Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69883
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭柏齡(Po-Ling Kuo)
dc.contributor.authorPei-Hsun Shenen
dc.contributor.author沈貝勲zh_TW
dc.date.accessioned2021-06-17T03:32:19Z-
dc.date.available2025-08-20
dc.date.copyright2020-09-03
dc.date.issued2020
dc.date.submitted2020-08-20
dc.identifier.citation1. Ozbolat, I. T. (2016). 3D bioprinting: fundamentals, principles and applications: Academic Press.
2. Singer, A. J., Clark, R. A. (1999). Cutaneous wound healing. New England Journal of Medicine, 341(10), 738-746.
3. Lenzen, S. (2008). The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetologia, 51(2), 216-226.
4. Ullah, I., Subbarao, R. B., Rho, G. J. (2015). Human mesenchymal stem cells-current trends and future prospective. Bioscience Reports, 35(2).
5. Yue, K., Trujillo-de Santiago, G., Alvarez, M. M., Tamayol, A., Annabi, N., Khademhosseini, A. (2015). Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 73, 254-271.
6. 郭瑞崗 (2019)。光聚合 3D 列印幹細胞傷口貼布。臺灣大學生醫電子與資訊學研究所學位論文,1-68。
7. Wang, Z., Abdulla, R., Parker, B., Samanipour, R., Ghosh, S., Kim, K. (2015). A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication, 7(4), 045009.
8. Su, L.-J., Wu, M.-S., Hui, Y. Y., Chang, B.-M., Pan, L., Hsu, P.-C., . . . Ling, T.-Y. (2017). Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs. Scientific Reports, 7, 45607.
9. Lenzen, S., Tiedge, M., Jörns, A., Munday, R. (1996). Alloxan derivatives as a tool for the elucidation of the mechanism of the diabetogenic action of alloxan. In lessons from animal diabetes VI (pp. 113-122): Springer.
10. Hoftiezer, V., Carpenter, A.-M. (1973). Comparison of streptozotocin and alloxan-induced diabetes in the rat, including volumetric quantitation of the pancreatic islets. Diabetologia, 9(3), 178-184.
11. Gong, C., Wu, Q., Wang, Y., Zhang, D., Luo, F., Zhao, X., . . . Qian, Z. (2013). A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials, 34(27), 6377-6387.
12. Dong, Y., Hassan, W. U., Kennedy, R., Greiser, U., Pandit, A., Garcia, Y., Wang, W. (2014). Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer. Acta Biomaterialia, 10(5), 2076-2085.
13. Dhivya, S., Padma, V. V., Santhini, E. (2015). Wound dressings–a review. BioMedicine, 5(4).
14. Koehler, J., Brandl, F. P., Goepferich, A. M. (2018). Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. European Polymer Journal, 100, 1-11.
15. Annabi, N., Tamayol, A., Uquillas, J. A., Akbari, M., Bertassoni, L. E., Cha, C., . . . Khademhosseini, A. (2014). 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Advanced Materials, 26(1), 85-124.
16. Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18-23.
17. Liu, Y., Chan-Park, M. B. (2010). A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials, 31(6), 1158-1170.
18. Van den Steen, P. E., Dubois, B., Nelissen, I., Rudd, P. M., Dwek, R. A., Opdenakker, G. (2002). Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Critical Reviews in Biochemistry and Molecular Biology, 37(6), 375-536.
19. Sun, M., Sun, X., Wang, Z., Guo, S., Yu, G., Yang, H. (2018). Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue. Polymers, 10(11), 1290.
20. Hu, J., Hou, Y., Park, H., Choi, B., Hou, S., Chung, A., Lee, M. (2012). Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomaterialia, 8(5), 1730-1738.
21. Pereira, R. F., Bártolo, P. J. (2015). 3D photo-fabrication for tissue engineering and drug delivery. Engineering, 1(1), 090-112.
22. Nachlas, A. L., Li, S., Jha, R., Singh, M., Xu, C., Davis, M. E. (2018). Human iPSC-derived mesenchymal stem cells matured into valve interstitial-like cells using PEGDA hydrogels. Acta Biomaterialia, 71, 235.
23. Marchioli, G., Zellner, L., Oliveira, C., Engelse, M., de Koning, E., Mano, J., . . . Moroni, L. (2017). Layered PEGDA hydrogel for islet of Langerhans encapsulation and improvement of vascularization. Journal of Materials Science: Materials in Medicine, 28(12), 195.
24. Liu, S., Yeo, D. C., Wiraja, C., Tey, H. L., Mrksich, M., Xu, C. (2017). Peptide delivery with poly (ethylene glycol) diacrylate microneedles through swelling effect. Bioengineering Translational Medicine, 2(3), 258-267.
25. Wenz, A., Borchers, K., Tovar, G. E., Kluger, P. J. (2017). Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting. Biofabrication, 9(4), 044103.
26. Calderon, G., Thai, P., Hsu, C., Grigoryan, B., Gibson, S., Dickinson, M., Miller, J. (2017). Tubulogenesis of co-cultured human iPS-derived endothelial cells and human mesenchymal stem cells in fibrin and gelatin methacrylate gels. Biomaterials Science, 5(8), 1652-1660.
27. Billiet, T., Gevaert, E., De Schryver, T., Cornelissen, M., Dubruel, P. (2014). The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 35(1), 49-62.
28. Choi, J. R., Yong, K. W., Choi, J. Y., Cowie, A. C. (2019). Recent advances in photo-crosslinkable hydrogels for biomedical applications. BioTechniques, 66(1), 40-53.
29. Drira, Z., Yadavalli, V. K. (2013). Nanomechanical measurements of polyethylene glycol hydrogels using atomic force microscopy. Journal of the Mechanical Behavior of Biomedical Materials, 18, 20-28.
30. Xu, K., Fu, Y., Chung, W., Zheng, X., Cui, Y., Hsu, I. C., Kao, W. J. (2012). Thiol–ene-based biological/synthetic hybrid biomatrix for 3-D living cell culture. Acta Biomaterialia, 8(7), 2504-2516.
31. Peng, R., Qin, G., Li, X., Lv, H., Qian, Z., Yu, L. (2014). The PEG-PCL-PEG hydrogel as an implanted ophthalmic delivery system after glaucoma filtration surgery; a pilot study. Medical Hypothesis, Discovery and Innovation in Ophthalmology, 3(1), 3.
32. Clark, E. A., Alexander, M. R., Irvine, D. J., Roberts, C. J., Wallace, M. J., Sharpe, S., . . . Wildman, R. D. (2017). 3D printing of tablets using inkjet with UV photoinitiation. International Journal of Pharmaceutics, 529(1-2), 523-530.
33. Nguyen, Q. T., Hwang, Y., Chen, A. C., Varghese, S., Sah, R. L. (2012). Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels. Biomaterials, 33(28), 6682-6690.
34. Lei, Y., Gojgini, S., Lam, J., Segura, T. (2011). The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials, 32(1), 39-47.
35. Burdick, J. A., Prestwich, G. D. (2011). Hyaluronic acid hydrogels for biomedical applications. Advanced Materials, 23(12), H41-H56.
36. Bian, L., Guvendiren, M., Mauck, R. L., Burdick, J. A. (2013). Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. Proceedings of the National Academy of Sciences of the United States of America, 110(25), 10117-10122.
37. Zhou, L., Chen, E., Jin, W., Wang, Y., Zhou, J., Wei, S. (2016). Monomer zinc phthalocyanine/upconversion nanoparticle coated with hyaluronic acid crosslinked gel as NIR light-activated drug for in vitro photodynamic therapy. Dalton Transactions, 45(38), 15170-15179.
38. Yu, J., Zhang, Y., Sun, W., Wang, C., Ranson, D., Ye, Y., . . . Gu, Z. (2016). Internalized compartments encapsulated nanogels for targeted drug delivery. Nanoscale, 8(17), 9178-9184.
39. Van Den Bulcke, A. I., Bogdanov, B., De Rooze, N., Schacht, E. H., Cornelissen, M., Berghmans, H. (2000). Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 1(1), 31-38.
40. Lee, B. H., Shirahama, H., Cho, N.-J., Tan, L. P. (2015). Efficient and controllable synthesis of highly substituted gelatin methacrylamide for mechanically stiff hydrogels. RSC Advances, 5(128), 106094-106097.
41. Assmann, A., Vegh, A., Ghasemi-Rad, M., Bagherifard, S., Cheng, G., Sani, E. S., . . . Gangadharan, S. (2017). A highly adhesive and naturally derived sealant. Biomaterials, 140, 115-127.
42. Cao, Y., Vacanti, J. P., Paige, K. T., Upton, J., Vacanti, C. A. (1997). Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plastic and Reconstructive Surgery, 100(2), 297-302.
43. Van den Bossche, J., Baardman, J., Otto, N. A., van der Velden, S., Neele, A. E., van den Berg, S. M., . . . Ahmed, M. (2016). Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Reports, 17(3), 684-696.
44. Mignatti, P., Rifkin, D. B., Welgus, H. G., Parks, W. C. (1988). Proteinases and tissue remodeling. In The molecular and cellular biology of wound repair (pp. 427-474): Springer.
45. 陳淵銓、李慧芳 (2018)。細胞及基因治療產品的發展。取自https://portal.stpi.narl.org.tw/index/article/10367。
46. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., . . . Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317.
47. Bang, O. Y., Lee, J. S., Lee, P. H., Lee, G. (2005). Autologous mesenchymal stem cell transplantation in stroke patients. Annals of Neurology, 57(6), 874-882.
48. Mazzini, L., Mareschi, K., Ferrero, I., Miglioretti, M., Stecco, A., Servo, S., . . . Fagioli, F. (2012). Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy, 14(1), 56-60.
49. Le Blanc, K., Tammik, L., Sundberg, B., Haynesworth, S., Ringden, O. (2003). Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scandinavian Journal of Immunology, 57(1), 11-20.
50. Wang, L., Wang, L., Cong, X., Liu, G., Zhou, J., Bai, B., . . . Ji, H. (2013). Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: safety and efficacy. Stem Cells and Development, 22(24), 3192-3202.
51. Prockop, D. J., Oh, J. Y. (2012). Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Molecular Therapy, 20(1), 14-20.
52. Tao, H., Han, Z., Han, Z. C., Li, Z. (2016). Proangiogenic features of mesenchymal stem cells and their therapeutic applications. Stem Cells International, 2016.
53. 林泰元、陳耀昌、黃彥華、吳孟學、區慶建 (2013)。Taiwan Patent No. M462274。臺北市:經濟部智慧財產局。
54. 林泰元、陳耀昌、侯勝茂、嚴孟祿、黃彥華、吳孟學 (2013)。Taiwan Patent No. I419971。臺北市:經濟部智慧財產局。
55. 張紘豪 (2019)。以 3D 列印方式利用投影機製造胎盤蛻膜間質幹細胞之細胞片。臺灣大學生醫電子與資訊學研究所學位論文,1-40。
56. Keating, A. (2012). Mesenchymal stromal cells: new directions. Cell Stem Cell, 10(6), 709-716.
57. Wang, J., Guo, X., Lui, M., Chu, P.-J., Yoo, J., Chang, M., Yen, Y. (2014). Identification of a distinct small cell population from human bone marrow reveals its multipotency in vivo and in vitro. PloS One, 9(1), e85112.
58. Furman, B. L. (2015). Streptozotocin‐induced diabetic models in mice and rats. Current Protocols in Pharmacology, 70(1), 5.47. 41-45.47. 20.
59. Baeten, D., Demetter, P., Cuvelier, C. A., Kruithof, E., Van Damme, N., De Vos, M., . . . De Keyser, F. (2002). Macrophages expressing the scavenger receptor CD163: a link between immune alterations of the gut and synovial inflammation in spondyloarthropathy. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 196(3), 343-350.
60. Polfliet, M. M., Fabriek, B. O., Daniëls, W. P., Dijkstra, C. D., van den Berg, T. K. (2006). The rat macrophage scavenger receptor CD163: expression, regulation and role in inflammatory mediator production. Immunobiology, 211(6-8), 419-425.
61. RIEDEL, F., PHILIPP, K., SADICK, H., GOESSLER, U., HÖRMANN, K., VERSE, T. (2005). Immunohistochemical analysis of radiation-induced non-healing dermal wounds of the head and neck. In Vivo, 19(2), 343-350.
62. Huang, J., Chen, L., Gu, Z., Wu, J. (2019). Red Jujube-Incorporated gelatin methacryloyl (GelMA) hydrogels with Anti-Oxidation and immunoregulation activity for wound healing. Journal of Biomedical Nanotechnology, 15, 1357-1370.
63. JI, K. H., Xiong, J., FAN, L. X., HU, K. M., LIU, H. Q. (2009). Rat marrow‐derived multipotent adult progenitor cells differentiate into skin epidermal cells in vivo. The Journal of Dermatology, 36(7), 403-409.
64. 許遠揚、張宜仁、張煥正 (2009)。螢光奈米鑽石之單分子研究。科儀新知(171),9-13。
65. Winter, G. D. (1962). Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature, 193(4812), 293-294.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69883-
dc.description.abstract  若治療如糖尿病患者所擁有的慢性難癒合傷口,需要耗費極大的醫療資源,故必需針對其治療方式進行改善。為此我們製作了含有幹細胞的水凝膠敷料,並評估其對STZ誘導的糖尿病大鼠傷口癒合試驗的效用。在本實驗中,我們將可光交聯性的明膠甲基丙烯(GelMA)作為敷料原料,其具有可變化的幾何形狀及明膠濃度,透過3D列印技術印製,可將幹細胞培養於3D及2D的環境。實驗中所使用的幹細胞為自婦女胎盤中分離的胎盤蛻膜間質幹細胞(pcMSC)及自成人血液中純化的血液微小幹細胞(SB)。於3D環境中培養幹細胞的水凝膠敷料包括薄片型、魚骨頭型及無特定形狀、可塗佈式的GelMA。pcMSC於敷料印製完成後存活率高達80%以上,其中薄片型及魚骨頭型的GelMA敷料在培養4天後仍能維持80%左右的存活率;在2D環境培養下,pcMSC具良好的細胞型態,且貼附的細胞約占培養表面的30%。此外,我們使用大鼠及豬隻模型來評估這些幹細胞敷料對傷口癒合是否具可行性。最初我們以切除大鼠背部全層皮膚直徑8mm的圓形傷口來模擬難癒合傷口,但由於模擬失敗,此方法很快地被進行修改。在修改後的模型中,我們模擬難癒合傷口的方式改為切除大鼠背部全層皮膚2×3cm方形傷口,並縫合傷口邊緣以防因組織攣縮所造成的傷口早期閉合。我們的研究結果顯示此方式確實使傷口再上皮化速度遲緩,並且與對照組相比,在幹細胞治療組中觀察到較佳的再上皮化。此外,我們也發現在豬隻模型中使用pcMSC敷料的治療組,其傷口中的VEGF表達量較對照組高。這些結果表明在目前的實驗設置下,含有pcMSC及SB的GelMA敷料對促進傷口癒合是具可行性的,但效果並不明顯優於對照組。推測可能為有效作用的幹細胞量不足所致,故未來需再進一步改良,提高幹細胞敷料對難癒合傷口的治療效果。zh_TW
dc.description.abstract  There is an unmet need for the improvement of treatment for chornic, hard-to-heal wounds such as that in diabetic patients owing to that it consumes a wealth amount of medical resources. In this regard, we fabricated stem-cell-embedded hydrogel patch and evaluated its effect on wound healing in STZ-induced diabetes rats. In this study, photocrosslinkable gelatin methacryloyl (GelMA) hydrogel with a variety of geometrical forms and gelatin concentration fabricated with 3D printing technology and cultured with stem cells in 3D or 2D conditions was employed. The 3D constructs included a regular film, an injectable, fishbone-like thread, and an amprphous, spreadable form. The stem cells utilized in this study were pcMSC and SB cells, abbreviated for human placenta chorionic decidual-derived mesenchymal stem cell and small blood stem cell, respectively. The cell viability in the 3D constructs was up to 80%. In particular, the viability of the pcMSCs cultured in the regular film and fishbone-like thread constructs over 4 days was still around 80%. The morphology of the pcMSCs cultured on the 2D films was well-spreaded, with that around 30% of the culture surface was occupied by the spreaded cells. The feasibility of these cell-laden patchs for wound healing was evaluated using rat and pig models. Initially, the hard-to-heal wound was simulated by excising a round-shaped, full-thickness skin of 8mm in diameter on the back of rats. But the approach was soon revised owing to the failure in simulation of the hard-to-heal wound. In the revised model, the hard-to-heal wound was simulated by removal of a rectangular-shaped, full-thickness skin of size 2×3cm, followed by suturing at the wound corners to impede early wound closure by contracture of the underlying tissue. Our results show that the wound re-epithelialization was markedly delayed in this approach and better re-epithelializion was seen in the groups treated with stem cell-laden patches when compared with that treated with standard approach. We also found that a higher VEGF expression in the wound treated with the pcMSCs laden patch than that of regular treatment in swine model. Our data indicated that the pcMSC and SB laden GelMA patches were feasible for wound healing but not significantly superior than standard treatment in the current setup. Possible reasons include insufficient amount of effective stem cells. Further studies are required to improve the efficacy of the stem cell-laden dressing in the treatment of hard-to-heal wounds.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:32:19Z (GMT). No. of bitstreams: 1
U0001-1708202022594100.pdf: 11490932 bytes, checksum: 18b6e336e5f70beb22adf8c3f7f9c04f (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝---------------------------------------------------------------I
摘要--------------------------------------------------------------II
ABSTRACT---------------------------------------------------------III
CONTENT------------------------------------------------------------V
LIST OF FIGURES--------------------------------------------------VII
LIST OF TABLES----------------------------------------------------IX
CHAPTER 1 INTRODUCTION---------------------------------------------1
1.1 Diabetic chronic wounds----------------------------------------1
1.2 Moist wound dressings------------------------------------------3
1.3 3D bioprinting-------------------------------------------------6
1.4 Cell therapy in wound healing----------------------------------8
1.5 Mesenchymal stem cells----------------------------------------10
1.6 Purpose-------------------------------------------------------12
CHAPTER 2 MATERIALS AND METHOD------------------------------------13
2.1 GelMA fabrication---------------------------------------------13
2.2 Stem-cell-embedded wound healing patch fabrication------------14
2.2.1 Cell culture------------------------------------------------14
2.2.2 Preparation of GelMA hydrogel-------------------------------15
2.2.2.1 GelMA-Film_1 (pcMSC cultured in 3D structure)-------------16
2.2.2.2 GelMA-Fishbone chain--------------------------------------16
2.2.2.3 Spreadable GelMA------------------------------------------17
2.2.2.4 GelMA-Film_2 (pcMSC cultured on 2D structure)-------------18
2.2.2.5 In-situ GelMA patch---------------------------------------18
2.3 Cell viability test-------------------------------------------19
2.4 Dressing selection on animal model----------------------------20
2.5 Animal model 1: Rats------------------------------------------21
2.5.1 Diabetic rat model------------------------------------------21
2.5.2 Wound-healing model 1---------------------------------------21
2.5.3 Wound-healing model 2---------------------------------------23
2.6 Animal model 2: Pig-------------------------------------------26
2.6.1 Diabetic pig model------------------------------------------26
2.6.2 Wound-healing model-----------------------------------------26
2.7 Histologic examination----------------------------------------28
2.7.1 Immunohistochemistry staining-------------------------------28
2.7.2 Quantitative tracking of pcMSC cells------------------------30
2.8 Data analysis-------------------------------------------------31
CHAPTER 3 RESULTS AND DISCUSSION----------------------------------33
3.1 GelMA fabrication---------------------------------------------33
3.1.1 GelMA stiffness---------------------------------------------33
3.1.2 GelMA degradation-------------------------------------------34
3.2 Stem-cell embedded patch and cell viability-------------------36
3.2.1 GelMA-Film_1 (pcMSC cultured in 3D structure)---------------36
3.2.2 GelMA-Fishbone chain----------------------------------------39
3.2.3 pcMSC cultured in 20% GelMA has good viability--------------42
3.2.4 Spreadable GelMA--------------------------------------------43
3.2.5 GelMA-Film_2 (pcMSC cultured on 2D structure)---------------48
3.2.6 In 2D culture, 20%GelMA is suitable for cell growth---------51
3.3 Dressing selection on animal model----------------------------52
3.4 Animal assay--------------------------------------------------53
3.4.1 Rats model 1------------------------------------------------53
3.4.1.1 Normal rats-----------------------------------------------53
3.4.1.2 Diabetic rats---------------------------------------------56
3.4.1.3 Rats model 1 should be improved---------------------------59
3.4.2 Rats model 2------------------------------------------------61
3.4.2.1 Normal rats-----------------------------------------------61
3.4.2.2 Diabetic rats---------------------------------------------65
3.4.2.3 Quantitative tracking of pcMSC cells----------------------73
3.4.3 Comparison of rats model 1 2--------------------------------75
3.4.4 Pig model---------------------------------------------------76
CHAPTER 4 CONCLUSION----------------------------------------------80
REFERENCE---------------------------------------------------------82
dc.language.isoen
dc.subject豬zh_TW
dc.subject間質幹細胞zh_TW
dc.subjectGelMAzh_TW
dc.subject3D列印zh_TW
dc.subject鏈脲佐菌素zh_TW
dc.subject傷口癒合zh_TW
dc.subject大鼠zh_TW
dc.subjectMesenchymal stem cellsen
dc.subjectwound healingen
dc.subjectGelMAen
dc.subjectrat and pigen
dc.subject3D printingen
dc.subjectStreptozotocinen
dc.title幹細胞結合3D生物列印GelMA材料對STZ誘導糖尿病大鼠之傷口癒合影響
zh_TW
dc.titleEffect of stem-cell-embedded GelMA hydrogel fabricated by 3D bioprinting on wound healing in streptozotocin-induced diabetic ratsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林頌然(Sung-Jan Lin),侯詠德(Yung-Te Hou)
dc.subject.keyword間質幹細胞,GelMA,3D列印,鏈脲佐菌素,傷口癒合,大鼠,豬,zh_TW
dc.subject.keywordMesenchymal stem cells,GelMA,3D printing,Streptozotocin,wound healing,rat and pig,en
dc.relation.page87
dc.identifier.doi10.6342/NTU202003881
dc.rights.note有償授權
dc.date.accepted2020-08-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
U0001-1708202022594100.pdf
  未授權公開取用
11.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved