Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69874
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝旭亮
dc.contributor.authorFang-Wen Lien
dc.contributor.author李芳玟zh_TW
dc.date.accessioned2021-06-17T03:31:54Z-
dc.date.available2020-03-02
dc.date.copyright2018-03-02
dc.date.issued2018
dc.date.submitted2018-02-15
dc.identifier.citationAllen, M. D., Yamasaki, K., Ohme-Takagi, M., Tateno, M., and Suzuki, M. (1998). A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J. 17: 5484-5496.
Ang, L. H., Chattopadhyay, S., Wei, N., Oyama, T., Okada, K., Batschauer, A., and Deng, X. W. (1998). Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell 1: 213–222.
Aukerman, M. J., Hirschfeld, M., Wester, L., Weaver, M., Clack, T., Amasino, R. M., and Sharrock, R. A. (1997). A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell 9: 1317-1326.
Causier, B., Ashworth, M., Guo, W., and Davies, B. (2012). The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol. 158: 423-438.
Chen, D., Xu, G., Tang, W., Jing, Y., Ji, Q., Fei, Z., and Lin, R. (2013). Antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. Plant Cell 25: 1657-1673.
Chen, H. J., Chen, C. L., and Hsieh, H. L. (2015). Far-red light-mediated seedling development in Arabidopsis involves FAR-RED INSENSITIVE 219/JASMONATE RESISTANT 1-dependent and -independent pathways. PLoS One 10: e0132723.
Chen, I. C., Huang, I. C., Liu, M. J., Wang, Z. G., Chung, S. S., and Hsieh, H. L. (2007). Glutathione S-transferase interacting with far-red insensitive 219 is involved in phytochrome A-mediated signaling in Arabidopsis. Plant Physiol. 143: 1189-1202.
Chen, J. H., Jiang, H. W., Hsieh, E. J., Chen, H. Y., Chien, C. T., Hsieh, H. L., and Lin, T. P. (2012). Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol. 158: 340-351.
Clough, S. J., and Bent, A. F. (1998). Floral dip a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant J. 16: 735–743.
de Ollas, C., Arbona, V., and Gomez-Cadenas, A. (2015a). Jasmonic acid interacts with abscisic acid to regulate plant responses to water stress conditions. Plant Signal Behav. 10: e1078953.
de Ollas, C., Arbona, V., and Gomez-Cadenas, A. (2015b). Jasmonoyl isoleucine accumulation is needed for abscisic acid build-up in roots of Arabidopsis under water stress conditions. Plant Cell Environ. 38: 2157-2170.
de Wit, M., Galvao, V. C., and Fankhauser, C. (2016). Light-mediated hormonal regulation of plant growth and development. Annu. Rev. Plant Biol. 67: 513-537.
Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., and Schroeder, J. I. (2014). Plant salt-tolerance mechanisms. Trends Plant Sci. 19: 371-379.
Desikan, R., Last, K., Harrett-Williams, R., Tagliavia, C., Harter, K., Hooley, R., Hancock, J. T., and Neill, S. J. (2006). Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J. 47: 907-916.
Dombrecht, B., Xue, G. P., Sprague, S. J., Kirkegaard, J. A., Ross, J. J., Reid, J. B., Fitt, G. P., Sewelam, N., Schenk, P. M., Manners, J. M., and Kazan, K. (2007). MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19: 2225-2245.
Dong, H., Zhen, Z., Peng, J., Chang, L., Gong, Q., and Wang, N. N. (2011). Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis. J. Exp. Bot. 62: 4875-4887.
Dubois, M., Van Den Broeck, L., Claeys, H., Van Vlierberghe, K., Matsui, M., and Inze, D. (2015). The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 antagonistically regulate mannitol-induced growth inhibition in Arabidopsis. Plant Physiol. 169: 166-179.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29: 185-212.
Golldack, D., Li, C., Mohan, H., and Probst, N. (2014). Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Front Plant Sci. 5: 151.
Gomez-Roldan, V., Fermas, S., Brewer, P. B., Puech-Pages, V., Dun, E. A., Pillot, J. P., Letisse, F., Matusova, R., Danoun, S., Portais, J. C., Bouwmeester, H., Becard, G., Beveridge, C. A., Rameau, C., and Rochange, S. F. (2008). Strigolactone inhibition of shoot branching. Nature 455: 189-194.
Gong, Z., Koiwa, H., Cushman, M. A., Ray, A., Bufford, D., Kore-Eda, S., Matsumoto, T. K., Zhu, J., Cushman, J. C., Bressan, R. A., and Hasegawa, P. M. (2001). Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol. 126: 363–375.
Hajheidari, M., Farrona, S., Huettel, B., Koncz, Z., and Koncz, C. (2012). CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA polymerase II. Plant Cell 24: 1626-1642.
Hossain, M. A., Munemasa, S., Uraji, M., Nakamura, Y., Mori, I. C., and Murata, Y. (2011). Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis. Plant Physiol. 156: 430-438.
Hsieh, H. L., Okamoto, H., Wang, M., Ang, L. H., Matsui, M., Goodman, H., and Deng, X. W. (2000). FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev. 14: 1958-1970.
Huang, Y., Sun, M. M., Ye, Q., Wu, X. Q., Wu, W. H., and Chen, Y. F. (2017). Abscisic acid modulates seed germination via ABA INSENSITIVE5-mediated PHOSPHATE1. Plant Physiol. 175: 1661-1668.
Ikeda, M., and Ohme-Takagi, M. (2009). A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol. 50: 970-975.
Jiang, C., Belfield, E. J., Cao, Y., Smith, J. A., and Harberd, N. P. (2013). An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. Plant Cell 25: 3535-3552.
Kazan, K. (2015). Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 20: 219-229.
Kim, J. M., To, T. K., Matsui, A., Tanoi, K., Kobayashi, N. I., Matsuda, F., Habu, Y., Ogawa, D., Sakamoto, T., Matsunaga, S., Bashir, K., Rasheed, S., Ando, M., Takeda, H., Kawaura, K., Kusano, M., Fukushima, A., Endo, T. A., Kuromori, T., Ishida, J., Morosawa, T., Tanaka, M., Torii, C., Takebayashi, Y., Sakakibara, H., Ogihara, Y., Saito, K., Shinozaki, K., Devoto, A., and Seki, M. (2017). Acetate-mediated novel survival strategy against drought in plants. Nat Plants 3: 17097.
Lee, S. B., Lee, S. J., and Kim, S. Y. (2015). AtERF15 is a positive regulator of ABA response. Plant Cell Rep. 34: 71-81.
Lei, G., Shen, M., Li, Z. G., Zhang, B., Duan, K. X., Wang, N., Cao, Y. R., Zhang, W. K., Ma, B., Ling, H. Q., Chen, S. Y., and Zhang, J. S. (2011). EIN2 regulates salt stress response and interacts with a MA3 domain-containing protein ECIP1 in Arabidopsis. Plant Cell Environ. 34: 1678-1692.
Li, Z., Zhang, L., Yu, Y., Quan, R., Zhang, Z., Zhang, H., and Huang, R. (2011). The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis. Plant J. 68: 88-99.
Licausi, F., Ohme-Takagi, M., and Perata, P. (2013). APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol. 199: 639-649.
Mcgrath, K. C., Dombrecht, B., Manners, J. M., Schenk, P. M., Edgar, C. I., Maclean, D. J., Scheible, W. R., Udvardi, M. K., and Kazan, K. (2005). Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol. 139: 949-959.
Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2012). AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta 1819: 86-96.
Moes, D., Himmelbach, A., Korte, A., Haberer, G., and Grill, E. (2008). Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. Plant J. 54: 806-819.
Munemasa, S., Oda, K., Watanabe-Sugimoto, M., Nakamura, Y., Shimoishi, Y., and Murata, Y. (2007). The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol. 143: 1398-1407.
Nakano, T., Suzuki, K., Fujimura, T., and Shinshi, H. (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140: 411-432.
Nakashima, K., and Yamaguchi-Shinozaki, K. (2013). ABA signaling in stress-response and seed development. Plant Cell Rep. 32: 959-970.
Ohme-Takagi, M., and Shinshi, H. (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7: 173–182.
Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H., and Ohme-Takagi, M. (2001). Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13: 1959–1968.
Porra, R. J., Thompson, W. A., and Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption pectroscopy Biochim. Biophys. Acta 975: 384-394.
Riemann, M., Dhakarey, R., Hazman, M., Miro, B., Kohli, A., and Nick, P. (2015). Exploring jasmonates in the hormonal network of drought and salinity responses. Front Plant Sci 6: 1077.
Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290: 998-1009.
Sakuraba, Y., Kim, Y. S., Han, S. H., Lee, B. D., and Paek, N. C. (2015). The Arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed-forward regulatory loop involving NAP. Plant Cell 27: 1771-1787.
Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58: 221-227.
Staswick, P. E., Tiryaki, I., and Rowe, M. L. (2002). Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14: 1405-1415.
Stockinger, E. J., Gilmour, S. J., and Thomashow, M. F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94: 1035–1040.
Suhita, D., Raghavendra, A. S., Kwak, J. M., and Vavasseur, A. (2004). Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol. 134: 1536-1545.
Tanaka, Y., Sano, T., Tamaoki, M., Nakajima, N., Kondo, N., and Hasezawa, S. (2005). Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol. 138: 2337-2343.
Valenzuela, C. E., Acevedo-Acevedo, O., Miranda, G. S., Vergara-Barros, P., Holuigue, L., Figueroa, C. R., and Figueroa, P. M. (2016). Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root. J. Exp. Bot. 67: 4209-4220.
Wang, J. G., Chen, C. H., Chien, C. T., and Hsieh, H. L. (2011). FAR-RED INSENSITIVE219 modulates CONSTITUTIVE PHOTOMORPHOGENIC1 activity via physical interaction to regulate hypocotyl elongation in Arabidopsis. Plant Physiol. 156: 631-646.
Watkins, J. M., Hechler, P. J., and Muday, G. K. (2014). Ethylene-induced flavonol accumulation in guard cells suppresses reactive oxygen species and moderates stomatal aperture. Plant Physiol. 164: 1707-1717.
Xiong, L., Schumaker, K. S., and Zhu, J.-K. (2002). Cell signaling during cold, drought, and salt stress. The Plant Cell 14: S165-S183.
Xu, D., Li, J., Gangappa, S. N., Hettiarachchi, C., Lin, F., Andersson, M. X., Jiang, Y., Deng, X. W., and Holm, M. (2014). Convergence of Light and ABA signaling on the ABI5 promoter. PLoS Genet. 10: e1004197.
Xu, J., Li, Y., Wang, Y., Liu, H., Lei, L., Yang, H., Liu, G., and Ren, D. (2008). Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J. Biol. Chem. 283: 26996-27006.
Yang, Z., Tian, L., Latoszek-Green, M., Brown, D., and Wu, K. (2005). Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol. Biol. 58: 585-596.
Yoo, S. D., Cho, Y. H., Tena, G., Xiong, Y., and Sheen, J. (2008). Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451: 789-795.
Yu, Y., Wang, J., Shi, H., Gu, J., Dong, J., Deng, X. W., and Huang, R. (2016). Salt stress and ethylene antagonistically regulate nucleocytoplasmic partitioning of COP1 to control seed germination. Plant Physiol. 170: 2340-2350.
Zhou, X., Zhang, Z. L., Park, J., Tyler, L., Yusuke, J., Qiu, K., Nam, E. A., Lumba, S., Desveaux, D., Mccourt, P., Kamiya, Y., and Sun, T. P. (2016). The ERF11 transcription factor promotes internode elongation by activating gibberellin biosynthesis and signaling. Plant Physiol. 171: 2760-2770.
Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53: 247-273.
Zhu, Z., An, F., Feng, Y., Li, P., Xue, L., A, M., Jiang, Z., Kim, J. M., To, T. K., Li, W., Zhang, X., Yu, Q., Dong, Z., Chen, W. Q., Seki, M., Zhou, J. M., and Guo, H. (2011). Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc. Natl. Acad. Sci. USA 108: 12539-12544.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69874-
dc.description.abstract為了適應環境,植物會發展出各種防禦機制包括利用植物荷爾蒙來抵禦逆境。在非生物逆境如鹽害和乾旱逆境下,離層酸是主要調控植物防禦反應的植物荷爾蒙,而茉莉酸以及乙烯也會參與其中。FIN219 (FAR-RED INSENSITIVE 219)也被稱作為JAR1 (JASMONIC ACID RESISTANT 1),是一個合成結合形式茉莉酸的酵素,會使茉莉酸接上異白氨酸而產生具有活性的茉莉酸,在實驗室先前的微陣列分析數據指出,部分ERF (ETHYLENE RESPONSIVE FACTOR) 轉錄因子會被FIN219/JAR1所調控,而ERFs主要參與在逆境調控途徑中。這些資料指出FIN219可能是藉由調控ERFs來參與鹽害和乾旱逆境。此外,HY5 (ELONGATED HYPOCOTYL 5) 則被報導指出會與ERF4及ERF11的啟動子結合,顯示了HY5參與FIN219-ERF訊息傳遞的可能性。本研究結果顯示,hy5突變株對滲透壓及鹽逆境處理較敏感且其FIN219的蛋白質含量會受到影響。此外,在離層酸處理下會誘導HY5和ERF15的mRNA表現量以及FIN219的蛋白質表現量。這些結果與表現型分析結果顯示FIN219-HY5-ERF的訊息傳遞在逆境中是透過離層酸所調控。另一方面,我們建構了大量表現HY5以及ERFs的轉殖株以檢驗兩者在逆境下所參與的生理功能,發現ERF11負調控而ERF15正調控植物對滲透壓與鹽逆境的耐受性。在Co-immunoprecipitation (Co-IP)分析中顯示HY5與ERF15具有蛋白質間的交互作用。綜合上述結果,我們推測阿拉伯芥在滲透壓與鹽逆境下會受到FIN219-HY5-ERF的訊息傳遞途徑所調控。zh_TW
dc.description.abstractPlants have developed various defense mechanisms, including using phytohormones to adapt stress conditions. Under abiotic stresses such as drought and salt stress, abscisic acid (ABA) is the major phytohormone in regulating the stress tolerance of plants. In addition to ABA, jasmonic acid (JA) and ethylene also participate in drought and salt stress responses. FIN219 (FAR-RED INSENSITIVE 219), also known as JAR1 (JASMONIC ACID RESISTANT 1), is an enzyme that conjugates JA with isoleucine (Ile) and leads to the formation of JA-Ile, an active form of JA. Our previous microarray data showed that several ERF (ETHYLENE RESPONSIVE FACTOR) transcription factors were affected by FIN219/JAR1. Moreover, ERFs mainly functioned in stress responses. These findings imply that FIN219 may participate in osmotic and salt stress responses through regulating ERFs. Besides, HY5 (ELONGATED HYPOCOTYL 5) has been reported to bind to the promoters of ERF4 and ERF11, which suggests the involvement of HY5 in the FIN219-ERF signaling network. This study shows that the mutation of HY5 decreases the resistance of plants to salt and drought stresses and affects the levels of FIN219. Moreover, HY5 and ERF15 mRNA levels and FIN219 protein levels increase under ABA treatment. It seems that the FIN219-HY5-ERF signaling network is regulated by ABA under stresses since their protein levels and phenotypes are influenced by ABA, salt and mannitol treatments. On the other hand, we further establish the inducible HY5 and ERFs overexpression (OE) lines to examine their physiological functions under stresses. The results indicate that ERF11 negatively and ERF15 positively regulates osmotic and salt stresses tolerance of plants. Further co-immunoprecipitation (Co-IP) assay shows that protein-protein interaction exists between HY5 and ERF15. In conclusion, our work reveals that the FIN219-HY5-ERF signaling may serve as a module to regulate stress responses in Arabidopsis.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:31:54Z (GMT). No. of bitstreams: 1
ntu-107-R04b42001-1.pdf: 30629478 bytes, checksum: d274deb44aa94d8415792a1b17533e5a (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContent
摘要 I
Abstract II
Introduction 1
The responses and perception of plants to stress and light 1
FIN219 (FAR-RED INSENSITIVE 219) 2
Ethylene responsive factors (ERFs) 4
The phytohormones involved in drought and salt stresses 6
The aim of this study 10
Materials and Methods 11
Plant materials and growth conditions 11
Generation and screening of transgenic plants 12
Germination and chlorophyll measurement 14
Drought tolerance test 14
Total RNA extraction and reverse transcription 15
Quantitative real-time PCR analysis (qPCR) 15
Total protein extraction and Western blot assays 16
Protein Co-immunoprecipitation (Co-IP) assays 17
Results 18
The mutation of HY5 decreases the resistance of plants to stresses 18
ABA induces the transcript level of HY5 and ERF15 19
The elevation of FIN219 under stress treatments is inhibited by HY5 21
ABA induces and salt stabilizes the protein level of HY5 respectively 22
FIN219 and HY5 stablize ERF15 under stress conditions 22
ERF11 and ERF15 have an opposite regulation in response to stress environments 23
HY5 interacts with ERF15 in vivo under normal condition and salt stress 24
ABA and JA may synergistically regulate FIN219 25
Discussion 27
The regulation of FIN219 by ABA under osmotic and salt stresses 27
FIN219 and HY5 inhibit each other under stress treatments 28
The relationship between HY5 and ERF15 under stress conditions 29
The regulatory roles of ERF11 and ERF15 under stress conditions 31
Conclusion 33
Figures 34
References 48
Appendixes 54
List of Tables and Figures
Figure 1. hy5 mutant is sensitive to ABA, osmotic and salt treatments. 34
Figure 2. Expression levels of HY5 and ERF15 are induced by ABA treatment. 35
Figure 3. The protein level of FIN219 is increased under stress treatments and affected in hy5 mutant. 36
Figure 4. The protein level of HY5 increases under ABA treatment and is stable in salt condition. 37
Figure 5. The upturn of ERF15 protein level was inhibited in fin219 and hy5 mutants under stress treatments. 38
Figure 6. Protein detection analyses of inducible HY5 OE lines. 39
Figure 7. Inducible HY5 OE line shows hyper-photomorphogenetic phenotype. 40
Figure 8. Gene expression analyses of ERF11 and ERF15 OE lines. 41
Figure 9. erf11 mutant and ERF15 OE lines are resistant to ABA and stress treatments. 42
Figure 10. ERF11 negatively and ERF15 positively regulates drought tolerance of Arabidopsis. 43
Figure 11. FIN219 does not interact with ERF15 under normal condition. 44
Figure 12. HY5 has physical interaction with ERF15. . 45
Figure 13. fin219 mutant is insensitive to JA and ABA co-treatments compared to Col-0. 46
Figure 14. The regulation model of FIN219-HY5-ERF module under osmotic and salt stresses. 47
Appendix Table 1. The gene accession numbers in this study. 54
Appendix Table 2. The primers used in the establishment of transgenic plants. 54
Appendix Table 3. The primers used in the RT-PCR and qPCR analyses (Tm=60℃). 55
Appendix Figure 1. The dosage effect of ABA, osmotic and salt treatments. 57
Appendix Figure 2. The detection and identification of ERF15 polyclonal antibody. 58
Appendix Figure 3. The expressions of ERF11 and ERF13 decrease in fin219-2 mutant under osmotic stress. 59
Appendix Figure 4. The expressions of ERF2, ERF13, ERF15 and ERF72 decrease in fin219-2 mutant under salt stress. 60
Appendix Figure 5. HY5 interacts with ERF2, ERF4, ERF11, ERF15 in vitro. 61
dc.language.isoen
dc.title受阿拉伯芥FIN219調控的ERFs在滲透壓與鹽害逆境下的功能性研究zh_TW
dc.titleFunctional studies of FIN219-regulated ERFs under osmotic and salt stress in Arabidopsis thalianaen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭秋萍,張英?,洪傳揚,張孟基
dc.subject.keyword滲透壓逆境,鹽逆境,離層酸,茉莉酸,ERF,HY5,FIN219,zh_TW
dc.subject.keywordosmotic stress,salt stress,ABA,JA,ERF,HY5,FIN219,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201800464
dc.rights.note有償授權
dc.date.accepted2018-02-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
29.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved