Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69884
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾孫霖
dc.contributor.authorYi-Ju Hsinen
dc.contributor.author辛怡儒zh_TW
dc.date.accessioned2021-06-17T03:32:21Z-
dc.date.available2023-03-02
dc.date.copyright2018-03-02
dc.date.issued2018
dc.date.submitted2018-02-13
dc.identifier.citationAndersen, T., 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology, 192(1): 59-79.
Andersen, T., 2008. Appendix A3L ComPbCorr-software for common lead correction of U-Th-Pb analyses that do not report 204Pb: Laser ablation-ICP-MS in the earth sciences. current practices and outstanding issues, Mineralogical Association of Canada Short Course Series, 40: 312-314.
Bellon, H., Rangin, C., 1991. Geochemistry and isotopic dating of the Cenozoic volcanic arc asquences around the Celebes and Sulu Seas. Proceedings of the Ocean Drilling Program Scientific Results, 124: 321-338.
Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1): 48-57.
Burton-Johnson, A., 2013. Origin, emplacement and tectonic relevance of the Mt. Kinabalu granitic pluton of Sabah, Borneo, Durham University, 263 pp.
Chauvel, C., Lewin, E., Carpentier, M., Arndt, N.T., Marini, J.-C., 2007. Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nature Geoscience, 1: 64.
Chauvel, C., Marini, J.-C., Plank, T., Ludden, J.N., 2009. Hf-Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle. Geochemistry, Geophysics, Geosystems, 10(1): n/a-n/a.
Chiang, K.K., 2002. Geochemistry of the Cenozoic igneous rocks of Borneo and tectonic implications. PhD thesis, Royal Holloway University of London, 364 pp.
Chiu, H.-Y., Chung, S.-L., Wu, F.-Y., Liu, D., Liang, Y.-H., Lin, I.J., Iizuka, Y., Xie, L.-W., Wang, Y., Chu, M.-F., 2009. Zircon U–Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 477(1): 3-19.
Chiu, H.-Y., Chung, S.-L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M., Iizuka, Y., 2013. Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162-163(Supplement C): 70-87.
Cliff, R.A., 1985. Isotopic dating in metamorphic belts. Journal of the Geological Society, 142(1): 97-110.
Coryell, C.D., Chase, J.W., Winchester, J.W., 1963. A procedure for geochemical interpretation of terrestrial rare-earth abundance patterns. Journal of Geophysical Research, 68(2): 559-566.
Defant, M.J., Jackson, T.E., Drummond, M.S., Deboer, J.Z., Bellon, H., Feigenson, M.D., Maury, R.C., Stewart, R.H., 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. Geological Society, London, 149: 569-579.
Deruelle, B., 1982. Petrology of the Plio-Quaternary volcanism of the south-central and Meridional Andes. Volcanology and Geothermal Research, 14: 77-124.
Eggins, S., D. Woodhead, J., P. J. Kinsley, L., Mortimer, G., Sylvester, P., T. McCulloch, M., M. Hergt, J., Handler, M., 1997. A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation, 134, 311-326 pp.
Gill, J., Whelan, P., 1989. Early Rifting of an Oceanic Island Arc (Fiji) Produced Shoshonitic to Tholeiitic Basalt. Geophysical Journal International 94(B4): 4561-4578.
Govindaraju, K., 1994. 1994 compilation of working values and sample description for 383 geostandards, 18, 1-158 pp.
Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O’Reilly, S.Y., Shee, S.R., 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147.
Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O'Reilly, S.Y., Xu, X., Zhou, X., 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3): 237-269.
Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20: 353-431.
Hall, R., 2009. Indonesia, geology In: (R. Gillespie and D. Clague, eds.). Encyclopedia of Islands. University of California Press, Berkeley, CA.: 454-460.
Hall, R., 2013. Contraction and extension in northern Borneo driven by subduction rollback. Journal of Asian Earth Sciences, 76: 399-411.
Hall, R., Spakman, W., 2015. Mantle structure and tectonic history of SE Asia. Tectonophysics, 658: 14-45.
Harker, A., 1909. The Natural History of Igneous Rocks. Methuen, London.
Hibbard, J.P., Karig, D.E., 1990. Structural and magmatic responses to spreading ridges subduction: an example from southwest Japan. Tectonics, 9(2): 207-230.
Hiess, J., Condon, D.J., McLean, N., Noble, S.R., 2012. 238U/235U Systematics in Terrestrial Uranium-Bearing Minerals. Science, 335(6076): 1610-1614.
Hofmann, A.W., Jochum, K.P., Seufert, M., White, W.M., 1986. Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters, 79(1): 33-45.
Hutchison, C.S., 1988. Stratigraphic-Tectonic Model for Eastern Borneo Geological Society of Malaysia, Bulletin 22: 135-151.
Hutchison, C.S., 1992. The Southeast Sulu Sea, a Neogene marginal basin with outcropping extensions in Sabah. Geological Society of Malaysia, 32: 89-108.
Hutchison, C.S., 2010a. Geology of north-west Borneo: Sarawak, Brunei and Sabah.
Hutchison, C.S., 2010b. The North-West Borneo Trough. Marine Geology, 271: 32-43.
Jacobsen, S.B., Wasserburg, G.J., 1980. Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50: 139-155.
Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., Essling, A.M., 1971. Precision Measurement of Half-Lives and Specific Activities of 235U and 238U. Physical Review C, 4(5): 1889-1906.
Jonathan Patchett, P., Kouvo, O., Hedge, C.E., Tatsumoto, M., 1982. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes. Contributions to Mineralogy and Petrology, 78(3): 279-297.
Kepezhinskas, P., Defant, M.J., Drummond, M.S., 1996. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochimica et Cosmochimica Acta, 60(7): 1217-1229.
Kepezhinskas, P.K., Drummond, M.S., Hochstaedter, A.G., Defant, M.J., 1991. An introduction to the neogene volcanism and tectonic setting of the northern segment of the Kamchatka arc. EOS, 72: 248.
Kinny, P.D., Maas, R., 2003. Lu–Hf and Sm–Nd isotope systems in zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327-341.
Kirk, H.J.C., 1962. The Geology and Mineral Resources of the Semporna Peninsula, North Borneo, British Borneo Geological Survey Memoir
Kirk, H.J.C., 1968. The Igneous Rocks of Sarawak and Sabah, Geological Survey, Borneo Region, Malaysia U.S. Government Printing Office.
Knudsen, T.-L., Griffin, W., Hartz, E., Andresen, A., Jackson, S., 2001. In-situ hafnium and lead isotope analyses of detrital zircons from the Devonian sedimentary basin of NE Greenland: a record of repeated crustal reworking. Contributions to Mineralogy and Petrology, 141(1): 83-94.
Kuno, H., 1968. Origin of andesite and its bearing on the Island arc structure. Bulletin Volcanologique, 32(1): 141-176.
Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., JLameyre, J., Le Bas, M., Sabine, P., Schmid, R., Sorensen, H., Streckeisen, A., 1989. A classification of igneous rocks and glossary of terms : recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell, Oxford.
Lechler, P.J., Desilets, M.O., 1987. A review of the use of loss on ignition as a measurement of total volatiles in whole-rock analysis. Chemical Geology, 63(3): 341-344.
Lee, H.-Y., Chung, S.-L., Ji, J., Qian, Q., Gallet, S., Lo, C.-H., Lee, T.-Y., Zhang, Q., 2012. Geochemical and Sr–Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet. Journal of Asian Earth Sciences, 53: 96-114.
Leemanm, W.P., Smith, D.R., Hildreth, W., Palacz, Z., Rogers, N., 1990. Compositional Diversity of Late Cenozoic Basaltsin a Transect Acrossthe SouthernWashingtonCascades: Implicationsfor Subduction Zone Magmatism. Geophysical Journal International 95(B12): 19.561-19.582.
Lim, P.S., 1981. Wullersdorf Area, Sabah, Malaysia. Geological Survey of Malaysia, Report 15, 106 pp.
Lim, P.S., 1988. Geology and geothermal potential of the tawau area, Sabah. Geological Survey of Malaysia, annual report for 1987: 402-413.
Lim, P.S., Heng, T.E., 1985. Geological map of Sabah 1:500,000, Geological Survey of Malaysia.
Lin, I.J., Chung, S.-L., Chu, C.-H., Lee, H.-Y., Gallet, S., Wu, G., Ji, J., Zhang, Y., 2012. Geochemical and Sr–Nd isotopic characteristics of Cretaceous to Paleocene granitoids and volcanic rocks, SE Tibet: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 53(Supplement C): 131-150.
Liu, C.-Z., Chung, S.-L., Wu, F.-Y., Zhang, C., Xu, Y., Wang, J.-G., Chen, Y., Guo, S., 2016. Tethyan suturing in Southeast Asia: Zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites. Geology, 44(4): 311-314.
Loubet, M., Shimizu, N., Allègre, C.J., 1975. Rare earth elements in alpine peridotites. Contributions to Mineralogy and Petrology, 53(1): 1-12.
Ludwig, K.R., 2012. ISOPLOT/Ex, Version 4.15. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special, Publication, No.4.
Lugmair, G.W., Marti, K., 1978. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39: 349-357.
Luhr, J.F., Carmichael, l.S.E., 1985. Jorullo Volcano, Michoacfin, Mexico (1759-1774): The earliest stages of fractionation in calc-alkaline magmas. Contributions to Mineralogy and Petrology, 90: 142-161.
Macpherson, C.G., Chiang, K.K., Hall, R., Nowell, G.M., Castillo, P.R., Thirlwall, M.F., 2010. Plio-Pleistocene intra-plate magmatism from the southern Sulu Arc, Semporna peninsula, Sabah, Borneo: Implications for high-Nb basalt in subduction zones. Journal of Volcanology and Geothermal Research, 190: 25-38.
Masuda, A., 1962. Regularities in variation of relative abundances of lanthanide elements and an attempt to analyse separation-index patterns of some minerals. The Journal of Earth Sciences, Nagoya University, 10: 173-187.
McDonough, W.F., Sun, S.s., 1995. The composition of the Earth. Chemical Geology, 120(3): 223-253.
Nowell, G.M., Kempton, P.D., Noble, S.R., Fitton, J.G., Saunders, A.D., Mahoney, J.J., Taylor, R.N., 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chemical Geology, 149(3): 211-233.
Omang, S.A.K., Tahir, S.H., 1995. Cretaceous and Neogene lavas of Sabah - origin and tectonic significance. Geological Society of Malaysia, 38: 21-30.
Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries.
Peucat, J.J., Vidal, T., Bernard-Griffiths, J., Condie, K.C., 1989. Sr, Nd and Pb isotopic systematics in the Archean low-to high-grade transition zone of southern India: sym-accretion vs. post-accretion granulites. The Journal of Geology, 97(5): 537-549.
Polat, A., Kerrich, R., 2001. Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: implications for late Archean subduction zone petrogenetic processes. Contributions to Mineralogy and Petrology, 141(1): 36-52.
Puig, A., Herve, M., Suarez, M., Saunders, A.D., 1984. Calc-alkaline and alkaline Miocene and calc-alkaline recent volcanism in the southernmost Patagonian Cordillera, Chile. Volcanology and Geothermal Research, 20: 149-163.
Rangin, C., Bellon, H., Benard, F., Letouzey, J., Muller, C., Sanudin, T., 1990. Neogene arc-continent collision in Sabah, Northern Borneo (Malaysia). Tectonophysics, 183: 305-319.
Reagan, M.K., Gill, J.B., 1989. Coexisting calcalkaline and high-niobium basalts from Turrialba volcano, Costa Rica: implications for residual titanates in arc magma sources. Geophysical Journal International 94: 4619-4633.
Reinhard, M., Wenk, E., 1951. Geology of the Colony of North Borneo. His Majesty's Stationery Office, London, Department of the British Territories in Borneo, Bulletin.
Rogers, G., Saunders, A.D., Terrell, D.J., Verma, S.P., Marriner, G.F., 1985. Geochemistry of Holocene volcanic rocks associated with redge subduction in Baja California, Mexico. Nature Geoscience, 315(30): 389-392.
Rollinson, H.R., 1998. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman.
Söderlund, U., Patchett, P.J., Vervoort, J.D., Isachsen, C.E., 2004. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3): 311-324.
Sajona, F.G., Bellon, H., Maury, R., Pubellier, M., Cotten, J., Rangin, C., 1994. Magmatic response to abrupt changes in geodynamic settings: Pliocene—Quaternary calc-alkaline and Nb-enriched lavas from Mindanao (Philippines). Tectonophysics, 237(1): 47-72.
Sajona, F.G., Maury, R.C., Bellon, H., Cotten, J., Defant, M., 1996. High Field Strength Element Enrichment of Pliocene—Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37(3): 693-726.
Salters, V.J.M., Stracke, A., 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5: 1-27.
Sengör, A.M.C., Natal'in, B.A., 1996. Turkic-type orogeny and its role in the making of the continental crust. Annual Review of Earth and Planetary Sciences, 24(1): 263-337.
Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249: 1-35.
Sorensen, S.S., Grossman, J.N., 1989. Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern California. Geochimica et Cosmochimica Acta, 53(12): 3155-3177.
Spadea, P., D’Antonio, M., Thirlwall, M.F., 1996. Source characteristics of the basement rocks from the Sulu and Celebes Basins (Western Pacific): chemical and isotopic evidence. Contributions to Mineralogy and Petrology, 123(2): 159-176.
Stern, R.J., 2002. Subduction Zones. Reviews of Geophysics, 40(4): 3-1-3-38.
Sun, S.-s., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, 42: 313-345.
Swauger, D.A., Bergman, S.C., Graves, J.E., Hutchison, C.S., Surat, T., Morillo, A.P., Benavides, J.J., Pagado, E.S., 1995. Tertiary Stratigraphic, Tectonic, and Thermal History of Sabah, Malaysia: Results of a 1994, Ten Day Reconnaissance Field Study and Laboratory Analyses. ARCO Exploration & Production Technology, TSR 95-0036 (unpublished), ARCO International Oil and Gas Company.
Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K., Yanagi, T., Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M., Dragusanu, C., 2000. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology, 168(3): 279-281.
Thiéblemont, D., Tegyey, M., 1994. Une discrimination géochimique des Roches différenciées témoin de la diversité d’origine et de situation Tectonique des magmas calco-alcalins. Comptes Rendus de l’Académie Des Sciences, 319.
Treuil, M., Jaffrezic, H., Deschamps, N., Derre, C., Guichard, F., Joron, J.L., Pelletier, B., Novotny, S., Courtois, C., 1973. Analyse des lanthanides, de Hf, Sc, Cr, Ni, Co, Cu, Zn dans les minéraux et les roches par activation neutronique. Int. Ann. Conf. on Activation Analysis, Paris 1972. Radioanal. Chem., special issue(18): 55-68.
Wallace, P., Carmichael, I.S.E., 1989. Minette lavas and associated leucitites from the Western Front of the Mexican Volcanic Belt: petrology, chemistry, and origin. Contributions to Mineralogy and Petrology, 103: 470-492.
Wetherill, G.W., 1956. Discordant uranium-lead ages, I. Eos, Transactions American Geophysical Union, 37(3): 320-326.
Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Quadt, A.V., Roddick, J.C., Spiegel, W., 1995. Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses. Geostandards Newsletter, 19(1): 1-23.
Wood, D.A., 1980. The application of a ThHfTa diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30.
Wood, D.A., Joron, J.-L., Treuil, M., 1979. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters, 45(2): 326-336.
Workman, R.K., Hart, S.R., 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1): 53-72.
Wu, F.-Y., Yang, Y.-H., Xie, L.-W., Yang, J.-H., Xu, P., 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chemical Geology, 234(1): 105-126.
Zainudin, M.S.F.b.M., Zubir, N.b., Yan, A.S.W., Amnan, I.b., Among, H.L., Javino, F., 2015. Geological Map of Sabah (Fourth edition). The director general of Minerals and Geoscience Malaysia.
Zhai, Q.-g., Jahn, B.-m., Su, L., Wang, J., Mo, X.-X., Lee, H.-y., Wang, K.-l., Tang, S., 2013. Triassic arc magmatism in the Qiangtang area, northern Tibet: Zircon U–Pb ages, geochemical and Sr–Nd–Hf isotopic characteristics, and tectonic implications. Journal of Asian Earth Sciences, 63(Supplement C): 162-178.
Zhang, H., Ni, H., Sato, H., Yu, X., Shan, Q., Zhang, B., Ito, J.i., Nagao, T., 2005. Late Paleozoic adakites and Nb-enriched basalts from northern Xinjiang, northwest China: Evidence for the southward subduction of the Paleo-Asian Oceanic Plate. The Island Arc, 14: 55-68.
宋彪, 张玉海, 万渝生, 简平, 2002. 错石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48: 26-30.
李寄嵎, 蔡榮浩, 何孝桓, 楊燦堯, 鍾孫霖, 陳正宏, 1997. 應用X光螢光分析儀從事岩石樣本之訂量分析 (I) 主要元素. 中國地質學會八十六年年會暨學術研討會論文摘要: 418-420.
林宜臻, 2007. 藏東南白堊紀至古新世花崗岩類與火山岩之地球化學及岩石成因, 國立臺灣大學, 1-81 pp.
高钰涯, 李献华, 李秋立, 锺孙霖, 2010. 二次离子质谱第四纪锆石年代学:台湾金瓜石英安岩定年. 地学前缘, 17(2): 146-155.
郭慈穎, 2007. 南中國海沉積物鍶、釹、鉿、鉛同位素對北呂宋島弧地函交代換質作用之制約, 國立成功大學, 95 pp.
杨亚楠, 李秋立, 刘宇, 唐国强, 凌潇潇, 李献华, 2014. 离子探针锆石U-Pb定年. 地学前缘 21(2): 81-92.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69884-
dc.description.abstract東南亞地區的婆羅洲位於三大板塊,歐亞板塊(Eurasian Plate)、菲律賓海板塊(Philippine Plate)以及澳洲板塊(Australian Plate)聚合邊緣的交匯處,被一系列的邊緣海盆所包圍著。沙巴位於婆羅洲東北部,其基盤岩層為中生代的蛇綠岩套,並覆蓋著新生代沉積岩體,中新世以後的火山岩主要出露在沙巴東南部,晚中新世(7~8 Ma)的花崗岩侵入岩體出露在京那巴魯山(Mt. Kinabalu)。本研究分析沙巴火山岩鋯石鈾鉛定年以及鉿同位素結合全岩地球化學數據,能更完整的了解此區域火山岩的成岩作用以及其構造解釋。
鋯石鈾鉛定年結果可將沙巴東南部區域的火山岩分為兩期,分別為中期中新世(12~11 Ma)到晚期中新世(9~7 Ma)及更新世(小於0.23 Ma),更新世火山岩為整個婆羅洲最年輕的火山岩體。在全岩地球化學結果可將此區域火山岩分為兩類,中新世兩期的火山岩主要為鈣鹼性序列,從玄武質到流紋質都有包含(SiO2=45~71 wt.%),微量元素呈現出高場強元素(high field strength elements,HFSEs)虧損,大離子親石元素(large ion lithosphile elements, LILEs)富集,推斷為隱沒相關的大陸島弧地球化學特徵。更新世階段則都為洋島型玄武質安山岩,岩性都較為基性(SiO2 = 54 wt.%),其高場強元素虧損的現象並不明顯,指示洋島型玄武質安山岩呈現了板內的地球化學特徵。在同位素方面,中新世的鈣鹼性火山岩全岩ƐNd(t)值爲+1.0至+5.0和鋯石ƐHf(t)值爲+17至+3,洋島型玄武質安山岩全岩ƐNd(t)值爲-3.2至+0.8和鋯石ƐHf(t)爲+5至-2,顯示中新世鈣鹼性火山岩同位素值接近虧損地函端元,在分析結果中可將洋島型玄武質安山岩分為兩類型,他們可能來自於同個岩漿源區,但在岩漿上升時經歷的過程不同,造成兩類型岩石在微量元素及同位素上有些許差異。
從實驗結果可得知,沙巴東南部區域的火山岩在年代及地球化學特徵上可以區分為兩期,第一期岩漿活動從中新世中期開始,一直持續到中新世晚期停止,這時期是隱沒作用相關的大陸島弧鈣鹼性岩漿活動,且並非位在鄰近位置的蘇祿海洋島弧隱沒系統所造成的岩漿活動。同位素結果可見此期受到地殼物質混染的程度隨著年代遞減而增加;第二期更新世岩漿活動轉變為洋島型,此期岩石呈現了板內的地球化學特徵,岩石源區為融熔程度較低的上部地函的,且可能在岩漿上升過程受到地殼物質混染。
zh_TW
dc.description.abstractBorneo is situated in South East Asia characterized by the occurrence of a suite of marginal basins that are located at the junction of three converging major plates (Eurasia, Philippine Sea and Australia). Sabah that exists in northeastern Borneo has a basement of the Mesozoic ophiolitic complex, overlain by Cenozoic sedimentary formations associated with post-Miocene volcanic rocks in Southeast Sabah and late Miocene (~7-8 Ma) granitic intrusions in Mt Kinabalu. This study reports new zircon U-Pb ages and Hf isotopes together with whole-rock geochemical data of the Sabah volcanic rocks, which remain poorly studied, to better understand their petrogenesis and tectonic significance.
Our age data allow us to divide the volcanic rocks into three stages, a predominant Middle Miocene (12~11 Ma) stage, Late Miocene (9~7 Ma) stage and a subordinate Pleistocene (<0.3 Ma) stage. The Pleistocene volcanic rocks are the youngest volcanic products identified so far in entire Borneo. Both of the Middle Miocene stage and the Late Miocene consist calc-alkaline rocks, which vary from basaltic to rhyolitic composition and show subduction-related geochemical features such as depletion in high field strength elements (HFSEs, e.g., Ta, Nb and Ti) and enrichment in large ion lithophile elements (LILEs). The Pleistocene stage consists exclusively of OIB-type basaltic rocks that show no or insignificant HFSE depletion. Zircons from an evolved sample (SiO2=54 wt.%). The Miocene calc-alkaline rocks display generally high despite various whole rock ƐNd(t) values from +1.0 to +5.0 and magmatic zircons ƐHf(t) values from +17 to +3. The Pleistocene OIB-type basaltic andesites display significantly lower ƐNd(t) values from -3.2 to +0.8 and ƐHf(t) values from +5 to -2. The Pleistocene OIB-type basaltic andesites can be divided two type, these two types may come from the same magma chamber and have different processes during magma ascent.
As the results, the Miocene calc-alkalic volcanism in Southeast Sabah is interpreted as the westernmost part of the Sulu arc system that initiated in the Middle Miocene and ended in the Late Miocene. The Pleistocene OIB-type basaltic andesites, which show intraplate geochemical characteristics, may have resulted from small degree melting of the convecting upper mantle.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:32:21Z (GMT). No. of bitstreams: 1
ntu-107-R04224107-1.pdf: 13527555 bytes, checksum: a8f2d75ffdff5c375cc92c67984763f7 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
摘要 III
Abstract IV
目錄 V
圖錄 VIII
表錄 XII
第1章 緒論 1
1.1 前言 1
1.2 區域地質背景 2
1.2.1 東南亞地區地體構造 2
1.2.2 島弧型岩漿活動(隱沒作用相關) 7
1.2.3 洋島型岩漿活動(非隱沒作用相關) 11
1.2.3.1 沙巴地區與隱沒作用無關之岩漿活動特性 11
1.2.3.2 高鈮玄武岩 13
1.3 研究動機與目的 17
1.3.1 研究動機 17
1.3.2 研究目的 17
第2章 研究方法 18
2.1 野外調查與採樣 18
2.2 岩石光學薄片觀察 22
2.3 全岩主量元素分析 22
2.3.1 岩石樣本分析前處理 22
2.3.2 全岩主量元素分析 22
2.3.3 揮發性物質含量分析 23
2.4 全岩微量元素分析 23
2.4.1 岩石樣本分析前處理 24
2.4.2 USGS標準樣品分析結果 25
2.5 全岩釹同位素分析 30
2.5.1 岩石樣本分析前處理 30
2.5.2 釹同位素化學分離流程 31
2.5.3 質譜儀分析 35
2.6 鋯石鈾鉛定年分析 36
2.6.1 岩石樣本分析前處理 37
2.6.2 儀器配置與分析 39
2.6.2.1 雷射剝蝕感應耦合電漿四極桿質譜儀(LA-ICP-MS) 39
2.6.2.2 二次離子探針質譜儀(SIMS) 40
2.7 鋯石鉿同位素分析 42
第3章 分析結果 44
3.1 野外觀察 44
3.1.1 中新世火山岩 44
3.1.2 更新世洋島型(OIB-type)玄武質安山岩 48
3.2 岩石薄片觀察 49
3.2.1 中新世火山岩 49
3.2.2 更新世洋島型(OIB-type)玄武質安山岩 53
3.3 鋯石鈾鉛定年 54
3.4 全岩主量元素 64
3.5 全岩微量元素 73
3.6 放射性同位素 80
3.6.1 全岩釹同位素 80
3.6.2 鋯石鉿同位素 83
第4章 岩石成因與綜合討論 88
4.1 中新世島弧型鈣鹼性岩漿活動 88
4.2 更新世洋島型岩漿活動 96
4.3 沙巴地區中新世以來岩漿活動演化 100
第5章 結論 104
參考文獻 105
附錄表A 沙巴東南部地區中新世以來火山岩鋯石鈾鉛定年結果(LA-ICP-MS) 114
附錄表B 沙巴東南部地區15SB41火山岩的鋯石鈾鉛定年結果(SIMS) 120
附錄表C 沙巴東南部地區中新世以來火山岩鋯石鉿同位素測定結果 121
dc.language.isozh-TW
dc.title婆羅洲沙巴東南部中新世以來火山岩之年代學與地球化學特徵zh_TW
dc.titleAge and geochemical characteristics of Neogene volcanic rocks from SE Sabah, Borneoen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王國龍,李皓揚,林德嫻,賴昱銘
dc.subject.keyword沙巴,火山岩,鋯石鈾-鉛定年,地球化學,zh_TW
dc.subject.keywordSabah,volcanic rocks,Zircon U-Pb ages,geochemistry,en
dc.relation.page123
dc.identifier.doi10.6342/NTU201800505
dc.rights.note有償授權
dc.date.accepted2018-02-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
13.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved