Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69891
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛承輝(Chun-Hway Hsueh)
dc.contributor.authorLi-Wei Chenen
dc.contributor.author陳立瑋zh_TW
dc.date.accessioned2021-06-17T03:32:42Z-
dc.date.available2023-03-01
dc.date.copyright2018-03-01
dc.date.issued2018
dc.date.submitted2018-02-13
dc.identifier.citation[1] F. Tseng, S. Li, C. Wu, Y. Pan, L. Li, Thermoelectric and mechanical properties of ZnSb/SiC nanocomposites, J. Mater. Sci. 51 (2016) 5271–5280.
[2] X. Li, J. Carrete, J. Lin, G. Qiao, Z. Wang, Atomistic origin of glass-like Zn4Sb3 thermal conductivity, Appl. Phys. Lett. 103 (2013) 103902.
[3] 黃振東、徐振庭,「熱電材料」,科學發展,486期,(2013),32–35。
[4] 黃志誠、張學明「神奇的熱電材料—利用溫差的熱電發電技術」,經濟部能源報導,(2004),14–16。
[5] 巫振榮,「熱電元件應用」,科普講堂,(2013),48–53。
[6] D.-K. Qi, Y.-G. Yan, H. Li, X.-F. Tang, Effects of rapid solidification method on thermoelectric and mechanical properties of Beta-Zn4Sb3 materials, J. Inorg. Mater. 25 (2010) 603–608.
[7] C. Okamura, T. Ueda, K. Hasezaki, Preparation of single-phase ZnSb thermoelectric materials using a mechanical grinding process, Mater. Trans. 51 (2010) 860–862.
[8] D.M. Rowe, CRC Handbook of Thermoelectrics, CRC-Press, Boca Raton, 1995.
[9] F.J. DiSalvo, Thermoelectric cooling and power generation, Science 285 (1999) 703–706.
[10] 朱旭山,「熱電材料與元件之原理與應用」,工業材料雜誌,22期,(2005),78–89。
[11] G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008) 105–114.
[12] W. Thomson, 4. On a Mechanical Theory of Thermo-Electric Currents, Proc. Royal Soc. A 3 (1857) 91–98.
[13] S. Mishra, S. Satpathy, O. Jepsen, Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide, J. Phys.: Condens. Matter 9 (1997) 461–470.
[14] K. Kishimoto, T. Koyanagi, Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties, J. Appl. Phys. 92 (2002) 2544–2549.
[15] E.S. Toberer, P. Rauwel, S. Gariel, J. Taftø, G.J. Snyder, Composition and the thermoelectric performance of β-Zn4Sb3, J. Mater. Chem. 20 (2010) 9877–9885.
[16] B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, Z. Ren, Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites, Nano Lett. 12 (2012) 2077–2082.
[17] A. Heinrich, H. Griessmann, G. Behr, K. Ivanenko, J. Schumann, H. Vinzelberg, Thermoelectric properties of β-FeSi2 single crystals and polycrystalline β-FeSi2+ x thin films, Thin Solid Films 381 (2001) 287—295.
[18] S. Sano, H. Mizukami, H. Kaibe, Development of high-efficiency thermoelectric power generation system, Komai’su Tech. Rep. 49 (2003) 152–159.
[19] Y. Qi, Z. Wang, M. Zhang, F. Yang, X. Wang, Thermoelectric devices based on one-dimensional nanostructures, J. Mater. Chem. A 1 (2013) 6110–6124.
[20] G. Rogl, P. Rogl, Skutterudites, a most promising group of thermoelectric materials, Current Opinion in Green and Sustainable Chemistry 4 (2017) 50–57.
[21] J. He, M.G. Kanatzidis, V.P. Dravid, High performance bulk thermoelectrics via a panoscopic approach, Mater. Today 16 (2013) 166–176.
[22] V. Ravi, S. Firdosy, T. Caillat, E. Brandon, K. Van Der Walde, L. Maricic, A. Sayir, Thermal expansion studies of selected high-temperature thermoelectric materials, J. Electron. Mater. 38 (2009) 1433–1442.
[23] A. Schmitz, C. Stiewe, E. Müller, Preparation of ring-shaped thermoelectric legs from PbTe powders for tubular thermoelectric modules, J. Electron. Mater. 42 (2013) 1702–1706.
[24] 陳洋元,「從溫室效應與地球暖化談到—高效率熱電材料的研發」,中研院週報 第1169期,(2008),4–5。
[25] H. Lee, D. Vashaee, D. Wang, M.S. Dresselhaus, Z. Ren, G. Chen, Effects of nanoscale porosity on thermoelectric properties of SiGe, J. Appl. Phys. 107 (2010) 094308.
[26] X. Fan, E.D. Case, F. Ren, Y. Shu, M. Baumann, Part II: Fracture strength and elastic modulus as a function of porosity for hydroxyapatite and other brittle materials, J. Mech. Behav. Biomed. 8 (2012) 99–110.
[27] L. Vandeperre, J. Wang, W. Clegg, Effects of porosity on the measured fracture energy of brittle materials, Philos. Mag. 84 (2004) 3689–3704.
[28] C. Fu, H. Xie, Y. Liu, T. Zhu, J. Xie, X. Zhao, Thermoelectric properties of FeVSb half-Heusler compounds by levitation melting and spark plasma sintering, Intermetallics 32 (2013) 39–43.
[29] T.P. Hoepfner, E. Case, The influence of the microstructure on the hardness of sintered hydroxyapatite, Ceram. Int. 29 (2003) 699–706.
[30] E.D. Case, Thermal fatigue and waste heat recovery via thermoelectrics, J. Electron. Mater. 41 (2012) 1811–1819.
[31] A. Pilchak, F. Ren, E. Case, E. Timm, H. Schock, C.-I. Wu, T. Hogan, Characterization of dry milled powders of LAST (lead–antimony–silver–tellurium) thermoelectric material, Philos. Mag. 87 (2007) 4567–4591.
[32] J. Androulakis, K.F. Hsu, R. Pcionek, H. Kong, C. Uher, J.J. D'Angelo, A. Downey, T. Hogan, M.G. Kanatzidis, Nanostructuring and High Thermoelectric Efficiency in p‐Type Ag (Pb1–ySny)mSbTe2+ m, Adv. Mater. 18 (2006) 1170–1173.
[33] T. Caillat, J.-P. Fleurial, Zn-Sb alloys for thermoelectric power generation, in: Energy Conversion Engineering Conference, IEEE, 1996, 905–909.
[34] A.L. Eiss, Thermoelectric bonding study, in, HITTMAN ASSOCIATES, INC. Baltimore, Md., CR-369, 1966.
[35] 莊東漢,”熱電模組接合技術及其挑戰”,工業材料雜誌,322期,2013,72–79。
[36] K.T. Wojciechowski, R. Zybala, R. Mania, High temperature CoSb3–Cu junctions, Microelectron Reliab. 51 (2011) 1198–1202.
[37] G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, B.B. Iversen, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties, Nat. Mater. 3 (2004) 458–463.
[38] C. Okamura, T. Ueda, K. Hasezaki, Preparation of single phase β-Zn4Sb3 thermoelectric materials by mechanical grinding process, Mater. Trans. 51 (2010) 152–155.
[39] W.P. Lin, D.E. Wesolowski, C.C. Lee, Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules, J. Mater. Sci. Mater. Electron. 22 (2011) 1313–1320.
[40] H.H. Manko, Solders and Soldering, McGraw-Hill Education, New York (2001) 221–258.
[41] O. Akselsen, Advances in brazing of ceramics, J. Mater. Sci. 27 (1992) 1989–2000.
[42] A.W. Society, Welding Handbook, American Welding Society, Miami (1950) 51–84.
[43] L. Bernstein, Semiconductor Joining by the Solid‐Liquid‐Interdiffusion (SLID) Process I. The Systems Ag‐In, Au‐In, and Cu‐In, J. Electrochem. Soc. 113 (1966) 1282–1288.
[44] 莊東漢,“擴散軟銲技術在電子封裝之應用”,工業材料雜誌,52期,(1999),118–125。
[45] D. Jacobson, G. Humpston, Diffusion soldering, Soldering & Surface Mount Technology 4 (1992) 27–32.
[46] M. Abtew, G. Selvaduray, Lead-free solders in microelectronics, Mater. Sci. Eng. Rep. 27 (2000) 95–141.
[47] Mahan, J.E., Physical Vapor Deposition of Thin Films, Wiley-VCH, New York (2000) 199–302.
[48] P. Krulevitch, P. Ramsey, D. Makowiecki, A. Lee, M. Northrup, G. Johnson, Mixed-sputter deposition of Ni-Ti-Cu shape memory films, Thin Solid Films 274 (1996) 101–105.
[49] K. Wasa, M. Kitabatake, H. Adachi, Thin film materials technology: Sputtering of compound materials, 1st ed., William Andrew Publishing, Norwich, New York (2004).
[50] L.B. Loeb, Basic Processes of Gaseous Electronics, University of California Press, Berkeley (1960).
[51] Wei, D.T., H.R. Kaufman, C.-C. Lee, Ion beam sputtering, Marcel Dekker, New York (1995).
[52] P. Sigmund, Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets, Phys. Rev. 184 (1969) 383–416.
[53] G.N. Drummond, R.A. Scholl, Enhanced reactive DC sputtering system, in, Google Patents, US09024247 (1998).
[54] H. Koenig, L. Maissel, Application of RF discharges to sputtering, IBM J. Res. Dev. 14 (1970) 168–171.
[55] P. Kelly, R. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56 (2000) 159–172.
[56] Z. Lu, C. Liu, A new glass-forming ability criterion for bulk metallic glasses, Acta Mater. 50 (2002) 3501–3512.
[57] D.M. Mattox, The Foundations of Vacuum Coating Technology, Noyes Publications/William Andrew Pub, New Mexico (2004) 11–18.
[58] H.H. Andersen, H.L. Bay, Sputtering Yield Measurements, Springer, Berlin (1981) 145–218.
[59] 李冠廷,Zn4Sb3中溫熱電材料與銅電極之薄膜固液擴散接合研究,臺灣大學材料科學與工程學研究所碩士學位論文,(2013),1–78。
[60] M. Wittmer, Properties and microelectronic applications of thin films of refractory metal nitrides, J. Vac. Sci. Technol. 3 (1985) 1797–1803.
[61] K. Holloway, P.M. Fryer, Tantalum as a diffusion barrier between copper and silicon, Appl. Phys. Lett. 57 (1990) 1736–1738.
[62] S. Rossnagel, C. Nichols, S. Hamaguchi, D. Ruzic, R. Turkot, Thin, high atomic weight refractory film deposition for diffusion barrier, adhesion layer, and seed layer applications, J. Vac. Sci. Technol., B, Microelectron. Nanometer Struct. Process. Meas. Phenom. 14 (1996) 1819–1827.
[63] Y. Lan, D. Wang, G. Chen, Z. Ren, Diffusion of nickel and tin in p-type (Bi, Sb)2 Te3 and n-type Bi2(Te, Se)3 thermoelectric materials, Appl. Phys. Lett. 92 (2008) 101910.
[64] D. Zhao, X. Li, L. He, W. Jiang, L. Chen, Interfacial evolution behavior and reliability evaluation of CoSb3/Ti/Mo–Cu thermoelectric joints during accelerated thermal aging, J. Alloys Compd. 477 (2009) 425–431.
[65] Li, X., et al. Mo/Ti/CoSb3 joining technology for CoSb3 based materials. in Proc. 24 Int. Conf. on Thermoelectrics, Clemson, SC, USA (2005).
[66] D. Zhao, H. Geng, X. Teng, Fabrication and reliability evaluation of CoSb3/W–Cu thermoelectric element, J. Alloys Compd. 517 (2012) 198–203.
[67] S. Bhagat, T. Alford, Texture formation in Ag thin films: Effect of W–Ti diffusion barriers, J. Appl. Phys. 104 (2008) 103534.
[68] S. Bhagat, H. Han, T. Alford, Tungsten–titanium diffusion barriers for silver metallization, Thin Solid Films, 515 (2006) 1998–2002.
[69] H. Lange, H. Reis, F. Fenske, AES study of the interaction of Ni and Al overlayers with W-Ti and W-Re diffusion barriers, Phys. Status Solidi A 115 (1989) 497–504.
[70] R. Nowicki, J. Harris, M.-A. Nicolet, I. Mitchell, Studies of the Ti-W/Au metallization on aluminum, Thin Solid Films 53 (1978) 195–205.
[71] Q. Wang, S. Liang, Investigation on preparation and diffusion barrier properties of W–Ti thin films, Vacuum 85 (2011) 979–985.
[72] J. Oparowski, R. Sisson, R. Biederman, The effects of processing parameters on the microstructure and properties of sputter-deposited TiW thin film diffusion barriers, Thin Solid Films 153 (1987) 313–328.
[73] P. Ghate, J. Blair, C. Fuller, G. McGuire, Application of Ti-W barrier metallization for integrated circuits, Thin Solid Films 53 (1978) 117–128.
[74] H. Ramarotafika, G. Lemperiere, Influence of a dc substrate bias on the resistivity, composition, crystallite size and microstrain of WTi and WTi-N films, Thin Solid Films 266 (1995) 267–273.
[75] S. Berger, Elastic and plastic strains in Al/TiW/Si contacts during thermal cycles, Mater. Sci. Eng. A 288 (2000) 164–167.
[76] H. Wondergem, A. Heger, J. van Den Broek, Determination of W-Ti/Al thin-film interaction by sheet resistance measurement, Thin Solid Films 249 (1994) 6–10.
[77] A. Dirks, R. Wolters, A. Nellissen, On the microstructure-property relationship of WTi(N) diffusion barriers, Thin Solid Films 193 (1990) 201–210.
[78] S. Bhagat, N. Theodore, T. Alford, Thermal stability of tungsten–titanium diffusion barriers for silver metallization, Thin Solid Films 516 (2008) 7451–7457.
[79] 張友競,'中高溫熱電模組之擴散阻障層研究',台灣大學材料科學與工程學研究所碩士學位論文 (2016) 1–96。
[80] J.-C. Chang, J.-W. Lee, B.-S. Lou, C.-L. Li, J.P. Chu, Effects of tungsten contents on the microstructure, mechanical and anticorrosion properties of Zr–W–Ti thin film metallic glasses, Thin Solid Films 584 (2015) 253–256.
[81] H. Lee, P. Chen, T. Wu, Y. Chen, C. Wang, P. Tzeng, C. Lin, F. Chen, C. Lien, M.-J. Tsai, Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM, IEEE (2008) 1–4.
[82] G. Kim, S. Lee, J. Hahn, B. Lee, J. Han, J. Lee, Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings, Surf. Coat. Technol. 171 (2003) 83–90.
[83] D.R. Brown, T. Day, K.A. Borup, S. Christensen, B.B. Iversen, G.J. Snyder, Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides, APL Mater. 1 (2013) 052107.
[84] D.-Y. Jung, K. Kurosaki, Y. Ohishi, H. Muta, S. Yamanaka, Effect of phase transition on the thermoelectric properties of Ag2Te, Mater. Trans. 53 (2012) 1216–1219.
[85] H. Yu, S. Dai, Y. Chen, Enhanced power factor via the control of structural phase transition in SnSe, Sci. Rep. 6 (2016) 26193.
[86] S. Petrović, D. Peruško, B. Gaković, M. Mitrić, J. Kovač, A. Zalar, V. Milinović, I. Bogdanović-Radović, M. Milosavljević, Effects of thermal annealing on structural and electrical properties of sputtered W–Ti thin films, Surf. Coat. Technol. 204 (2010) 2099–2102.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69891-
dc.description.abstract近年來,隨著環境環保意識的倡導,石化能源的消耗的問題必須被解決的情況下,熱電材料的應用已漸漸的被大眾發揚。熱電材料模組將環境中的熱源抑或是廢熱轉換成可以被利用的電力。然而就目前商業化的熱電材料模組中,Bi2Te3是最被廣泛使用的,然而他所能提供最完美的轉換效率僅能在工作溫度攝氏200度之下,所以在工業廠區中較高的溫度的熱源,即無法被有效使用。因此β-Zn4Sb3中溫熱電材料被選用來應用在較高的溫度區間,他是一個極具有研究潛力的中溫熱電材料,其具有低的毒性、製備簡易、耗費低,此外,他的熱導率在1 W/mK 之下接近非晶的值。
本實驗的目是探討在電鍍焊料Ag和熱電材料β-Zn4Sb3之間漸鍍擴散阻擋層和緩衝層Ti/W-Ti/Ti的可行性,作為熱電模組化的先行研究。介面的擴散行為藉由掃描式電子顯微鏡以及歐傑電子能譜儀觀察,Ag、Ti、Zn穿過緩衝層Ti之後,可以觀察到成功地被阻擋在W-Ti層。此外,薄膜的片電阻也隨著退火溫度的上升而下降,說明了在較高的溫度,其結晶性上升因而提供了更好的電的性質,我們也實驗了經過固液擴散接合Cu電極的熱電模組,在經過了24小時攝氏400度的環境下,可以完整地呈現擴散被有效抑制的結果。
zh_TW
dc.description.abstractAs the public awareness in environmental issues has arisen in recent years, the applications of thermoelectric (TE) modules are becoming widespread for reducing fuel consumption. TE modules convert heat from the environment into electricity to meet the goal of waste heat recycle. While commercialized TE modules Bi2Te3 provide its best conversion efficiency below 200 ℃, it wouldn’t considered as a proper candidate for higher working temperature in the industry environment. Therefore β-Zn4Sb3 is chosen as a promising mid-temperature TE due to their low toxicity and low-cost for fabrication. In addition, β-Zn4Sb3 has quite low thermal conductivity close to the amorphous limit of below 1 W/mK.
The purpose of this work was to investigate the feasibility of using sputtered Ti/W-Ti/Ti multilayer as a diffusion barrier and buffer layer stack between β-Zn4Sb3 bulk material and electroplated Ag layer for mid-temperature thermoelectric (TE) module applications. Interdiffusion at the interface was examined by both scanning electron microscope and Auger electron spectroscopy. After penetrating the Ti buffer layer, Ag, Zn and Sb were successfully blocked by the W-Ti diffusion barrier layer. We also proved that the TE module with diffusion barrier and buffer layers showed phase stability after high temperature aging. Also, the sheet resistance decreased as the temperature increased and it indicated good electrical properties at high working temperatures. In addition, the solid-liquid interdiffusion method was used to join the TE module, and the bonding remained stable at the TE module working temperature of 400 °C for 24 hours.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:32:42Z (GMT). No. of bitstreams: 1
ntu-107-R04527049-1.pdf: 4235446 bytes, checksum: 9149f1a14b805278f2c5803e00a7f590 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsAbstract i
摘要 iii
圖目錄 v
表目錄 viii
第壹章、前言 1
第二章、理論及文獻回顧 4
2-1 熱電材料介紹 4
2-1-1 熱電材料發展與基礎介紹 4
2-1-2 Zn4Sb3與熱電模組 7
2-2 傳統接合到固液擴散接合 13
2-3 薄膜製程 16
2-3-1 薄膜沉積技術介紹 16
2-3-2 濺鍍介紹 16
2-3-3 電漿濺鍍理論 17
2-3-4常見的濺鍍系統 18
2-4擴散阻障層 22
第參章、實驗方法 24
3-1 熱電材料Zn4Sb3製備 25
3-2 試片前處理 25
3-3 濺鍍製程 26
3-4 固液擴散接合製程 27
3-5 高溫時效 28
3-6 SLID熱電模組界面反應及分析 28
3-7 X-ray Diffractometer (XRD) 相穩定分析 28
3-8 歐傑電子能譜儀(Auger Electron Spectroscopy, AES)分析 29
3-9 四點探針實驗 29
第四章、實驗結果與討論 40
4-1 調整適當的熱電材料品質 40
4-2 濺鍍薄膜的解決過程 42
4-3 SLID過程之改善 48
4-4 探討擴散的問題 52
第五章、結論 59
參考文獻 60
dc.language.isozh-TW
dc.title中溫熱電材料Zn4Sb3模組之擴散阻障層及緩衝層之設計zh_TW
dc.titleDesign of Diffusion Barrier and Buffer Layers for Zn4Sb3 Mid-temperature Thermoelectric Modulesen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李志偉(Jyh-Wei Lee),莊東漢(Tung-Han Chuang)
dc.subject.keyword熱電材料,濺鍍薄膜,擴散阻障層,時效,介面分析,zh_TW
dc.subject.keywordThermoelectric material,Sputter films,Diffusion barrier,Aging,Interface analysis,en
dc.relation.page68
dc.identifier.doi10.6342/NTU201800359
dc.rights.note有償授權
dc.date.accepted2018-02-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
4.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved