請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69864完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻(Tai-Horng Young) | |
| dc.contributor.author | Sheng-Tien Li | en |
| dc.contributor.author | 李聖典 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:31:26Z | - |
| dc.date.available | 2028-02-14 | |
| dc.date.copyright | 2018-03-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-19 | |
| dc.identifier.citation | [1] G.A. Scangas, B.S. Bleier, Anosmia: Differential diagnosis, evaluation, and management, Am J Rhinol Allergy 31(1) (2017) 3-7.
[2] R.L. Doty, The olfactory system and its disorders, Seminars in neurology 29(1) (2009) 74-81. [3] I. Croy, S. Nordin, T. Hummel, Olfactory disorders and quality of life--an updated review, Chemical senses 39(3) (2014) 185-94. [4] S. Boesveldt, E.M. Postma, D. Boak, A. Welge-Luessen, V. Schopf, J.D. Mainland, J. Martens, J. Ngai, V.B. Duffy, Anosmia-A Clinical Review, Chemical senses 42(7) (2017) 513-523. [5] J.M. Pinto, Olfaction, Proceedings of the American Thoracic Society 8(1) (2011) 46-52. [6] G. Bender, T. Hummel, S. Negoias, D.M. Small, Separate signals for orthonasal vs. retronasal perception of food but not nonfood odors, Behavioral neuroscience 123(3) (2009) 481-9. [7] P. Mombaerts, Axonal wiring in the mouse olfactory system, Annual review of cell and developmental biology 22 (2006) 713-37. [8] H.J. Hoffman, E.K. Ishii, R.H. MacTurk, Age-related changes in the prevalence of smell/taste problems among the United States adult population. Results of the 1994 disability supplement to the National Health Interview Survey (NHIS), Annals of the New York Academy of Sciences 855 (1998) 716-22. [9] S. Nordin, A. Bramerson, M. Bende, Prevalence of self-reported poor odor detection sensitivity: the Skovde population-based study, Acta oto-laryngologica 124(10) (2004) 1171-3. [10] S.H. Lin, S.T. Chu, B.C. Yuan, C.H. Shu, Survey of the frequency of olfactory dysfunction in Taiwan, Journal of the Chinese Medical Association : JCMA 72(2) (2009) 68-71. [11] P. Rombaux, C. Huart, P. Levie, C. Cingi, T. Hummel, Olfaction in Chronic Rhinosinusitis, Current allergy and asthma reports 16(5) (2016) 41. [12] O. Goktas, L. Lau, F. Fleiner, Effect of laser treatment on olfactory dysfunction, Indian journal of otolaryngology and head and neck surgery : official publication of the Association of Otolaryngologists of India 66(Suppl 1) (2014) 173-9. [13] J. Reden, K. Lill, T. Zahnert, A. Haehner, T. Hummel, Olfactory function in patients with postinfectious and posttraumatic smell disorders before and after treatment with vitamin A: a double-blind, placebo-controlled, randomized clinical trial, The Laryngoscope 122(9) (2012) 1906-9. [14] R.C. Kern, B. Quinn, G. Rosseau, A.I. Farbman, Post-traumatic olfactory dysfunction, The Laryngoscope 110(12) (2000) 2106-9. [15] R.L. Doty, P. Shaman, S.L. Applebaum, R. Giberson, L. Siksorski, L. Rosenberg, Smell identification ability: changes with age, Science (New York, N.Y.) 226(4681) (1984) 1441-3. [16] J. Seubert, E.J. Laukka, D. Rizzuto, T. Hummel, L. Fratiglioni, L. Backman, M. Larsson, Prevalence and Correlates of Olfactory Dysfunction in Old Age: A Population-Based Study, The journals of gerontology. Series A, Biological sciences and medical sciences 72(8) (2017) 1072-1079. [17] I. Konstantinidis, E. Tsakiropoulou, P. Bekiaridou, C. Kazantzidou, J. Constantinidis, Use of olfactory training in post-traumatic and postinfectious olfactory dysfunction, The Laryngoscope 123(12) (2013) E85-90. [18] K.K. Yee, E.A. Pribitkin, B.J. Cowart, D. Rosen, P. Feng, N.E. Rawson, Analysis of the olfactory mucosa in chronic rhinosinusitis, Annals of the New York Academy of Sciences 1170 (2009) 590-5. [19] E.H. Blomqvist, L. Lundblad, H. Bergstedt, P. Stjarne, Placebo-controlled, randomized, double-blind study evaluating the efficacy of fluticasone propionate nasal spray for the treatment of patients with hyposmia/anosmia, Acta oto-laryngologica 123(7) (2003) 862-8. [20] S. Heilmann, K.B. Huettenbrink, T. Hummel, Local and systemic administration of corticosteroids in the treatment of olfactory loss, American journal of rhinology 18(1) (2004) 29-33. [21] A.M. Seiden, H.J. Duncan, The diagnosis of a conductive olfactory loss, The Laryngoscope 111(1) (2001) 9-14. [22] M.K. DeHamer, J.L. Guevara, K. Hannon, B.B. Olwin, A.L. Calof, Genesis of olfactory receptor neurons in vitro: regulation of progenitor cell divisions by fibroblast growth factors, Neuron 13(5) (1994) 1083-97. [23] M.P. Newman, F. Feron, A. Mackay-Sim, Growth factor regulation of neurogenesis in adult olfactory epithelium, Neuroscience 99(2) (2000) 343-50. [24] K. Isoyama, H. Nagata, Y. Shino, N. Isegawa, Y. Arimoto, M. Koda, K. Kumahara, Y. Okamoto, H. Shirasawa, Effects of adenoviral vector-mediated BDNF expression on the bulbectomy-induced apoptosis of olfactory receptor neurons, Brain research. Molecular brain research 129(1-2) (2004) 88-95. [25] B.S. Seo, H.J. Lee, J.H. Mo, C.H. Lee, C.S. Rhee, J.W. Kim, Treatment of postviral olfactory loss with glucocorticoids, Ginkgo biloba, and mometasone nasal spray, Archives of otolaryngology--head & neck surgery 135(10) (2009) 1000-4. [26] R.S. Jiang, C.W. Twu, K.L. Liang, Medical treatment of traumatic anosmia, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery 152(5) (2015) 954-8. [27] R.G. Amedee, Otolaryngology: Medical Treatment of Traumatic Anosmia, American journal of rhinology & allergy 29(5) (2015) 401. [28] T. Hummel, K. Rissom, J. Reden, A. Hahner, M. Weidenbecher, K.B. Huttenbrink, Effects of olfactory training in patients with olfactory loss, The Laryngoscope 119(3) (2009) 496-9. [29] C.L. Beites, S. Kawauchi, C.E. Crocker, A.L. Calof, Identification and molecular regulation of neural stem cells in the olfactory epithelium, Experimental cell research 306(2) (2005) 309-16. [30] J.W. Kam, R. Raja, J.F. Cloutier, Cellular and molecular mechanisms regulating embryonic neurogenesis in the rodent olfactory epithelium, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 37 (2014) 76-86. [31] O. Bermingham-McDonogh, Thomas A. Reh, Regulated Reprogramming in the Regeneration of Sensory Receptor Cells, Neuron 71(3) (2011) 389-405. [32] C.D. Duggan, J. Ngai, Scent of a stem cell, Nature neuroscience 10(6) (2007) 673-4. [33] M.M. Wen, Olfactory targeting through intranasal delivery of biopharmaceutical drugs to the brain: current development, Discovery medicine 11(61) (2011) 497-503. [34] P.A. Escada, C. Lima, J.M. da Silva, The human olfactory mucosa, European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery 266(11) (2009) 1675-80. [35] E. Khor, L.Y. Lim, Implantable applications of chitin and chitosan, Biomaterials 24(13) (2003) 2339-49. [36] Y. Cho, R. Shi, R.B. Borgens, Chitosan produces potent neuroprotection and physiological recovery following traumatic spinal cord injury, The Journal of experimental biology 213(Pt 9) (2010) 1513-20. [37] F. Yan, W. Yue, Y.L. Zhang, G.C. Mao, K. Gao, Z.X. Zuo, Y.J. Zhang, H. Lu, Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke, Neural regeneration research 10(9) (2015) 1421-6. [38] G. Haipeng, Z. Yinghui, L. Jianchun, G. Yandao, Z. Nanming, Z. Xiufang, Studies on nerve cell affinity of chitosan-derived materials, Journal of biomedical materials research 52(2) (2000) 285-95. [39] Y. Yuan, P. Zhang, Y. Yang, X. Wang, X. Gu, The interaction of Schwann cells with chitosan membranes and fibers in vitro, Biomaterials 25(18) (2004) 4273-8. [40] T.L. Yang, Y.C. Hsiao, S.J. Lin, H.W. Lee, P.J. Lou, J.Y. Ko, T.H. Young, Biomaterial mediated epithelial-mesenchymal interaction of salivary tissue under serum free condition, Biomaterials 31(2) (2010) 288-95. [41] T. Athanasiadis, A.G. Beule, B.H. Robinson, S.R. Robinson, Z. Shi, P.J. Wormald, Effects of a novel chitosan gel on mucosal wound healing following endoscopic sinus surgery in a sheep model of chronic rhinosinusitis, Laryngoscope 118(6) (2008) 1088-94. [42] T.T. Solbu, T. Holen, Aquaporin pathways and mucin secretion of Bowman's glands might protect the olfactory mucosa, Chemical senses 37(1) (2012) 35-46. [43] B. Menchicchi, J.P. Fuenzalida, K.B. Bobbili, A. Hensel, M.J. Swamy, F.M. Goycoolea, Structure of chitosan determines its interactions with mucin, Biomacromolecules 15(10) (2014) 3550-8. [44] J.R. Harkema, S.A. Carey, J.G. Wagner, The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium, Toxicologic pathology 34(3) (2006) 252-69. [45] P.J. Lou, M.Y. Chiu, C.C. Chou, B.W. Liao, T.H. Young, The effect of poly (ethylene-co-vinyl alcohol) on senescence-associated alterations of human dermal fibroblasts, Biomaterials 31(7) (2010) 1568-77. [46] T.H. Young, C.Y. Lee, H.C. Chiu, C.J. Hsu, S.J. Lin, Self-assembly of dermal papilla cells into inductive spheroidal microtissues on poly(ethylene-co-vinyl alcohol) membranes for hair follicle regeneration, Biomaterials 29(26) (2008) 3521-30. [47] T.H. Young, C.H. Hung, Behavior of embryonic rat cerebral cortical stem cells on the PVA and EVAL substrates, Biomaterials 26(20) (2005) 4291-9. [48] E. Micholt, D. Jans, G. Callewaert, C. Bartic, J. Lammertyn, B. Nicolai, Primary culture of embryonic rat olfactory receptor neurons, In vitro cellular & developmental biology. Animal 48(10) (2012) 650-9. [49] S.D. Girard, A. Deveze, E. Nivet, B. Gepner, F.S. Roman, F. Feron, Isolating nasal olfactory stem cells from rodents or humans, Journal of visualized experiments : JoVE (54) (2011). [50] T.H. Young, H.R. Tu, C.C. Chan, Y.C. Huang, M.H. Yen, N.C. Cheng, H.C. Chiu, S.J. Lin, The enhancement of dermal papilla cell aggregation by extracellular matrix proteins through effects on cell-substratum adhesivity and cell motility, Biomaterials 30(28) (2009) 5031-40. [51] Y.C. Hsiao, T.L. Yang, Data supporting chitosan facilitates structure formation of the salivary gland by regulating the basement membrane components, Data in brief 4 (2015) 551-8. [52] R.M. Deacon, J.N. Rawlins, T-maze alternation in the rodent, Nature protocols 1(1) (2006) 7-12. [53] E. Cau, G. Gradwohl, C. Fode, F. Guillemot, Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors, Development 124(8) (1997) 1611-21. [54] C.T. Leung, P.A. Coulombe, R.R. Reed, Contribution of olfactory neural stem cells to tissue maintenance and regeneration, Nature neuroscience 10(6) (2007) 720-6. [55] N. Liu, C.B. Shields, F.J. Roisen, Primary culture of adult mouse olfactory receptor neurons, Experimental neurology 151(2) (1998) 173-83. [56] A.M. Cunningham, P.B. Manis, R.R. Reed, G.V. Ronnett, Olfactory receptor neurons exist as distinct subclasses of immature and mature cells in primary culture, Neuroscience 93(4) (1999) 1301-12. [57] O.I. Buiakova, H. Baker, J.W. Scott, A. Farbman, R. Kream, M. Grillo, L. Franzen, M. Richman, L.M. Davis, S. Abbondanzo, C.L. Stewart, F.L. Margolis, Olfactory marker protein (OMP) gene deletion causes altered physiological activity of olfactory sensory neurons, Proceedings of the National Academy of Sciences of the United States of America 93(18) (1996) 9858-63. [58] L.A. Carter, J.L. MacDonald, A.J. Roskams, Olfactory horizontal basal cells demonstrate a conserved multipotent progenitor phenotype, The Journal of neuroscience : the official journal of the Society for Neuroscience 24(25) (2004) 5670-83. [59] M.B. Genter, D.M. Owens, H.B. Carlone, K.M. Crofton, Characterization of olfactory deficits in the rat following administration of 2,6-dichlorobenzonitrile (dichlobenil), 3,3'-iminodipropionitrile, or methimazole, Fundamental and applied toxicology : official journal of the Society of Toxicology 29(1) (1996) 71-7. [60] H. Wei, M.F. Lang, X. Jiang, Calretinin is expressed in the intermediate cells during olfactory receptor neuron development, Neurosci Lett 542 (2013) 42-6. [61] E.H. Holbrook, E. Wu, W.T. Curry, D.T. Lin, J.E. Schwob, Immunohistochemical characterization of human olfactory tissue, The Laryngoscope 121(8) (2011) 1687-701. [62] K.A. Brogden, J.M. Guthmiller, M. Salzet, M. Zasloff, The nervous system and innate immunity: the neuropeptide connection, Nature immunology 6(6) (2005) 558-64. [63] C. Berasain, M.A. Avila, Amphiregulin, Seminars in cell & developmental biology 28 (2014) 31-41. [64] A.L. Calof, D.M. Chikaraishi, Analysis of neurogenesis in a mammalian neuroepithelium: proliferation and differentiation of an olfactory neuron precursor in vitro, Neuron 3(1) (1989) 115-27. [65] J.S. Choi, H.S. Yoo, Pluronic/chitosan hydrogels containing epidermal growth factor with wound-adhesive and photo-crosslinkable properties, Journal of biomedical materials research. Part A 95(2) (2010) 564-73. [66] T.L. Yang, T.H. Young, The specificity of chitosan in promoting branching morphogenesis of progenitor salivary tissue, Biochemical and biophysical research communications 381(4) (2009) 466-70. [67] A.S. Hanafy, R.M. Farid, S.S. ElGamal, Complexation as an approach to entrap cationic drugs into cationic nanoparticles administered intranasally for Alzheimer's disease management: preparation and detection in rat brain, Drug development and industrial pharmacy 41(12) (2015) 2055-68. [68] I.A. Sogias, A.C. Williams, V.V. Khutoryanskiy, Why is chitosan mucoadhesive?, Biomacromolecules 9(7) (2008) 1837-42. [69] M. Yanagisawa, R.K. Yu, The expression and functions of glycoconjugates in neural stem cells, Glycobiology 17(7) (2007) 57r-74r. [70] M. Wolfensberger, T. Hummel, Anti-inflammatory and surgical therapy of olfactory disorders related to sino-nasal disease, Chemical senses 27(7) (2002) 617-22. [71] C.H. Lee, J.H. Mo, S.H. Shim, J.M. Ahn, J.W. Kim, Effect of ginkgo biloba and dexamethasone in the treatment of 3-methylindole-induced anosmia mouse model, American journal of rhinology 22(3) (2008) 292-6. [72] T.M. Bray, S. Kubow, Involvement of free radicals in the mechanism of 3-methylindole-induced pulmonary toxicity: an example of metabolic activation in chemically induced lung disease, Environmental health perspectives 64 (1985) 61-7. [73] A.J. Wiethoff, J.R. Harkema, A.P. Koretsky, W.E. Brown, Identification of mucosal injury in the murine nasal airways by magnetic resonance imaging: site-specific lesions induced by 3-methylindole, Toxicology and applied pharmacology 175(1) (2001) 68-75. [74] C.L. Richman, W.N. Dember, P. Kim, Spontaneous alternation behavior in animals: A review, Current Psychological Research & Reviews 5(4) (1986) 358-391. [75] S. Kikuta, T. Sakamoto, S. Nagayama, K. Kanaya, M. Kinoshita, K. Kondo, K. Tsunoda, K. Mori, T. Yamasoba, Sensory deprivation disrupts homeostatic regeneration of newly generated olfactory sensory neurons after injury in adult mice, The Journal of neuroscience : the official journal of the Society for Neuroscience 35(6) (2015) 2657-73. [76] T. Ogawa, K. Takezawa, S. Shimizu, T. Shimizu, Valproic acid promotes neural regeneration of olfactory epithelium in adult mice after methimazole-induced damage, American journal of rhinology & allergy 28(2) (2014) e95-9. [77] J.D. Holcomb, S. Graham, A.L. Calof, Neuronal homeostasis in mammalian olfactory epithelium: A review, American journal of rhinology 10(3) (1996) 125-134. [78] M.H. Stevens, Steroid-dependent anosmia, The Laryngoscope 111(2) (2001) 200-3. [79] K. Kondo, K. Watanabe, T. Sakamoto, K. Suzukawa, K. Nibu, K. Kaga, T. Yamasoba, Distribution and severity of spontaneous lesions in the neuroepithelium and Bowman's glands in mouse olfactory mucosa: age-related progression, Cell and tissue research 335(3) (2009) 489-503. [80] J.W. Kam, E. Dumontier, C. Baim, A.C. Brignall, D. Mendes da Silva, M. Cowan, T.E. Kennedy, J.F. Cloutier, RGMB and neogenin control cell differentiation in the developing olfactory epithelium, Development (Cambridge, England) 143(9) (2016) 1534-46. [81] S. Mangal, D. Pawar, N.K. Garg, A.K. Jain, S.P. Vyas, D.S. Rao, K.S. Jaganathan, Pharmaceutical and immunological evaluation of mucoadhesive nanoparticles based delivery system(s) administered intranasally, Vaccine 29(31) (2011) 4953-62. [82] M. van Woensel, N. Wauthoz, R. Rosiere, K. Amighi, V. Mathieu, F. Lefranc, S.W. van Gool, S. de Vleeschouwer, Formulations for Intranasal Delivery of Pharmacological Agents to Combat Brain Disease: A New Opportunity to Tackle GBM?, Cancers (Basel) 5(3) (2013) 1020-48. [83] K. Nibu, G. Li, X. Zhang, N.E. Rawson, D. Restrepo, K. Kaga, L.D. Lowry, W.M. Keane, J.L. Rothstein, Olfactory neuron-specific expression of NeuroD in mouse and human nasal mucosa, Cell and tissue research 298(3) (1999) 405-14. [84] W. Winstead, C.T. Marshall, C.L. Lu, K.M. Klueber, F.J. Roisen, Endoscopic biopsy of human olfactory epithelium as a source of progenitor cells, American journal of rhinology 19(1) (2005) 83-90. [85] K. Borgmann-Winter, S.L. Willard, D. Sinclair, N. Mirza, B. Turetsky, S. Berretta, C.G. Hahn, Translational potential of olfactory mucosa for the study of neuropsychiatric illness, Translational psychiatry 5 (2015) e527. [86] X. Zhang, K.M. Klueber, Z. Guo, C. Lu, F.J. Roisen, Adult human olfactory neural progenitors cultured in defined medium, Experimental neurology 186(2) (2004) 112-23. [87] X. Zhang, J. Cai, K.M. Klueber, Z. Guo, C. Lu, W.I. Winstead, M. Qiu, F.J. Roisen, Role of transcription factors in motoneuron differentiation of adult human olfactory neuroepithelial-derived progenitors, Stem cells 24(2) (2006) 434-42. [88] X. Zhang, K.M. Klueber, Z. Guo, J. Cai, C. Lu, W.I. Winstead, M. Qiu, F.J. Roisen, Induction of neuronal differentiation of adult human olfactory neuroepithelial-derived progenitors, Brain research 1073-1074 (2006) 109-19. [89] O.Z. Fisher, A. Khademhosseini, R. Langer, N.A. Peppas, Bioinspired materials for controlling stem cell fate, Accounts of chemical research 43(3) (2010) 419-28. [90] J. Zhong, A. Chan, L. Morad, H.I. Kornblum, G. Fan, S.T. Carmichael, Hydrogel matrix to support stem cell survival after brain transplantation in stroke, Neurorehabilitation and neural repair 24(7) (2010) 636-44. [91] J.G. Whitesides, 3rd, A.S. LaMantia, Differential adhesion and the initial assembly of the mammalian olfactory nerve, The Journal of comparative neurology 373(2) (1996) 240-54. [92] S. Garcia-Nieto, R.K. Johal, K.M. Shakesheff, M. Emara, P.J. Royer, D.Y. Chau, F. Shakib, A.M. Ghaemmaghami, Laminin and fibronectin treatment leads to generation of dendritic cells with superior endocytic capacity, PloS one 5(4) (2010) e10123. [93] T.H. Young, C.W. Lin, L.P. Cheng, C.C. Hsieh, Preparation of EVAL membranes with smooth and particulate morphologies for neuronal culture, Biomaterials 22(13) (2001) 1771-7. [94] S.I. Paik, M.N. Lehman, A.M. Seiden, H.J. Duncan, D.V. Smith, Human olfactory biopsy. The influence of age and receptor distribution, Archives of otolaryngology--head & neck surgery 118(7) (1992) 731-8. [95] R. Tzoneva, N. Faucheux, T. Groth, Wettability of substrata controls cell-substrate and cell-cell adhesions, Biochimica et biophysica acta 1770(11) (2007) 1538-47. [96] J. Negroni, N. Meunier, R. Monnerie, R. Salesse, C. Baly, M. Caillol, P. Congar, Neuropeptide Y enhances olfactory mucosa responses to odorant in hungry rats, PloS one 7(9) (2012) e45266. [97] K.L. Doyle, Y.J. Hort, H. Herzog, J. Shine, Neuropeptide Y and peptide YY have distinct roles in adult mouse olfactory neurogenesis, Journal of neuroscience research 90(6) (2012) 1126-35. [98] N. Hirota, P.A. Risse, M. Novali, T. McGovern, L. Al-Alwan, S. McCuaig, D. Proud, P. Hayden, Q. Hamid, J.G. Martin, Histamine may induce airway remodeling through release of epidermal growth factor receptor ligands from bronchial epithelial cells, FASEB journal : official publication of the Federation of American Societies for Experimental Biology 26(4) (2012) 1704-16. [99] M. Rumelhard, K. Ramgolam, F. Auger, A.C. Dazy, S. Blanchet, F. Marano, A. Baeza-Squiban, Effects of PM2.5 components in the release of amphiregulin by human airway epithelial cells, Toxicology letters 168(2) (2007) 155-64. [100] K.W. Kim, H.M. Jee, Y.H. Park, B.S. Choi, M.H. Sohn, K.E. Kim, Relationship between amphiregulin and airway inflammation in children with asthma and eosinophilic bronchitis, Chest 136(3) (2009) 805-810. [101] J.O. Malva, S. Xapelli, S. Baptista, J. Valero, F. Agasse, R. Ferreira, A.P. Silva, Multifaces of neuropeptide Y in the brain--neuroprotection, neurogenesis and neuroinflammation, Neuropeptides 46(6) (2012) 299-308. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69864 | - |
| dc.description.abstract | 嗅覺失能 (Olfactory dysfunction) 將嚴重影響著病患各方便的生活品質,包含食而無味、食慾不振及減少對環境中氣味改變的察覺能力,再者影響病患之身心理狀態。近二十年來,全球嗅覺功能低落之發生率,從3%上升至20%,然而目前在臨床上仍無有效的治療方法且效果差異甚大,因而發展一個有效之治療方法是有其必要性的。其中,嗅覺上皮 (olfactory neuroepithelium, ON) 位於中上鼻甲,為氣味分子啟動訊號的起始位置;此外,嗅覺上皮細胞群 (olfactory neuroepithelial cells, ONCs) 因含有終其一身可自我再生的幹細胞 (basal cells),其可進一步分化成負責偵測氣味的嗅覺受體神經 (olfactory receptor neurons, ORNs) 和調節黏膜離子平衡的支持細胞 (sustentacular cells, SCs),因此是周邊神經中唯一能進行神經再生的細胞。而利用體外培養分析系統 (in vitro) 尋找適合其維持原有特性、協助生長,甚至是嗅覺上皮重建之生醫材料是本研究之目的。
首先,評估水溶性之幾丁聚醣 (chitosan) 對嗅覺上皮細胞,是否有助於ORNs之分化。嗅覺上皮細胞取自懷孕大鼠 (wistar rats) 之第17天胚胎,並以有無培養在含有幾丁聚醣 (0.1 mg/mL) 之培養基中作為實驗組及控制組。藉由西方墨點法分析培養3、6、9天之細胞分化程度之變化,並藉由免疫螢光染色相互印證細胞分化之狀態。在實驗結果中,添加幾丁聚醣培養的嗅覺上皮細胞,呈現著不對稱的雙極軸突之神經型態。此外,隨著培養天期的增加,未成熟ORNs之標記蛋白 (βIII tubulin) 表現量逐漸地減少,但成熟ORNs之嗅覺標記蛋白 (olfactory marker protein, OMP) 及不可或缺的功能性訊號傳導要素,嗅覺神經特異G蛋白 (olfactory neuron specific-G protein, Golf) 及腺苷酸環化酶3 (adenylate cyclase 3, ADCY3) 之表現趨勢皆隨之增加,且螢光表現皆於同一細胞上。因而,進一步利用3-甲基吲哚 (3-methylindole, 3-MI) 誘發嗅覺失能之動物模式,以驗證水溶性之幾丁聚醣是否可經由鼻腔途徑治療,進而促進嗅覺功能的恢復。使用的評估方法如下:食物搜尋之動物行為測試、免疫組織化學染色及西方墨點法。實驗結果顯示,誘發嗅覺低落前,老鼠搜尋食物之歷程約80秒;一旦經3-MI破壞嗅覺上皮後,搜尋食物的歷程將超過5分鐘,但在適當時間以後,開始經由鼻腔給予幾丁聚醣治療,為期三周且每周兩次之頻率後,搜尋歷程將隨之下降。從組織切片及西方墨點法顯示,經幾丁聚醣治療之組別,嗅覺上皮厚度及成熟ORNs皆有顯著性增加,且伴隨著未成熟ORNs及SCs之表現量下降。再者,利用溴化去氧尿苷 (Bromodeoxyuridine, BrdU) 以追蹤24小時間所新生的細胞族群。在治療組中,表現BrdU的細胞,多分布於嗅覺上皮之中下層位置,並大多表現βIII tubulin。相較下,未治療之組別,表現BrdU的細胞,則是散落分布於嗅覺上皮中,且同時表現未成熟ORNs或SCs之標記蛋白 (cadherin-1, CDH1)。意味著,幾丁聚醣提供ORNs成熟化之引導線索及調節嗅覺上皮細胞群之動態平衡。故,幾丁聚醣溶液極具有作為嗅覺功能低落與重建之有潛力的生醫材料,未來應用於臨床病人上必將有所裨益。 進一步利用乙烯醇-乙烯共聚物 (poly (ethylene-co-vinyl alcohol), EVAL) 為基材,建立人類嗅覺上皮細胞 (human olfactory neuroepithelial cells, HONCs) 之體外培養系統,並探討基材與細胞間之可能調節機制。HONCs來源為進行鼻竇手術之患者,並取得其同意後獲取。接著於分離培養後,利用免疫螢光染色、晶片 (microarray)、即時定量聚合酶反應、酵素免疫分析法及西方墨點之方法進行評估。從實驗結果中顯示,控制組之細胞型態多為上皮狀且表現SCs標記(CDH1及cytokeratin 18, CK18);然而,在EVAL之實驗組,則呈現著不對稱的雙極軸突之神經型態,並表現成熟ORNs之OMP標記。而在發現實驗組與控制組之差異後,進一步利用晶片分析可能的調節因子。結果呈現,實驗組中之神經肽Y (neuropeptide Y, NPY) 及雙調蛋白 (amphiregulin, AREG),相較於控制組,分別在神經投射發育類別 (neuron projection development) 中,呈現調升及調降最多之表現,而後也經由即時定量聚合酶反應及酵素免疫分析法證實此趨勢。最後,分別添加不同濃度之NPY、NPY受體之抑制劑 (BIBP3226)、AREG或AREG受體抑制劑 (AG1478) 於控制組或實驗組中,觀察成熟ORNs及SCs之表現。在控制組中,隨著NPY濃度之增加,OMP表現上升;然而隨著AG1478濃度之增加,的確使SCs隨之下降。相對地,在實驗組中,隨著BIBP3226濃度之增加,OMP表現下降;但隨著AREG濃度之增加,卻對SCs無濃度上之效應。更進一步分析發現,其原因為實驗組中,AREG的受體 (上皮生長因子受體 (epidermal growth factor receptor, EGFR) 在EVAL上培養初期,其磷酸化程度即已受到抑制。因此,此生醫材料-EVAL或許將是一個潛能性的基材,以用做嗅覺相關之研究模型。 | zh_TW |
| dc.description.abstract | Olfaction not only contributes to enjoyments of food, but also provides a clue to escape from dangerous environmental hazards. Although loss of smell is not a lethal disease, it is thought to affect 90% of neurodegenerative patients as an early marker. Additionally, olfactory dysfunction is commonly progressive and its prevalence during this two decades continually increases from 3% to 20% in the world and 12.3% in Taiwan. Currently, topical or systemic application of glucocorticoids is a general modality, but the therapeutic effect is controversy. In this study, we apply biomaterials to establish in vitro culture systems from rat olfactory neuroepithelial cells (rONCs) and human olfactory neuroepithelial cells (HONCs) since olfactory neuroepithelium (ON) has an ability to continuously regenerate through adulthood, comprising neural-lineage cells, olfactory receptor neurons (ORNs) to detect odors, and non-neural-lineage cells, sustentacular cells (SCs) to regulate ionic balance of olfactory mucus.
In Part A, we use soluble chitosan to develop a nasal spray modality and start with an in vitro culture system from rONCs. The morphological analysis indicated that rONCs treated with chitosan exhibited an asymmetric bipolar shape. Also, the number of mature ORNs, expressing olfactory marker protein (OMP), significantly rose at day 9 in chitosan-treated groups, accompanied with a lower number of immature ORNs, expressing βIII tubulin (p<0.05). In addition, olfactory neuron specific-G protein (Golf) and adenylate cyclase 3 (ADCY3), the essential components for odorant receptors, showed a similar trend to the OMP expression. Next, an anosmic animal model was employed to further verify this strategy. 16 rats underwent 3-methylindole (3-MI) injection to destroy the ON, except the normal group. The effect of chitosan treatment was assessed by behavior test (food-finding test), immunohistochemistry and western blots at specific time points. Our results demonstrated that the duration of finding food after chitosan treatment decreased from over 5 minutes to around 80 seconds on day 28 following 3-MI injection. Histological images showed that no matter the thickness of the ON or the expression of OMP, they gradually restored after chitosan treatment at appropriate time point, whereas those without chitosan treatment may pause at the stage of immature ORNs owing to the highest βIII tubulin expression among groups and co-localization of 5-Bromo-2´-Deoxyuridine (BrdU) and βIII tubulin, meaning chitosan may serve as a clue for immature ORNs to mature. Additionally, the other BrdU expressing cells in the sham group were co-expressed cadherin-1 (CDH1), a marker of SCs, which is more than those in chitosan-treated group (3.7%±0.5% vs. 0.3%±0.06%), implying chitosan prevented hyperplasia of SCs from affecting the ORN growth during regenerative processes. Consequently, chitosan may balance olfactory neuronal homeostasis and serve as a promising clinical application for restorative ON in the future. In Part B, we used poly (ethylene-co-vinyl alcohol) (EVAL) as an substrate to establish an in vitro culture system for HONCs, as well as to study the regulatory pathway between substrate and responsive cells. The effects of treatment were assessed using immunocytochemistry, microarray analysis, quantitative PCR, ELISA and western blots following culturing. The results showed that most of the cell morphology on controls was epithelial, and expresses markers of SCs, CDH1 and cytokeratin18 (CK18), whereas the main population on EVAL exhibited morphology with an asymmetric bipolar shape, expressing OMP. Microarray analyses revealed that neuropeptide Y (NPY) and amphiregulin (AREG) are the two important regulating factors on EVAL films. HONCs cultured on EVAL films enhanced the development of mature ORNs through NPY signaling, while AREG showed insignificant differences with increasing AREG, instead of lowering the growth of SCs by blocking epidermal growth factor receptor (EGFR) activation, which is a receptor of AREG. Therefore, EVAL would be a potential substrate as a human equivalent of olfactory in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:31:26Z (GMT). No. of bitstreams: 1 ntu-107-F01548029-1.pdf: 4556758 bytes, checksum: 563783993a4a461c85f29bdc6b88fba0 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
摘要 ii Abstract iv Contents vii List of figures xi Chapter 1: Introduction 1 1.1 Olfactory dysfunction 1 1.2 Current treatments for olfactory dysfunction 2 1.3 The characterization of ON in olfactory system 3 1.4 Strategy: Chitosan as nasal spray 4 1.5 A human equivalent using poly (ethylene-co-vinyl alcohol) films as a substrate 5 Chapter 2: Materials and methods 6 2.1 Cell preparation and culture 6 2.1.1 rONCs 6 2.1.2 HONCs 6 2.2 Substrate preparations 7 2.2.1 Preparation of substrate-coated culture plates for rONCs 7 2.2.2 Preparation of EVAL films for HONCs 8 2.3 Rat model of anosmia 8 2.4 Treatment in vitro and in vivo 9 2.4.1 Chitosan medium for an in vitro model 9 2.4.2 Chitosan treatment for an in vivo model 9 2.5. Immunocytochemistry and immunohistochemistry 10 2.6 Western blot analysis 11 2.7 Behavioral tests in an animal model 12 2.8 Assessments of possible mechanisms in HONCs 13 2.8.1 Array hybridization and data analysis 13 2.8.2 Reverse transcription- quantitation polymerase chain reaction 14 2.8.3 Determination of the amount of NPY and AREG 14 2.9 Statistical analysis 15 2.9.1 rONCs and animal model 15 2.9.2 HONCs 15 Chapter 3: Result 16 3.1 Part A- Nasal Spray 16 3.1.1 Immunocytochemical and morphological characterization of rONCs 16 3.1.2 Expressions of ORNs in rONCs 16 3.1.3 Expressions of signal transduction apparatus of ORNs 17 3.1.4 Establishment of an anosmic animal model 18 3.1.5 Behavioral test of the olfactory function 18 3.1.6 Recovery of the ON thickness 19 3.1.7 The effect of chitosan on the ORN growth 20 3.1.8 The effect of chitosan on the SCs growth 21 3.1.9 The direction of chitosan on cell fates 21 3.2 Part B- A human equivalent model 23 3.2.1 Establishment of a primary HONC culture 23 3.2.2 Cellular composition of HONCs on controls vs. EVAL films 24 3.2.3 Expression of neuron projection developmental components on controls vs. EVAL films 25 3.2.4 Regulation of NPY on HONCs 25 3.2.5 The effect of AREG on HONCs 26 Chapter 4: Discussion 28 4.1 Current status in the rONC model 28 4.2 Forms and administrating routes of chitosan 28 4.3 The possible mechanism of chitosan in the in vitro model 29 4.4 The assessment of olfactory function 29 4.5 Timing point of administration 30 4.6 Comparison of other treatments 31 4.7 The indication of chitosan in olfactory dysfunction 31 4.8 Summary of Part A 32 4.9 Current status in the HONC model 33 4.10 The choices of substrates for HONCs 34 4.11 The possible mechanism of EVAL- NPY 35 4.12 The possible mechanism of EVAL- AREG 35 4.13 Summary of Part B 37 4.14 Current limitation 37 Chapter 5: Conclusions 38 Reference 39 | |
| dc.language.iso | en | |
| dc.subject | 雙調蛋白 | zh_TW |
| dc.subject | 神經?Y | zh_TW |
| dc.subject | 乙烯醇-乙烯共聚物 | zh_TW |
| dc.subject | 上皮生長因子受體 | zh_TW |
| dc.subject | 支持細胞 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 嗅覺受體神經 | zh_TW |
| dc.subject | 嗅覺上皮 | zh_TW |
| dc.subject | 嗅覺失能 | zh_TW |
| dc.subject | olfactory receptor neuron | en |
| dc.subject | sustentacular cells | en |
| dc.subject | chitosan | en |
| dc.subject | olfactory neuroepithelium | en |
| dc.subject | Olfactory dysfunction | en |
| dc.subject | poly (ethylene-co-vinyl alcohol) | en |
| dc.subject | neuropeptide Y | en |
| dc.subject | amphiregulin | en |
| dc.subject | epidermal growth factor receptor. | en |
| dc.title | 生醫材料於嗅覺上皮再生之應用 | zh_TW |
| dc.title | The application of biomaterials on the regeneration of olfactory neuroepithelium | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 黃琮瑋(Tsung-Wei Huang) | |
| dc.contributor.oralexamcommittee | 婁培人(Pei-Jen Lou),宋信文(Hsing-Wen Sung),楊銘乾(Ming-Chien Yang),林宏殷(Hung-Yin Lin),洪智煌(Chih-Huang Hung) | |
| dc.subject.keyword | 嗅覺失能,嗅覺上皮,嗅覺受體神經,支持細胞,幾丁聚醣,乙烯醇-乙烯共聚物,神經?Y,雙調蛋白,上皮生長因子受體, | zh_TW |
| dc.subject.keyword | Olfactory dysfunction,olfactory neuroepithelium,olfactory receptor neuron,sustentacular cells,chitosan,poly (ethylene-co-vinyl alcohol),neuropeptide Y,amphiregulin,epidermal growth factor receptor., | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU201800257 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-02-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
