈉聚丙烯醯胺膠體電泳分析大腸桿菌表現之LsGRP1衍生性融合蛋白 71 圖二、注射SUMO-LsGRP1ΔSS融合蛋白誘導百合系統葉抑制灰黴病效果 72 圖三、注射不同濃度SUMO-LsGRP1ΔSS融合蛋白誘導百合系統葉抑制灰黴病效果 73 圖四、百合前處理注射SUMO-LsGRP1ΔSS融合蛋白可抑制系統葉中Botrytis elliptica之生物量 74 圖五、注射SUMO-LsGRP1ΔSS融合蛋白誘導上下位系統葉抑制灰黴病之效果 75 圖六、SUMO-LsGRP1ΔSS融合蛋白處理後灰黴病菌於系統葉造成的死細胞之導電度 77 圖七、百合中位葉注射SUMO-LsGRP1ΔSS融合蛋白促進系統葉於灰黴病感染時葡聚醣累積狀況 78 圖八、SUMO-LsGRP1ΔSS融合蛋白處理對系統葉活性氧物質累積之影響 80 圖九、活性氧物質抑制劑二苯基氯化碘鹽對灰黴病菌感染百合之影響 81 圖十、熱處理對SUMO-LsGRP1ΔSS融合蛋白誘導抗病活性之影響 84 圖十一、不同時間之55oC熱處理後SUMO-LsGRP1ΔSS融合蛋白溶液之沉澱情況 85 圖十二、100oC熱處理30分鐘對SUMO-LsGRP1ΔSS融合蛋白溶液誘導抗病活性之影響 86 圖十三、不同溫度處理對SUMO-LsGRP1ΔSS融合蛋白粉末誘導抗病活性之影響 88 圖十四、澆灌處理時間表 89 圖十五、不同稀釋倍率之LsGRP1∆SS OAF對百合灰黴病病斑之影響 90 圖十六、單次澆灌處理誘導百合抑制灰黴病病斑之有效持續時間 91 圖十七、澆灌處理後百合葉片之LsGRP1累積量 92 圖十八、澆灌處理後之百合葉片葉綠素相對含量及光合作用效率 95 圖十九、澆灌LsGRP1∆SS OAF誘導不同百合栽培種抑制灰黴病病斑效果 97 圖二十、澆灌LsGRP1∆SS OAF對番茄灰黴病病斑面積的影響 98 圖二十一、澆灌LsGRP1∆SS OAF對草莓灰黴病罹病度之影響 100 圖二十二、單次澆灌LsGRP1∆SS OAF於田間環境之亞洲型雜交群姬百合誘導其抗灰黴病效果 101 圖二十三、單一次澆灌LsGRP1∆SS OAF於田間環境之草莓苗誘導其抗炭疽病效果 103 | |
dc.language.iso | zh-TW | |
dc.title | 百合防禦相關蛋白LsGRP1誘導植物抗灰黴病之應用 | zh_TW |
dc.title | Application of Lilium defense-related protein LsGRP1 to induce plant resistance against gray mold disease | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 沈偉強,鍾嘉綾,林乃君,黃秀珍 | |
dc.subject.keyword | Botrytis elliptica,誘導抗病,百合,LsGRP1,灰黴病, | zh_TW |
dc.subject.keyword | Botrytis elliptica,Induced resistance,Lily,LsGRP1,Gray mold disease, | en |
dc.relation.page | 103 | |
dc.identifier.doi | 10.6342/NTU201800537 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-02-13 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物醫學碩士學位學程 | zh_TW |
顯示於系所單位: | 植物醫學碩士學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 2.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。