請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69885完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林彥蓉 | |
| dc.contributor.author | Song-Yu Yin | en |
| dc.contributor.author | 殷菘譽 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:32:25Z | - |
| dc.date.available | 2023-03-01 | |
| dc.date.copyright | 2018-03-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-14 | |
| dc.identifier.citation | 阪本寧男. (1979). 台湾南部山地およびバタン諸島のアワの特性とその民族植物学的考察. 国立民族学博物館研究報告, 3(4), 682-708.
Alcázar SC, & Meireles MA. (2015). Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology, 35(2), 215-236. Alexandratos N & Bruinsma J. (2012). World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03. Rome, FAO. Amagliani L, O’Regan J, Kelly AL, & O’Mahony JA. (2016). Chemistry, structure, functionality and applications of rice starch. Journal of Cereal Science, 70, 291-300. Antony U, Sripriya G, & Chandra T. (1996). The effect of fermentation on the primary nutrients in foxtail millet (Setaria italica). Food Chemistry, 56(4), 381-384. Badenhuizen NP. (1969). The biogenesis of starch granules in higher plants. New York : Appleton-Century-Crofts. Ballolli U, Malagi U, Yenagi N, Orsat V, & Gariepy Y. (2014). Development and quality evaluation of foxtail millet (Setaria italica) incorporated breads. Karnataka Journal of Agricultural Sciences, 27(1). Baltensperger D. (2002). Progress with proso, pearl and other millets. Trends in New Crops and New Uses, 100-103. Bhupathiraju SN, Tobias DK, Malik VS, Pan A, Hruby A, Manson JE, Willett WC, & Hu FB. (2014). Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. The American Journal of Clinical Nutrition, 100(1), 218-232. Buléon A, Colonna P, Planchot V, & Ball S. (1998). Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules, 23(2), 85-112. Champagne ET, Bett KL, Vinyard BT, McClung AM, Barton FE, Moldenhauer K, Linscombe S, & McKenzie K. (1999). Correlation between cooked rice texture and rapid visco analyser measurements. Cereal Chemistry, 76(5), 764-771. Charles AL, Chang YH, Ko WC, Sriroth K, & Huang TC. (2005). Influence of amylopectin structure and amylose content on the gelling properties of five cultivars of cassava starches. Journal of Agricultural and Food Chemistry, 53(7), 2717-2725. Chen L, Magliano DJ, & Zimmet PZ. (2012). The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives. Nature Reviews Endocrinology, 8(4), 228-236. Chung HJ, Liu Q, Lee L, & Wei D. (2011). Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocolloids, 25(5), 968-975. Copeland L, Blazek J, Salman H, & Tang MC. (2009). Form and functionality of starch. Food Hydrocolloids, 23(6), 1527-1534. Cozzolino D. (2016). The use of the rapid visco analyser (RVA) in breeding and selection of cereals. Journal of Cereal Science, 70, 282-290. Crawford GW. (2011). Advances in understanding early agriculture in Japan. Current Anthropology, 52(4), 331-345. DESA U. (2015). World population prospects: The 2015 revision, key findings and advance tables. United Nations: Department of economic and social affairs, Population Division. Diao X, & Jia G. (2017). Foxtail millet breeding in China. In A Doust & X Diao (Eds.), Genetics and Genomics of Setaria (pp. 93-113). Cham: Springer International Publishing. Dwivedi SL, Lammerts van Bueren ET, Ceccarelli S, Grando S, Upadhyaya HD, & Ortiz R. (2017). Diversifying food systems in the pursuit of sustainable food production and healthy diets. Trends in Plant Science, 22(10), 842-856. Dykes L, & Rooney LW. (2006). Sorghum and millet phenols and antioxidants. Journal of Cereal Science, 44(3), 236-251. Englyst HN, Kingman S, & Cummings J. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46, 33-50. Englyst KN, Englyst HN, Hudson GJ, Cole TJ, & Cummings JH. (1999). Rapidly available glucose in foods: an in vitro measurement that reflects the glycemic response. The American Journal of Clinical Nutrition, 69(3), 448-454. Fannon JE, Hauber RJ, & BeMiller JN. (1992). Surface pores of starch granules. Cereal Chemistry, 69(3), 284-288. Fannon JE, Shull JM, & BeMiller JN. (1993). Interior channels of starch granules. Cereal Chemistry, 70, 611-611. Fogg WH. (1983). Swidden cultivation of foxtail millet by Taiwan aborigines: a cultural analogue of the domestication of Setaria italica in China. The Origins of Chinese Civilization. David N. Keightley, ed, 95-115. Frei M, Siddhuraju P, & Becker K. (2003). Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chemistry, 83(3), 395-402. Fujita S, Sugimoto Y, Yamashita Y, & Fuwa H. (1996). Physicochemical studies of starch from foxtail millet (Setaria italica Beauv.). Food Chemistry, 55(3), 209-213. Germaine KA, Samman S, Fryirs CG, Griffiths PJ, Johnson SK, & Quail KJ. (2008). Comparison of in vitro starch digestibility methods for predicting the glycaemic index of grain foods. Journal of The Science of Food and Agriculture, 88(4), 652-658. Gnagnarella P, Gandini S, La Vecchia C, & Maisonneuve P. (2008). Glycemic index, glycemic load, and cancer risk: a meta-analysis. The American Journal of Clinical Nutrition, 87(6), 1793-1801. Goñi I, Garcia-Alonso A, & Saura-Calixto F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17(3), 427-437. Heaton KW, Marcus S, Emmett P, & Bolton C. (1988). Particle size of wheat, maize, and oat test meals: effects on plasma glucose and insulin responses and on the rate of starch digestion in vitro. The American Journal of Clinical Nutrition, 47(4), 675-682. Hirano R, Naito K, Fukunaga K, Watanabe KN, Ohsawa R, & Kawase M. (2011). Genetic structure of landraces in foxtail millet (Setaria italica (L.) P. Beauv.) revealed with transposon display and interpretation to crop evolution of foxtail millet. Genome, 54(6), 498-506. Hizukuri S. (1985). Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules. Carbohydrate Research, 141(2), 295-306. Hizukuri S. (1986). Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydrate Research, 147(2), 342-347. Hsu RJ, Chen HJ, Lu S, & Chiang W. (2015). Effects of cooking, retrogradation and drying on starch digestibility in instant rice making. Journal of Cereal Science, 65, 154-161. Hu EA, Pan A, Malik V, & Sun Q. (2012). White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. British Medical Journal, 344, 1454. Hu P, Zhao H, Duan Z, Linlin Z, & Wu D. (2004). Starch digestibility and the estimated glycemic score of different types of rice differing in amylose contents. Journal of Cereal Science, 40(3), 231-237. Huber KC, & BeMiller J. (2000). Channels of maize and sorghum starch granules. Carbohydrate Polymers, 41(3), 269-276. Huber KC, & BeMiller JN. (1997). Visualization of Channels and Cavities of Corn and Sorghum Starch Granules. Cereal Chemistry Journal, 74(5), 537-541. Inatsu O. (1988). Studies on improving the eating quality of Hokkaido Rice. Hokkaido Central Agricultural Experiment Station, Naganuma (Japan), 66, 1-89. Jane JL, Chen Y, Lee L, McPherson A, Wong K, Radosavljevic M, & Kasemsuwan T. (1999). Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry, 76(5), 629-637. Jane JL. (2006). Current understanding on starch granule structures. Journal of Applied Glycoscience, 53(3), 205-213. Jane JL. (2009). Chapter 6 - Structural features of starch granules II Starch (Third Edition) (pp. 193-236). San Diego: Academic Press. Jane JL, Kasemsuwan T, Leas S, Zobel H, & Robyt JF. (1994). Anthology of starch granule morphology by scanning electron microscopy. Starch‐Stärke, 46(4), 121-129. Jenkins DJ, Kendall CW, Augustin LS, Franceschi S, Hamidi M, Marchie A, Jenkins AL, & Axelsen M. (2002). Glycemic index: overview of implications in health and disease. The American Journal of Clinical Nutrition, 76(1), 266-273. Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, Bowling AC, Newman HC, Jenkins AL, & Goff DV. (1981). Glycemic index of foods: a physiological basis for carbohydrate exchange. The American Journal of Clinical Nutrition, 34(3), 362-366. Juliano BO. (1985). Criteria and test for rice grain qualities. Rice Science and Technology, Saint Paul, MN: AACC, (pp. 443-524). Juliano BO. (1979). The chemical basis of rice grain quality. Chemical Aspects of Rice Grain Quality, 69-90. Kasem S, Waters D, Rice N, Shapter FM, & Henry RJ. (2011). The endosperm morphology of rice and its wild relatives as observed by scanning electron microscopy. Rice, 4(1), 12-20. Kaur M, Oberoi D, Sogi D, & Gill BS. (2011). Physicochemical, morphological and pasting properties of acid treated starches from different botanical sources. Journal of Food Science and Technology, 48(4), 460-465. Kawase M, Fukunaga K, & Kato K. (2005). Diverse origins of waxy foxtail millet crops in East and Southeast Asia mediated by multiple transposable element insertions. Molecular Genetics and Genomics, 274(2), 131-140. Kong X, Zhu P, Sui Z, & Bao J. (2015). Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations. Food Chemistry, 172, 433-440. Kumar SK, & Parameswaran KP. (1998). Characterization of storage protein from selected varieties of foxtail millet (Setaria italica (L) Beauv). Journal of the Science of Food and Agriculture, 77(4), 535-542. Kumari SK, & Thayumanavan B. (1998). Characterization of starches of proso, foxtail, barnyard, kodo, and little millets. Plant Foods for Human Nutrition, 53(1), 47-56. Kuo MS. (2018). Exploring major genes conferring starch biosynthesis of foxtail millet (Setaria italica) germplasm in Taiwan. National Taiwna University, Taipei, Taiwan. Lee GA. (2011). The transition from foraging to farming in prehistoric Korea. Current Anthropology, 52(4), 307-329. Li S, Zhang Y, Wei Y, Zhang W, & Zhang B. (2014). Thermal, pasting and gel textural properties of commercial starches from different botanical sources. Journal of Bioprocessing & Biotechniques, 4(4). Li Y, & Wu S. (1996). Traditional maintenance and multiplication of foxtail millet (Setaria italica (L.) P. Beauv.) landraces in China. Euphytica, 87(1), 33-38. Li Y, Wu S, Cao Y, & Zhang X. (1996). A phenotypic diversity analysis of foxtail millet (Setaria italica (L.) P. Beauv.) landraces of Chinese origin. Genetic Resources and Crop Evolution, 43(4), 377-384. Lin HS, Liao GI, Chiang CY, Kuoh CS, & Chang S-B. (2012). Genetic diversity in the foxtail millet (Setaria italica) germplasm as determined by agronomic traits and microsatellite markers. Australian Journal of Crop Science, 6(2), 342-349. Liu RH. (2007). Whole grain phytochemicals and health. Journal of Cereal Science, 46(3), 207-219. Lu H, Zhang J, Wu N, Liu K-b, Xu D, & Li Q. (2009). Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and Common Millet (Panicum miliaceum). PLOS ONE, 4(2), 4448. Lu HE, Wang XC,Li HY, Han YH. (2015). Foxtail millet: nutritional and eating quality, and prospects for genetic improvement. Frontiers of Agricultural Science and Engineering, 2(2), 124-133. Mahasukhonthachat K, Sopade PA, & Gidley MJ. (2010). Kinetics of starch digestion in sorghum as affected by particle size. Journal of Food Engineering, 96(1), 18-28. Mamatha BS, Sangeetha RK, & Baskaran V. (2011). Provitamin-A and xanthophyll carotenoids in vegetables and food grains of nutritional and medicinal importance. International Journal of Food Science & Technology, 46(2), 315-323. Naguleswaran S, Li J, Vasanthan T, Bressler D, & Hoover R. (2012). Amylolysis of large and small granules of native triticale, wheat and corn starches using a mixture of α-amylase and glucoamylase. Carbohydrate Polymers, 88(3), 864-874. Naguleswaran S, Vasanthan T, Hoover R, & Bressler D. (2013). The susceptibility of large and small granules of waxy, normal and high-amylose genotypes of barley and corn starches toward amylolysis at sub-gelatinization temperatures. Food Research International, 51(2), 771-782. Nakata M, Miyashita T, Kimura R, Nakata Y, Takagi H, Kuroda M, Yamaguchi T, Umemoto T, & Yamakawa H. (2017). MutMapPlus identified novel mutant alleles of a rice starch branching enzyme IIb gene for fine-tuning of cooked rice texture. Plant Biotechnology Journal, 16(1),111-123. Nakayama H, Afzal M, & Okuno K. (1998). Intraspecific differentiation and geographical distribution of Wx alleles for low amylose content in endosperm of foxtail millet, Setaria italica (L.) Beauv. Euphytica, 102(3), 289-293. Park IM, Ibáñez AM, Zhong F, & Shoemaker CF. (2007). Gelatinization and pasting properties of waxy and non‐waxy rice starches. Starch‐Stärke, 59(8), 388-396. Pawar VD, & Machewad GM. (2006). Processing of foxtail millet for improved nutrient availability. Journal of Food Processing and Preservation, 30(3), 269-279. Perdon A, Siebenmorgen T, Mauromoustakos A, Griffin V, & Johnson E. (2001). Degree of milling effects on rice pasting properties. Cereal Chemistry, 78(2), 205-209. Pérez S, Baldwin PM, & Gallant DJ. (2009). Chapter 5 - Structural Features of Starch Granules I Starch (Third Edition) (pp. 149-192). San Diego: Academic Press. Ragaee S, & Abdel-Aal E-SM. (2006). Pasting properties of starch and protein in selected cereals and quality of their food products. Food chemistry, 95(1), 9-18. Rathore S, Singh K, & Kumar V. (2016). Millet grain processing, utilization and its role in health promotion: A review. International Journal of Nutrition and Food Sciences, 5(5), 318-329. Ren X, Chen J, Molla MM, Wang C, Diao X, & Shen Q. (2016). In vitro starch digestibility and in vivo glycemic response of foxtail millet and its products. Food Function, 7(1), 372-379. Rodriguez-Amaya DB. (2001). A guide to carotenoid analysis in foods: ILSI press Washington, DC. Sahai D, Buendia M, & Jackson D. (2001). Analytical techniques for understanding nixtamalized corn flour: Particle size and functionality relationships in a masa flour sample. Cereal Chemistry, 78(1), 14-18. Saleh AS, Zhang Q, Chen J, & Shen Q. (2013). Millet grains: nutritional quality, processing, and potential health benefits. Comprehensive Reviews in Food Science and Food Safety, 12(3), 281-295. Sandhu KS, & Singh N. (2007). Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food chemistry, 101(4), 1499-1507. Sarita SE. (2016). Potential of millets: nutrients composition and health benefits. Journal of Scientific and Innovation Research, 5, 46-50. Sasaki T, & Matsuki J. (1998). Effect of wheat starch structure on swelling power. Cereal Chemistry, 75(4), 525-529. Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, & Boeing H. (2007). Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Archives of Internal Medicine, 167(9), 956-965. Seidemann J, Badenhuizen NP. (1970). The Biogenesis of Starch Granules in Higher Plants. Starch - Stärke, 22(3), 102-103. Sharma N, & Niranjan K. (2017). Foxtail millet: Properties, processing, health benefits, and uses. Food Reviews International, 1-35. Shen R, Yang S, Zhao G, Shen Q, & Diao X. (2015). Identification of carotenoids in foxtail millet (Setaria italica) and the effects of cooking methods on carotenoid content. Journal of Cereal Science, 61, 86-93. Singh J, Dartois A, & Kaur L. (2010). Starch digestibility in food matrix: a review. Trends in Food Science & Technology, 21(4), 168-180. Singh K, Mishra A, & Mishra H. (2012). Fuzzy analysis of sensory attributes of bread prepared from millet-based composite flours. LWT-Food Science and Technology, 48(2), 276-282. Singh N, Singh J, Kaur L, Sodhi NS, & Gill BS. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81(2), 219-231. Soon Suh D, & Jane JL. (2003). Comparison of starch pasting properties at various cooking conditions using the micro visco-amylo-graph and the rapid visco analyser. Cereal Chemistry, 80(6), 745-749. Srichuwong S, Sunarti TC, Mishima T, Isono N, & Hisamatsu M. (2005). Starches from different botanical sources I: Contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohydrate Polymers, 60(4), 529-538. Sujka M, & Jamroz J. (2007). Starch granule porosity and its changes by means of amylolysis. International agrophysics, 21(1), 107-113 Takei E. (2013). Millet Culture and Indigenous Cuisine in Taiwan. 2013 中華飲食文化國際學術研討會論文集, 193-210. Tester RF, Karkalas J, & Qi X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151-165. Tong C, Chen Y, Tang F, Xu F, Huang Y, Chen H, & Bao J. (2014). Genetic diversity of amylose content and RVA pasting parameters in 20 rice accessions grown in Hainan, China. Food Chemistry, 161, 239-245. Tsang CH, Li KT, Hsu TF, Tsai YC, Fang PH, & Hsing YC. (2017). Broomcorn and foxtail millet were cultivated in Taiwan about 5000 years ago. Botanical Studies, 58(1), 3. Vandeputte GE, Vermeylen R, Geeroms J, & Delcour JA. (2003). Rice starches. I. Structural aspects provide insight into crystallinity characteristics and gelatinisation behaviour of granular starch. Journal of Cereal Science, 38(1), 43-52. Vandeputte GE, Derycke V, Geeroms J, & Delcour JA. (2003). Rice starches. II. Structural aspects provide insight into swelling and pasting properties. Journal of Cereal Science, 38(1), 53-59. Verma S, Srivastava S, & Tiwari N. (2015). Comparative study on nutritional and sensory quality of barnyard and foxtail millet food products with traditional rice products. Journal of Food Science and Technology, 52(8), 5147-5155. Wang C, Jia G, Zhi H, Niu Z, Chai Y, Li W, Wang Y, Li H, Lu P, Zhao B, & Diao X. (2012). Genetic diversity and population structure of chinese foxtail millet (Setaria italica (L.) Beauv.) Landraces. G3: Genes, Genomes, Genetics, 2(7), 769-777. Wang HG, Jia GQ, Zhi H, Wen QF, Dong JL, Chen L, Wang JJ, Cao XN, Liu SC, Wang L, Qiao ZJ, & Diao XM. (2016). Phenotypic diversity evaluations of foxtail millet Core Collections. Acta Agronomica Sinica, 42(1), 19-30. Wang S, Li C, Copeland L, Niu Q, & Wang S. (2015). Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 14(5), 568-585. Webb BD. (1991). Rice quality and grades. In BS Luh (Ed.), Rice Utilization Vol. II. New York, NY: AVI Book Published by Van Nostrand Reinhold. Wu W, Wang X, Wu X, Jin G, & Tarasov PE. (2014). The early Holocene archaeobotanical record from the Zhangmatun site situated at the northern edge of the Shandong Highlands, China. Quaternary International, 348, 183-193. Yang XS, Wang LL, Zhou XR, Shuang SM, Zhu ZH, Li N, Li Y, Liu F, Liu SC, Lu P, Ren GX, & Dong C. (2013). Determination of protein, fat, starch, and amino acids in foxtail millet (Setaria italica (L.) Beauv.) by Fourier transform near-infrared reflectance spectroscopy. Food Science and Biotechnology, 22(6), 1495-1500. Zhang A, Liu X, Wang G, Wang H, Liu J, Zhao W, & Zhang Y. (2015). Crude fat content and fatty acid profile and their correlations in foxtail millet. Cereal Chemistry, 92(5), 455-459. Zhang W, Bi J, Yan X, Wang H, Zhu C, Wang J, & Wan J. (2007). In vitro measurement of resistant starch of cooked milled rice and physico-chemical characteristics affecting its formation. Food Chemistry, 105(2), 462-468. Zhao R, Bean S, Wu X, & Wang D. (2008). Assessing fermentation quality of grain sorghum for fuel ethanol production using rapid visco-analyzer. Cereal Chemistry, 85(6), 830-836. Zhou MX, & Mendham NJ. (2005). Predicting barley malt extract with a rapid viscoanalyser. Journal of Cereal Science, 41(1), 31-36. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69885 | - |
| dc.description.abstract | 小米(Setaria italica)為世界上穀類作物中之次要作物,是小穀類作物(Millets)中產量位居第二大宗者,其耐旱與耐貧瘠等特性使之成為某些邊緣地區之主食如中國大陸北方、印度和部分非洲國家。小米之營養價值由於人類飲食習慣的改變而在近年來備受重視,然而針對小米之營養價值和理化特性研究仍然非常有限。有鑑於此,本研究收集臺灣小米共133個品系,種植於臺中農試所並調查其農藝性狀,穀粒理化特性,分析內容包含直鏈澱粉含量測定、快速黏度分析與澱粉水解效率。
農藝性狀中具有統計上之顯著差異者包含株高、抽穗期、穗長與穗寬。株高的範圍54.7~124.7公分、平均93.7公分;抽穗天數的範圍53.7~109.5天、平均為75.2天;穗長範圍為9.6~56.72公分、平均為23.4公分;穗寬的範圍1.12~3.17公分、平均2.02公分;千粒重的範圍為0.96~2.85公克、平均1.85公克。從SEM觀察穀粒橫切面之結果顯示小米澱粉顆粒屬於多邊形(Polygonal)且可能為複粒澱粉(Compound granule),於Type-IV和Type-IX之小米中可觀察到澱粉中心之空洞構造。小米收集系之直鏈澱粉含量介於0.7-16.9%,其中以Type-IV基因型之品系佔多數,與直鏈澱粉之含量結果相符合。各RVA參數於本小米收集系間皆具有廣泛的變異,然而PKV與BDV之參數透過Wx對偶基因型之解釋量不高,說明除了直鏈澱粉含量外,仍有其他因子明顯地控制小米之澱粉糊化特性。透過RVA之參數與澱粉水解效率,發現Type-III和Type-IX之品系PKV較Type-I高,然而其AAC含量卻與較Type-I低。於水解效率之結果亦可觀察到Type-III和Type-IX之品系RS與Type-I相近。以上現象皆說明Type-III和Type-IX品系之支鏈澱粉可能與Type-I品系有結構上的差異。於相近之直鏈澱粉含量範圍中水稻之澱粉水解效率較小米品系低,此現象可能為澱粉粒內部之空洞、通道與表面孔洞所導致。本研究針對133個小米品系針對農藝性狀與穀粒理化特性進行初步的調查,為未來小米的研究奠定基礎,其中變異性甚大之農藝性狀為將來各個育種目標提供有價值之育種資源。而透過RVA分析之穀粒理化特性中可發現諸多小米品系間,具有潛力運用於各類食品加工或小米產品之開發。 | zh_TW |
| dc.description.abstract | Foxtail millet (Setaria italica) is an important minor cereal crop in China, India, and Africa due to its strong adaptability to harsh environments. In Taiwan, foxtail millet is considered as a symbolic crop of the indigenous peoples. Since the human dietary habit has been changed, the nutrition value of foxtail millet has recently received a lot of attention. Numerous foxtail millet products are therefore being developed. However, the nutrition quality of foxtail millet has not been well studied as compared to other major cereals. A total of 133 foxtail millet landraces originated from Taiwan were evaluated by five agronomic traits and grain qualities. The grain qualities were conducted three aspects, starch granule structures analyzed by scan electron microscope (SEM), grain physicochemical properties analyzed by amylose content and rapid viscosity analyzer (RVA), and in vitro starch digestibility. Four agronomic traits, plant height, heading date, panicle length, panicle width, were significantly different among these accessions. Including Plant height ranged from 54.7 to 124.7 cm with the average of 93.7 cm; heading date ranged from 53.7 to 109.5 days with the average of 75.2 days; panicle length ranged from 9.6 to 56.72 cm with the average of 23.4 cm; panicle width ranged from 1.12~3.17 cm with the average of 2.02 cm; and 1000-seed weight ranged from 0.96~2.85 g with the average of 1.85 g. By observing the grain surfaces distinguished by four Wx genotypes. The internal cavities were found throughout the grain surface in Type-IV and Type-IX accessions. Further analysis of apparent amylose content suggests that most accessions owing waxy property were corresponded to Type-IV. The pasting property detected by RVA exhibited obvious variations among foxtail millet starch. However, the variance of some parameters explained by Wx genotypes were low, indicating other factors were together affecting the pasting property. In addition, the RS content of rice is higher than foxtail millet with the same range of AAC, suggesting foxtail millet starch is easier to be digested compare to rice. The Type-IV accessions have higher RDS than other types. However, the starch fractions of Type-III and Type-IX are similar to Type-I, suggesting the structure of amylopectin could be different between these types. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:32:25Z (GMT). No. of bitstreams: 1 ntu-107-R04621122-1.pdf: 13012084 bytes, checksum: d39b2be28e7a4f4f09928bd134e6499e (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Abstract I
Abstract (in Chinese) 中文摘要 III Table content V Figure content VI Preface 1 1. Literature review 5 1.1. Millets 5 1.2. Nutritional value of foxtail millet and its food products 7 1.3. Physicochemical properties of starch 9 1.3.1. Structure of starch 9 1.3.2. Structural features of starch granules 10 1.3.3. Pasting properties of starch 11 1.4. Starch hydrolysis rate 15 2. Material and method 19 2.1. Plant materials and experimental design 19 2.2. The assessments of agronomic traits 19 2.3. Observation of starch granule 20 2.4. Physicochemical properties of foxtail millet grain 20 2.4.1. Apparent amylose content (AAC) 21 2.4.2. The pasting property of foxtail millet grain 21 2.4.3. Starch content 22 2.4.4. Moisture content 22 2.4.5. In vitro starch digestibility 23 2.4.6. Estimated glycemic index 24 2.5. Statitical analysis 25 3. Result 26 3.1. Agronomic trait evaluation 26 3.2. Plant type, panicle shapes and grain appearance of foxtail millet 28 3.3. The structure and arrangements of starch granules in foxtail millet grains 30 3.4. Physicochemical properties of foxtail millet grain 33 3.5. Starch hydrolysis analysis of foxtail millet 45 4. Discussion 54 4.1. The phenotypic variation of foxtail millet accessions 54 4.2. Morphology of starch granule 57 4.3. Physicochemical property of foxtail millet 59 4.4. Starch hydrolysis of foxtail millet 64 4.5. The application of foxtail millet and future perspective. 65 5. Reference 68 6. Supplementary data 77 Table S1. Standard calibration curve of AAC under 620 nm absorption 77 Fig. S1. 2-D plot of PaT and AAC. 78 7. Appendix 79 Appendix 1. The structure of starch 79 Appendix 2. Pasting property of starch 80 Appendix 3. Gene structure of Wx. 81 Appendix 4. List of foxtail millet accessions studied by accession, Wx genotypes, transposable element insertion, and waxy phenotype (AAC) (Kuo, 2018). 82 Appendix 5. Representative images of channels and internal cavities in the starch granules of Oryza. Australiensis and Potamophila parviflora 83 | |
| dc.language.iso | en | |
| dc.subject | 小米(Setaria italica) | zh_TW |
| dc.subject | 農藝性狀 | zh_TW |
| dc.subject | 穀粒理化性質 | zh_TW |
| dc.subject | 澱粉水解效率 | zh_TW |
| dc.subject | In vitro starch digestibility | en |
| dc.subject | Foxtail millet (Setaria italica) | en |
| dc.subject | Agronomic trait | en |
| dc.subject | Grain physicochemical properties | en |
| dc.title | 臺灣小米種原農藝性狀與穀粒理化性質之探討 | zh_TW |
| dc.title | The Agronomic Traits and Grain Physicochemical Properties of Foxtail Millet (Setaria italica) Germplasm in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邢禹依,吳永培,蔡元卿 | |
| dc.subject.keyword | 小米(Setaria italica),農藝性狀,穀粒理化性質,澱粉水解效率, | zh_TW |
| dc.subject.keyword | Foxtail millet (Setaria italica),Agronomic trait,Grain physicochemical properties,In vitro starch digestibility, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU201800062 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-02-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 12.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
