Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69856
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐尚德(Shang-Te Danny Hsu)
dc.contributor.authorYun-Tzai Leeen
dc.contributor.author李耘在zh_TW
dc.date.accessioned2021-06-17T03:31:04Z-
dc.date.available2023-03-06
dc.date.copyright2018-03-06
dc.date.issued2018
dc.date.submitted2018-02-21
dc.identifier.citationReferences
1. J. N. Onuchic, N. D. Socci, Z. Luthey-Schulten and P. G. Wolynes, Fold Des, 1996, 1, 441-450.
2. J. N. Onuchic and P. G. Wolynes, Curr Opin Struct Biol, 2004, 14, 70-75.
3. M. Sadqi, D. Fushman and V. Munoz, Nature, 2006, 442, 317-321.
4. P. Li, F. Y. Oliva, A. N. Naganathan and V. Munoz, Proc Natl Acad Sci U S A, 2009, 106, 103-108.
5. F. O. Tzul, D. Vasilchuk and G. I. Makhatadze, Proc Natl Acad Sci U S A, 2017, 114, 1627-1632.
6. C. A. Ross and M. A. Poirier, Nat Med, 2004, 10 Suppl, S10-17.
7. L. Hoang, S. Bedard, M. M. Krishna, Y. Lin and S. W. Englander, Proc Natl Acad Sci U S A, 2002, 99, 12173-12178.
8. W. B. Hu, Z. Y. Kan, L. Mayne and S. W. Englander, Proc Natl Acad Sci U S A, 2016, 113, 3809-3814.
9. H. Maity, M. Maity, M. M. Krishna, L. Mayne and S. W. Englander, Proc Natl Acad Sci U S A, 2005, 102, 4741-4746.
10. B. T. Walters, L. Mayne, J. R. Hinshaw, T. R. Sosnick and S. W. Englander, P Natl Acad Sci U S A, 2013, 110, 18898-18903.
11. Y. J. Bollen, M. B. Kamphuis and C. P. van Mierlo, Proc Natl Acad Sci U S A, 2006, 103, 4095-4100.
12. T. P. Knowles, M. Vendruscolo and C. M. Dobson, Nat Rev Mol Cell Biol, 2014, 15, 384-396.
13. F. Chiti and C. M. Dobson, Annu Rev Biochem, 2006, 75, 333-366.
14. F. I. Andersson, D. G. Pina, A. L. Mallam, G. Blaser and S. E. Jackson, FEBS J, 2009, 276, 2625-2635.
15. L. Breydo and V. N. Uversky, FEBS Lett, 2015, 589, 2640-2648.
16. N. Cremades, S. I. Cohen, E. Deas, A. Y. Abramov, A. Y. Chen, A. Orte, M. Sandal, R. W. Clarke, P. Dunne, F. A. Aprile, C. W. Bertoncini, N. W. Wood, T. P. Knowles, C. M. Dobson and D. Klenerman, Cell, 2012, 149, 1048-1059.
17. W. F. Xue, S. W. Homans and S. E. Radford, Proc Natl Acad Sci U S A, 2008, 105, 8926-8931.
18. A. Orte, N. R. Birkett, R. W. Clarke, G. L. Devlin, C. M. Dobson and D. Klenerman, Proc Natl Acad Sci U S A, 2008, 105, 14424-14429.
19. P. Narayan, A. Orte, R. W. Clarke, B. Bolognesi, S. Hook, K. A. Ganzinger, S. Meehan, M. R. Wilson, C. M. Dobson and D. Klenerman, Nat Struct Mol Biol, 2012, 19, 79-83.
20. A. K. Buell, C. Galvagnion, R. Gaspar, E. Sparr, M. Vendruscolo, T. P. Knowles, S. Linse and C. M. Dobson, Proc Natl Acad Sci U S A, 2014, 111, 7671-7676.
21. G. Meisl, X. Yang, E. Hellstrand, B. Frohm, J. B. Kirkegaard, S. I. Cohen, C. M. Dobson, S. Linse and T. P. Knowles, Proc Natl Acad Sci U S A, 2014, 111, 9384-9389.
22. M. Jamroz, W. Niemyska, E. J. Rawdon, A. Stasiak, K. C. Millett, P. Sulkowski and J. I. Sulkowska, Nucleic Acids Res, 2015, 43, D306-314.
23. P. Virnau, L. A. Mirny and M. Kardar, PLoS Comput Biol, 2006, 2, 122.
24. Y. L. Lai, C. C. Chen and J. K. Hwang, Nucleic Acids Res, 2012, 40, 228-231.
25. Y. L. Lai, S. C. Yen, S. H. Yu and J. K. Hwang, Nucleic Acids Res, 2007, 35, 420-424.
26. K. Saigoh, Y. L. Wang, J. G. Suh, T. Yamanishi, Y. Sakai, H. Kiyosawa, T. Harada, N. Ichihara, S. Wakana, T. Kikuchi and K. Wada, Nat Genet, 1999, 23, 47-51.
27. F. J. Chen, Y. Sugiura, K. G. Myers, Y. Liu and W. C. Lin, Proc Nat Acad Sci U S A, 2010, 107, 1636-1641.
28. L. M. Lundberg, P. Alm, J. Wharton and J. M. Polak, Histochem, 1988, 90, 9-17.
29. E. Leroy, R. Boyer, G. Auburger, B. Leube, G. Ulm, E. Mezey, G. Harta, M. J. Brownstein, S. Jonnalagada, T. Chernova, A. Dehejia, C. Lavedan, T. Gasser, P. J. Steinbach, K. D. Wilkinson and M. H. Polymeropoulos, Nature, 1998, 395, 451-452.
30. K. Bilguvar, N. K. Tyagi, C. Ozkara, B. Tuysuz, M. Bakircioglu, M. Choi, S. Delil, A. O. Caglayan, J. F. Baranoski, O. Erturk, C. Yalcinkaya, M. Karacorlu, A. Dincer, M. H. Johnson, S. Mane, S. S. Chandra, A. Louvi, T. J. Boggon, R. P. Lifton, A. L. Horwich and M. Gunel, Proc Natl Acad Sci U S A, 2013, 110, 3489-3494.
31. R. Setsuie and K. Wada, Neurochem Int, 2007, 51, 105-111.
32. Z. Liu, R. K. Meray, T. N. Grammatopoulos, R. A. Fredenburg, M. R. Cookson, Y. Liu, T. Logan and P. T. Lansbury, Jr., Proc Natl Acad Sci U S A, 2009, 106, 4635-4640.
33. R. N. Cole and G. W. Hart, J Neurochem, 2001, 79, 1080-1089.
34. H. Osaka, Y. L. Wang, K. Takada, S. Takizawa, R. Setsuie, H. Li, Y. Sato, K. Nishikawa, Y. J. Sun, M. Sakurai, T. Harada, Y. Hara, I. Kimura, S. Chiba, K. Namikawa, H. Kiyama, M. Noda, S. Aoki and K. Wada, Hum Mol Genet, 2003, 12, 1945-1958.
35. A. E. Cartier, S. N. Djakovic, A. Salehi, S. M. Wilson, E. Masliah and G. N. Patrick, J Neurosci, 2009, 29, 7857-7868.
36. M. Zetterberg, A. Sjölander, M. von Otter, M. S. Palmér, S. Landgren, L. Minthon, A. Wallin, N. Andreasen, K. Blennow and H. Zetterberg, Mol. Neurodegener., 2010, 19, 11.
37. E. K. Tan, C. S. Lu, R. Peng, Y. Y. Teo, Y. H. Wu-Chou, R. S. Chen, Y. H. Weng, C. M. Chen, H. C. Fung, L. C. Tan, Z. J. Zhang, X. K. An, G. J. Lee-Chen, M. C. Lee, S. Fook-Chong, J. M. Burgunder, R. M. Wu and Y. R. Wu, Neurobiol. Aging, 2009, 31, 2194-2196.
38. Z. J. Zhang, J. M. Burgunder, X. K. An, Y. Wu, W. J. Chen, J. H. Zhang, Y. C. Wang, Y. M. Xu, Y. R. Gou, G. G. Yuan, X. Y. Mao and R. Peng, Neurosci. Lett., 2008, 442, 200-202.
39. D. G. Healy, P. M. Abou-Sleiman, J. P. Casas, K. R. Ahmadi, T. Lynch, S. Gandhi, M. M. K. Muqit, T. Foltynie, R. Barker, K. P. Bhatia, N. P. Quinn, A. J. Lees, J. M. Gibson, J. L. Holton, T. Revesz, D. B. Goldstein and N. W. Wood, Ann. Neurol., 2006, 59, 627-633.
40. C. M. Hutter, A. Samii, S. A. Factor, J. G. Nutt, D. S. Higgins, T. D. Bird, A. Griffith, J. W. Roberts, B. C. Leis, J. S. Montimurro, D. M. Kay, K. L. Edwards, H. Payami and C. P. Zabetian, Eur. J. Neurol., 2008, 15, 134-139.
41. C. Levecque, A. Destee, V. Mouroux, E. Becquet, L. Defebvre, P. Amouyel and M. C. Chartier-Harlin, J. Neural Transm., 2001, 108, 979-984.
42. G. D. Mellick and P. A. Silburn, Neurosci. Lett., 2000, 293, 127-130.
43. P. Wintermeyer, R. Kruger, W. Kuhn, T. Muller, D. Woitalla, D. Berg, G. Becker, E. Leroy, M. Polymeropoulos, K. Berger, H. Przuntek, L. Schols, J. T. Epplen and O. Riess, Neuroreport, 2000, 11, 2079-2082.
44. Y. Momose, M. Murata, K. Kobayashi, M. Tachikawa, Y. Nakabayashi, I. Kanazawa and T. Toda, Ann. Neurol., 2002, 51, 133-136.
45. T. Toda, Y. Momose, M. Murata, G. Tamiya, M. Yamamoto, N. Hattori and H. Inoko, J Neurol, 2003, 250, III.40-III.43.
46. D. M. Maraganore, T. G. Lesnick, A. Elbaz, M. C. Chartier-Harlin, T. Gasser, R. Kruger, N. Hattori, G. D. Mellick, A. Quattrone, J. Satoh, T. Toda, J. Wang, J. P. A. Ioannidis, M. de Andrade and W. A. Rocca, Ann. Neurol., 2004, 55, 512-521.
47. M. Facheris, K. J. Strain, T. G. Lesnick, M. de Andrade, J. H. Bower, J. E. Ahlskog, J. M. Cunningham, S. Lincoln, M. J. Farrer, W. A. Rocca and D. M. Maraganore, Neurosci. Lett., 2005, 381, 131-134.
48. A. Carmine Belin, M. Westerlund, O. Bergman, H. Nissbrandt, C. Lind, O. Sydow and D. Galter, Parkinsonism Relat. Disord., 2007, 13, 295-298.
49. M. Ragland, C. Hutter, C. Zabetian and K. Edwards, Am. J. Epidemiol. , 2009, 170, 1344-1357.
50. D. M. Maraganore, M. J. Farrer, J. A. Hardy, S. J. Lincoln, S. K. McDonnell and W. A. Rocca, Neurology, 1999, 53, 1858-1860.
51. A. Elbaz, C. Levecque, J. Clavel, J. S. Vidal, F. Richard, J. R. Correze, B. Delemotte, P. Amouyel, A. Alperovitch, M. C. Chartier-Harlin and C. Tzourio, Mov. Disord., 2003, 18, 130-137.
52. J. Wang, C. Y. Zhao, Y. M. Si, Z. L. Liu, B. Chen and L. Yu, Mov. Disord., 2002, 17, 767-771.
53. E. K. Tan, K. Y. Puong, S. Fook-Chong, E. Chua, H. Shen, Y. Yuen, R. Pavanni, M. C. Wong, K. Puvan and Y. Zhao, Mov. Disord., 2006, 21, 1765-1768.
54. D. A. Forero, B. Benitez, G. Arboleda, J. J. Yunis, R. Pardo and H. Arboleda, Neurosci. Res., 2006, 55, 334-341.
55. E. H. Xu, Y. Tang, D. Li and J. P. Jia, J. Clin. Neurosci., 2009, 16, 1473-1477.
56. S. Xue and J. Jia, Brain Res., 2006, 1087, 28-32.
57. S. Metzger, P. Bauer, J. Tomiuk, F. Laccone, S. Didonato, C. Gellera, P. Soliveri, H. W. Lange, H. Weirich-Schwaiger, G. K. Wenning, B. Melegh, V. Havasi, L. Baliko, S. Wieczorek, L. Arning, J. Zaremba, A. Sulek, D. Hoffman-Zacharska, A. N. Basak, N. Ersoy, J. Zidovska, V. Kebrdlova, M. Pandolfo, P. Ribai, L. Kadasi, M. Kvasnicova, B. H. F. Weber, F. Kreuz, M. Dose, M. Stuhrmann and O. Riess, Neurogenetics, 2006, 7, 27-30.
58. R. Setsuie, Y. L. Wang, H. Mochizuki, H. Osaka, H. Hayakawa, N. Ichihara, H. Li, A. Furuta, Y. Sano, Y. J. Sun, J. Kwon, T. Kabuta, K. Yoshimi, S. Aoki, Y. Mizuno, M. Noda and K. Wada, Neurochemi Int, 2007, 50, 119-129.
59. T. Yasuda, T. Nihira, Y. R. Ren, X. Q. Cao, K. Wada, R. Setsuie, T. Kabuta, K. Wada, N. Hattori, Y. Mizuno and H. Mochizuki, J Neurochem, 2009, 108, 932-944.
60. H. C. Ardley, G. B. Scott, S. A. Rose, N. G. Tan and P. A. Robinson, J Neurochem, 2004, 90, 379-391.
61. K. Nishikawa, H. Li, R. Kawamura, H. Osaka, Y. L. Wang, Y. Hara, T. Hirokawa, Y. Manago, T. Amano, M. Noda, S. Aoki and K. Wada, Biochem Biophys Res Commun, 2003, 304, 176-183.
62. Y. T. C. Lee and S. T. D. Hsu, Curr Protein Pept Sci, 2017, 18, 733-745.
63. X. Robert and P. Gouet, Nucleic Acids Res, 2014, 42, W320-324.
64. A. Benitez-Paez, M. Villarroya, S. Douthwaite, T. Gabaldon and M. E. Armengod, RNA, 2010, 16, 2131-2143.
65. R. J. Liu, M. Zhou, Z. P. Fang, M. Wang, X. L. Zhou and E. D. Wang, Nucleic Acids Res, 2013, 41, 7828-7842.
66. H. Hori, Biomolecules, 2017, 7.
67. K. Lim, H. Zhang, A. Tempczyk, W. Krajewski, N. Bonander, J. Toedt, A. Howard, E. Eisenstein and O. Herzberg, Proteins, 2003, 51, 56-67.
68. A. L. Mallam and S. E. Jackson, J Mol Biol, 2006, 359, 1420-1436.
69. A. L. Mallam and S. E. Jackson, J Mol Biol, 2007, 366, 650-665.
70. A. L. Mallam and S. E. Jackson, Structure, 2007, 15, 111-122.
71. T. Christian, R. Sakaguchi, A. P. Perlinska, G. Lahoud, T. Ito, E. A. Taylor, S. Yokoyama, J. I. Sulkowska and Y. M. Hou, Nat Struct Mol Biol, 2016, 23, 941-948.
72. S. Wallin, K. B. Zeldovich and E. I. Shakhnovich, J Mol Biol, 2007, 368, 884-893.
73. J. I. Sulkowska, P. Sulkowski and J. Onuchic, Proc Natl Acad Sci U S A, 2009, 106, 3119-3124.
74. J. K. Noel, J. I. Sulkowska and J. N. Onuchic, P Natl Acad Sci U S A, 2010, 107, 15403-15408.
75. S. Beccara, T. Skrbic, R. Covino, C. Micheletti and P. Faccioli, PLoS Comput Biol, 2013, 9, e1003002.
76. J. I. Sulkowska, E. J. Rawdon, K. C. Millett, J. N. Onuchic and A. Stasiak, Proc Natl Acad Sci U S A, 2012, 109, E1715-1723.
77. N. P. King, A. W. Jacobitz, M. R. Sawaya, L. Goldschmidt and T. O. Yeates, Proc Natl Acad Sci U S A, 2010, 107, 20732-20737.
78. S. T. D. Hsu, Sci Rep, 2016, 6.
79. A. L. Mallam, J. M. Rogers and S. E. Jackson, Proc Natl Acad Sci U S A, 2010, 107, 8189-8194.
80. S. J. Hsieh, A. L. Mallam, S. E. Jackson and S. T. Hsu, Biomol NMR Assign, 2014, 8, 439-442.
81. S. J. Hsieh, A. L. Mallam, S. E. Jackson and S. T. Hsu, Biomol NMR Assign, 2014, 8, 283-285.
82. S. Keller, C. Vargas, H. Zhao, G. Piszczek, C. A. Brautigam and P. Schuck, Anal Chem, 2012, 84, 5066-5073.
83. J. C. D. Houtman, P. H. Brown, B. Bowden, H. Yamaguchi, E. Appella, L. E. Samelson and P. Schuck, Protein Sci, 2007, 16, 30-42.
84. H. Zhao, G. Piszczek and P. Schuck, Methods, 2015, 76, 137-148.
85. C. Tanford, Adv Protein Chem, 1970, 24, 1-95.
86. M. M. Santoro and D. W. Bolen, Biochemistry, 1988, 27, 8063-8068.
87. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer and A. Bax, J Biomol NMR, 1995, 6, 277-293.
88. T. D. Goddard and D. G. Kneller.
89. D. Fushman, O. Ohlenschlager and H. Ruterjans, J. Biomol. Struct. Dyn., 1994, 11, 1377-1402.
90. D. M. Ferraro, N. Lazo and A. D. Robertson, Biochemistry, 2004, 43, 587-594.
91. A. Case and R. L. Stein, Biochemistry, 2006, 45, 2443-2452.
92. S. J. Luchansky, P. T. Lansbury, Jr. and R. L. Stein, Biochemi, 2006, 45, 14717-14725.
93. Y. T. C. Lee, C. Y. Chang, S. Y. Chen, Y. R. Pan, M. R. Ho and S. T. D. Hsu, Sci Rep, 2017, 7, 45174.
94. F. I. Andersson, E. F. Werrell, L. McMorran, W. J. K. Crone, C. Das, S. T. D. Hsu and S. E. Jackson, J Mol Biol, 2011, 407, 261-272.
95. C. Das, Q. Q. Hoang, C. A. Kreinbring, S. J. Luchansky, R. K. Meray, S. S. Ray, P. T. Lansbury, D. Ringe and G. A. Petsko, Proc Natl Acad Sci U S A, 2006, 103, 4675-4680.
96. D. A. Boudreaux, T. K. Maiti, C. W. Davies and C. Das, Proc Natl Acad Sci U S A, 2010, 107, 9117-9122.
97. S. C. Lou, S. Wetzel, H. Y. Zhang, E. W. Crone, Y. T. C. Lee, S. E. Jackson and S. T. D. Hsu, J Mol Biol, 2016, 428, 2507-2520.
98. J. K. Myers, C. N. Pace and J. M. Scholtz, Protein Sci, 1995, 4, 2138-2148.
99. D. Schneidman-Duhovny, M. Hammel and A. Sali, Nucleic Acids Research, 2010, 38, W540-W544.
100. P. Weinkam, J. Pons and A. Sali, Proc Natl Acad Sci U S A, 2012, 109, 4875-4880.
101. J. E. Kohn, I. S. Millett, J. Jacob, B. Zagrovic, T. M. Dillon, N. Cingel, R. S. Dothager, S. Seifert, P. Thiyagarajan, T. R. Sosnick, M. Z. Hasan, V. S. Pande, I. Ruczinski, S. Doniach and K. W. Plaxco, Proc Natl Acad Sci U S A, 2004, 101, 12491-12496.
102. P. M. Shih, I. Wang, Y. T. C. Lee, S. J. Hsieh, S. Y. Chen, L. W. Wang, C. T. Huang, C. T. Chien, C. Y. Chang and S. T. D. Hsu, J Phys Chem B, 2015, 119, 5437-5443.
103. S. M. Kumar, P. C. Lyu and S.-T. D. Hsu, Chinese Journal of Magnetic Resonance, 2015, 32, 329-340.
104. H. Y. Mao, S. A. Hart, A. Schink and B. A. Pollok, J Am Chem Soc, 2004, 126, 2670-2671.
105. C. S. Theile, M. D. Witte, A. E. M. Blom, L. Kundrat, H. L. Ploegh and C. P. Guimaraes, Nat Protoc, 2013, 8, 1800-1807.
106. A. L. Mallam and S. E. Jackson, J Mol Biol, 2006, 359, 1420-1436.
107. J. A. Marsh, V. K. Singh, Z. C. Jia and J. D. Forman-Kay, Protein Sci, 2006, 15, 2795-2804.
108. A. De Simone, A. Cavalli, S. T. D. Hsu, W. Vranken and M. Vendruscolo, J Am Chem Soc, 2009, 131, 16332-+.
109. T. C. Sayre, T. M. Lee, N. P. King and T. O. Yeates, Protein Eng Des Sel, 2011, 24, 627-630.
110. D. J. Selkoe, Behav Brain Res, 2008, 192, 106-113.
111. S. T. Ferreira, M. V. Lourenco, M. M. Oliveira and F. G. De Felice, Front Cell Neurosci, 2015, 9, 191.
112. S. T. Ferreira, M. N. Vieira and F. G. De Felice, IUBMB Life, 2007, 59, 332-345.
113. A. W. Fitzpatrick, G. T. Debelouchina, M. J. Bayro, D. K. Clare, M. A. Caporini, V. S. Bajaj, C. P. Jaroniec, L. Wang, V. Ladizhansky, S. A. Muller, C. E. MacPhee, C. A. Waudby, H. R. Mott, A. De Simone, T. P. Knowles, H. R. Saibil, M. Vendruscolo, E. V. Orlova, R. G. Griffin and C. M. Dobson, Proc Natl Acad Sci U S A, 2013, 110, 5468-5473.
114. S. W. Chen, S. Drakulic, E. Deas, M. Ouberai, F. A. Aprile, R. Arranz, S. Ness, C. Roodveldt, T. Guilliams, E. J. De-Genst, D. Klenerman, N. W. Wood, T. P. Knowles, C. Alfonso, G. Rivas, A. Y. Abramov, J. M. Valpuesta, C. M. Dobson and N. Cremades, Proc Natl Acad Sci U S A, 2015, 112, E1994-2003.
115. N. Lorenzen, S. B. Nielsen, A. K. Buell, J. D. Kaspersen, P. Arosio, B. S. Vad, W. Paslawski, G. Christiansen, Z. Valnickova-Hansen, M. Andreasen, J. J. Enghild, J. S. Pedersen, C. M. Dobson, T. P. Knowles and D. E. Otzen, J Am Chem Soc, 2014, 136, 3859-3868.
116. A. L. Mallam, E. R. Morris and S. E. Jackson, Proc Natl Acad Sci U S A, 2008, 105, 18740-18745.
117. A. L. Mallam and S. E. Jackson, Nat Chem Biol, 2012, 8, 147-153.
118. Y. Yu and S. Lutz, Trends Biotechnol, 2011, 29, 18-25.
119. M. Trabi and D. J. Craik, Trends Biochem Sci, 2002, 27, 132-138.
120. E. Haglund, M. O. Lindberg and M. Oliveberg, J Biol Chem, 2008, 283, 27904-27915.
121. M. Lindberg, J. Tangrot and M. Oliveberg, Nat Struct Biol, 2002, 9, 818-822.
122. H. X. Zhou, J Mol Biol, 2003, 332, 257-264.
123. F. Ziegler, N. C. Lim, S. S. Mandal, B. Pelz, W. P. Ng, M. Schlierf, S. E. Jackson and M. Rief, Proc Natl Acad Sci U S A, 2016, 113, 7533-7538.
124. C. Z. He, G. Lamour, A. Xiao, J. Gsponer and H. B. Li, J Am Chem Soc, 2014, 136, 11946-11955.
125. C. He, G. Z. Genchev, H. Lu and H. Li, J Am Chem Soc, 2012, 134, 10428-10435.
126. P. Bernado, E. Mylonas, M. V. Petoukhov, M. Blackledge and D. I. Svergun, J Am Chem Soc, 2007, 129, 5656-5664.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69856-
dc.description.abstractProtein folding is driven by native interactions encoded within primary sequences in order to attain a defined three-dimensional structure to perform biological functions. Unlike a myriad of other proteins, knotted proteins exhibit relatively rugged folding energy landscapes and multiple folding pathways. In this thesis, we explore the folding energy landscape and characterize folding intermediates of two topologically knotted proteins, namely human ubiquitin carboxyl hydrolase UCH-L1 and bacterial tRNA methyltransferase YibK, which have Gordian 52- and trefoil 31-knotted topologies, respectively.
UCH-L1 is a monomeric protein with a 52-knotted fold. Using elastic light scattering coupled with size-exclusion chromatography (SEC) under denatured conditions we identified well-defined dimeric and tetrameric folding intermediates of UCH-L1 that are considerably disordered and dynamic while its folded core is retained. Moreover, we observed that the Parkinson’s disease-associated mutation I93M, which increases the proportion of partially unfolded forms in both native and folding intermediate state of UCH-L1, induces the formation of higher order oligomerization under the same denatured conditions we used. This result suggested a potential misfolding and aggregation pathway that aligns with previous observations that the I93M mutation can increase aggregation propensity of UCH-L1 implicated in Parkinson’s disease pathogenesis.
The other part of this dissertation describes the application of post-translational protein engineering to study knotted proteins. Sortase mediated the end-to-end closure of the 31-knotted architecture of YibK, transforming a conventionally knotted protein into a true mathematical 31 knot without loose ends. The cyclization neither alters the overall structure nor protein function. However, it substantially increases the thermostability and remodels the folding pathway of YibK to prevent chemically induced aggregation. These results provided a strategy to characterize the productive knotted folding intermediates that are involved in knotted protein folding pathways.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:31:04Z (GMT). No. of bitstreams: 1
ntu-107-D02B46003-1.pdf: 9376013 bytes, checksum: e132a9922e385511df0bbb8e2166d1fd (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsAbstract 10
Chapter 1. Introduction 12
1.1. Protein folding and misfolding 12
1.1.1 De novo protein folding and protein folding theories 12
1.1.2 Protein misfolding and aggregation in human diseases 16
1.2. Topologically knotted proteins 17
1.2.1 Topological knots in protein structures 17
1.2.2 Ubiquitin carboxyl terminal hydrolase L1 19
1.2.3 Neurodegeneration-associated mutations on UCH-L1 20
1.2.4 Bacterial tRNA methyltransferases 26
1.3. Folding mechanism of knotted proteins 31
1.3.1 Knotted protein folding in silico 31
1.3.2 Experimental detection of knot formation in proteins 33
Chapter 2. Materials and methods: 36
2.1. Recombinant protein large-scale expression and purification: 36
2.1.1 Homo sapiens UCH-L1 and its disease-associated mutants 36
2.1.2 Pseudomonas aeruginosa YibK (PaYibK) 40
2.1.3 Sortase-mediated protein cyclization of Pseudomonas aeruginosa YibK 43
2.2. Investigation of protein-protein and protein-ligand interaction by isothermal titration calorimetry (ITC): 47
2.2.1 Interaction between ubiquitin and UCHs 47
2.2.2 Interaction between YibK and its cofactor AdoHcy 47
2.3. Enzyme kinetics of UCHs 49
2.4. Analytical SEC coupled with static multi-angle light scattering and quasi-elastic light scattering (SEC-MALS/DLS): 50
2.4.1 Theoretical background of static multi-angle and quasi-elastic light scattering 50
2.4.2 Consideration of SEC-MALS 52
2.5. Analytical SEC coupled with small-angle X-ray scattering (SAXS): 54
2.5.1 Theoretical background of SAXS 54
2.5.2 Experimental aspects in SAXS 57
2.6. Fast protein folding kinetics probed by stopped-flow kinetic measurement 59
2.6.1 Single-mixing procedure 59
2.6.2 Double-mixing procedure 59
2.6.3 Kinetic models and chevron plot analyses 59
2.7. Global analysis of equilibrium chemical denaturation: 63
2.7.1 Sample preparation for intrinsic fluorescence and far-UV circular dichroism measurements 63
2.7.2 Equilibrium protein folding models for chemical denaturation 64
2.7.3 Equilibrium protein folding models for thermal denaturation 70
2.8. Solution nuclear magnetic resonance (NMR) spectroscopy: 71
2.9. NMR hydrogen-deuterium exchange (HDX) analysis: 71
2.9.1 Principle of hydrogen-deuterium exchange for NMR application 71
2.9.2 Experimental aspects of NMR HDX 72
2.10. NMR 15N spin relaxation measurements 73
2.11. Hydrogen-deuterium exchange with mass spectrometry (HDX-MS): 74
2.11.1 Principle of hydrogen-deuterium exchange observed by mass spectrometry 74
2.11.2 Experimental aspects and setups of mass spectrometry 74
Chapter 3. Biochemical and structural impacts on UCH-L1 arising from neurodegenerative disease-associated mutations 77
3.1 UCH-L1 constructs and protein variants in this thesis: 77
3.2 Comparison of enzymatic activities of UCH-L1 and its disease-associated variants 79
3.2.1 Parkinson’s disease-associated mutation I93M reduces the catalytic activity of UCH-L1 two-folds but does not affect ubiquitin recognition 79
3.2.2 Parkinson’s disease-susceptible mutation S18Y affect neither hydrolysis activity nor ubiquitin binding 81
3.2.3 Recessive loss-of-function mutation E7A disrupts ubiquitin recognition of UCH-L1 82
3.3 Comparison of structures and folding stabilities of UCH-L1 to disease-associated variants 83
3.3.1 PD-associated mutation I93M destabilizes the native and intermediate state stability 85
3.3.2 S18Y and E7A mutations do not significantly alter the folding pathway nor folding stability 86
3.4 Concluding remarks 93
Chapter 4. Characterization of the structural plasticity and folding intermediates of the ubiquitin carboxyl terminal hydrolase UCH-L1 96
4.1. Structural plasticity and partially unfolded forms of UCH-L1 revealed by NMR and mass-based HDX 96
4.1.1 Structural flexibility of UCH-L1 96
4.1.2 Ubiquitin binding affords structural stabilization and enzymatic productive form of UCH-L1 99
4.2. Investigation of folding thermodynamics and kinetics of UCH-L1 104
4.2.1 Equilibrium and kinetic folding intermediates of UCH-L1 104
4.2.2 Thermodynamic properties of UCH-L1 folding intermediates are protein concentration-dependent 106
4.3. Characterization of UCH-L1 folding intermediates 108
4.3.1 Thermodynamically stable equilibrium folding intermediates of UCH-L1 specifically assembles into a dimer and tetramer 108
4.3.2 Dimeric folding intermediate of UCH-L1 loses compact fold but still maintains the native-like features 114
4.4. PD-associated mutation I93M results in aggregation-prone folding intermediates 119
4.5. Concluding remarks 121
Chapter 5. Creating a true knot without loose ends in a tRNA methyltransferase YibK 122
5.1. Cyclization of a trefoil knotted topology in YibK by sortase-mediated protein ligation 123
5.2. Backbone cyclization does not alter native structure nor cofactor binding ability of YibK 124
5.3. Cyclization of YibK enhances the native state stability via remodeling the folding pathways 127
5.4. Cyclized YibK exhibits a compact conformational ensemble under denatured states 135
5.5. Denatured cyclized YibK retains residual secondary structures and exhibits rugged free energy landscape 138
5.6. Concluding remarks 143
Chapter 6. Discussions 144
6.1. Misfolding pathways of proteins implicated in neurodegenerative diseases 144
6.2. Knotted protein folding in vitro and in vivo 145
6.3. Key technologies and protein engineering developed for the study of knotted proteins 146
6.4. Advantages of using multiparametric biophysical tools to investigate the protein folding intermediates 148
References 150
Appendix 159
dc.language.isoen
dc.subject扭結蛋白zh_TW
dc.subject蛋白折疊zh_TW
dc.subjectknotted proteinsen
dc.subjectprotein foldingen
dc.title描繪扭結蛋白之結構動力學與摺疊機制zh_TW
dc.titleDelineating the Structural Dynamics and Folding Mechanism of Topologically Knotted Proteinsen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.oralexamcommittee蘇士哲(Shih-Che Sue),呂平江,陳佩燁,黃人則
dc.subject.keyword扭結蛋白,蛋白折疊,zh_TW
dc.subject.keywordknotted proteins,protein folding,en
dc.relation.page178
dc.identifier.doi10.6342/NTU201800566
dc.rights.note有償授權
dc.date.accepted2018-02-21
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
9.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved