Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69836
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周崇熙
dc.contributor.authorHsin-Ni Lien
dc.contributor.author李欣霓zh_TW
dc.date.accessioned2021-06-17T03:30:09Z-
dc.date.available2023-03-01
dc.date.copyright2018-03-01
dc.date.issued2018
dc.date.submitted2018-02-22
dc.identifier.citationAdewoye, L., Sutherland, A., Srikumar, R., & Poole, K. (2002). The MexR repressor of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: characterization of mutations compromising activity. Journal of Bacteriology, 184, 4308-4312.
Ahn, S. J., Costa, J., & Emanuel, J. R. (1996). PicoGreen quantitation of DNA: effective evaluation of samples pre-or post-PCR. Nucleic Acids Research, 24(13), 2623-2625.
Al-Nabulsi, A. A., Osaili, T. M., Shaker, R. R., Olaimat, A. N., Jaradat, Z. W., Zain- Elabedeen, N. A., & Holley, R. A. (2015). Effects of osmotic pressure, acid, or cold stresses on antibiotic susceptibility of Listeria monocytogenes. Food Microbiology, 46, 154-160.
Atlas, R. M. (2004). Handbook of Microbiological Media. London.
Bae, D., Mezal, E. H., Smiley, R. D., Cheng, C. M., & Khan, A. A. (2014). The sub-species characterization and antimicrobial resistance of Listeria monocytogenes isolated from domestic and imported food products from 2004 to 2011. Food Research International, 64, 656-663.
Bajpai, V. K., Sharma, A., & Baek, K. H. (2013). Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control, 32(2), 582-590.
Bertrand, S., Huys, G., Yde, M., D'Haene, K., Tardy, F., Vrints, M., Swings, J., & Collard, J. (2005). Detection and characterization of tet(M) in tetracycline resistant Listeria strains from human and food-processing origins in Belgium and France. Journal of Medical Microbiology, 54, 1151-1156.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Bonev, B., Hooper, J., & Parisot, J. (2008). Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. Journal of Antimicrobial Chemotherapy, 61(6), 1295-1301.
Borate, A., Khambhapati, A., Udgire, M., Paul, D., & Mathur, S. (2014). Preliminary phytochemical studies and evaluation of antibacterial activity of Psoralea corylifolia seed extract. American Journal of Phytomedicine and Clinical Therapeutics, 2(1), 95-101.
Lungu, B., O'Bryan, C. A., Muthaiyan, A., Milillo, S. A., Johnson, M. G., Crandall, P. G., & Ricke, S. C. (2011). Listeria monocytogenes: Antibiotic resistance in food production. Foodborne Pathogens and Disease, 8(5), 569-578.
Cakir, A., Kordali, S., Zengin, H., Izumi, S., & Hirata, T. (2004). Composition and antifungal activity of essential oils isolated from Hypericum hyssopifolium and Hypericum heterophyllum. Flavour and Fragrance Journal, 19(1), 62-68.
Canetti, G. (1965). Present aspects of bacterial resistance in tuberculosis. American Review of Respiratory Disease, 92, 687-703
Carpenter, C. F., & Chambers, H. F. (2004). Daptomycin: another novel agent for treating infections due to drug-resistant gram-positive pathogens. Clinical Infectious Diseases, 38(7), 994-1000.
Carson, C. F., Hammer, K. A., & Riley, T. V. (1995). Broth micro-dilution method for determining the susceptibility of Escherichia coli and Staphylococcus aureus to the essential oil of Melaleuca alternifolia (tea tree oil). Microbios, 82(332), 181-185.
Cervinkova, D., Babak, V., Marosevic, D., Kubikova, I., & Jaglic, Z. (2013). The role of the qacA gene in mediating resistance to quaternary ammonium compounds. Microbial Drug Resistance, 19(3), 160-167.
Chambers, H. F. (2001). The changing epidemiology of Staphylococcus aureus? Emerging Infectious Diseases, 7, 178–182.
Chopra, B., Dhingra, A. K., & Dhar, K. L. (2013). Psoralea corylifolia L. (Buguchi) — Folklore to modern evidence: Review. Fitoterapia,90, 44-56.
Chuanchuen, R., Beinlich, K., Hoang, T. T., Becher, A., Karkhoff-Schweizer, R. R. & Schweizer, H. P. (2001). Cross resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrobial Agents and Chemotherapy, 45, 428-432.
Citarasu, T., Venkatramalingam, K., Micheal Babu, M., Raja Jeya Sekar, R., & Petermarian, M. (2003). Influence of the antibacterial herbs, Solanum trilobatum, Andrographis paniculata and Psoralea corylifolia on the survival, growth and bacterial load of Penaeus monodon post larvae. Aquaculture International, 11(6), 581-595.
Cocito, C., Giambattista, M. D., Nyssen, E., & Vannuffel, P. (1997). Inhibition of protein synthesis by streptogramins and related antibiotics. Journal of Antimicrobial Chemotherapy, 39(1), 7-13.
Compton, S. J., & Jones, C. G. (1985). Mechanism of dye response and interference in the Bradford protein assay. Analytical Biochemistry, 151(2), 369-374.
Connell, S. R., Tracz, D. M., Nierhaus, K. H., & Taylor, D. E. (2003). Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrobial Agents and Chemotherapy, 47(12), 3675-3681.
Cox, S. D., Mann, C. M., Markham, J. L., Gustafson, J. E., Warmington, J. R., & Wyllie, S. G. (2001). Determining the antimicrobial actions of tea tree oil. Molecules, 6, 87-91.
Ceylan, E. F., & Daniel, Y. C. (2004). Antimicrobial activity of spices. Journal of Rapid Methods & Automation in Microbiology, 12(1), 1-55.
Dabul, A. N. G., Avaca-Crusca, J. S., Tyne, D. V., Gilmore, M. S., & Camargo, I. L. B. C. (2017). Resistance in in Vitro selected tigecycline-resistant methicillin-resistant Staphylococcus aureus sequence type 5 is driven by mutations in mepR and mepA genes. Microbial Drug Resistance, 1-8.
Damrosch, D. S. (1946). Chemoprophylaxis and sulfonamide resistant streptococci. Journal of the American Medical Association, 130, 124-128.
Davis, W. W., & Stout, T. R. (1971). Disc plate method of microbiological antibiotic assay. I. Factors influencing variability and error. Journal of Applied Microbiology, 22(4), 659-665.
Davidm M. Z., & Daum, R. S. (2010). Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clinical Microbiology Reviews, 23(3), 616-687.
Davidson, P. M., & Parish, M. E. (1989). Methods for testing the efficacy of food antimicrobials. Food Technology, 43, 148-155.
Denyer, S. P., & Maillard, J. Y. (2002). Cellular impermeability and uptake of biocides and antibiotics in gram-negative bacteria. Journal of Applied Microbiology, 31, 35-45.
Devi, K. P., Nisha, S. A., Sakthivel, R., & Pandian, S. K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology, 130(1), 107-115.
Diao, W. R., Hu, Q. P., Zhang, H., & Xu, J. G. (2014). Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control, 35(1), 109-116.
Diep, B. A., Gill, S. R., Chang, R. F., Phan, T. H. V., Chen, J. H., Davidson, M. G., Lin, F., Lin, J., Carleton, H. A., Mongodin, E. F., Sensabaugh, G. F., & Perdreau-Remington, F. (2006). Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. The Lancet, 367(9512), 4-10.
Enright, M. C., Robinson, D. A., Randle, G., Feil, E. J., Grundmann, H., & Spratt, G. B. (2002). The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proceedings of the National Academy of Sciences, 99(11), 7687-7692.
Eom, S. H., Jung, Y. J., Lee, D. S., Yim, M. J., Kim, H. S., Lee, S. H., Myeong, J. I., Lee, J., Kim, H. W., Kim, K. H., Lee, M. S., & Kim, Y. M. (2015). Studies on antimicrobial activity of Poncirus trifoliata ethyl extract fraction against methicillin-resistant Staphylococcus aureus and to elucidate its antibacterial mechanism. Journal of Environmental Biology, 37, 129-134.
Evans, K., & Poole, K. (1999). The MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa is growth-phase regulated. FEMS Microbiology Letter, 173, 35-39.
Farber, J. M., & Peterkin, P. I. (1991). Listeria monocytogenes, a food-borne pathogen. Microbiological Reviews, 55(3), 476-511.
Febler, A., Scott, C., Kadlec, K., Ehricht, R., Monecke, S., & Schwarz, S. (2010). Characterization of methicillin-resistant Staphylococcus aureus ST398 from cases of bovine mastitis. Journal of Antimicrobial Chemotherapy, 65(4), 615-629.
Ferone, R. (1977). Folate metabolism in malaria. Bulletin of the World Health Organization, 55(2), 291-298.
Ferrero, L., Cameron, B., & Crouzet, J. (1995). Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacin-resistant mutant of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 39(7), 1554-1558.
Gao, C., Tian, C., Lu, Y., Xu, J., Luo, J., & Guo, X. (2011). Essential oil composition and antimicrobial activity of Sphallerocarpus gracilis seeds against selected food-related bacteria. Food Control, 22(3), 517-522.
Ghannoum, M. A. (1988). Studies on the anticandidal mode of action of Allium sativum (Garlic). Microbiology, 134(11), 2917-2924.
Gidwani, B., Alaspure, R. N., Duragkar, N. J., Singh, V., Rao, S. P., & Shukla, S. S. (2010). Evaluation of a novel herbal formulation in the treatment of eczema with Psoralea corylifolia. Iranian Journal of Dermatology, 13, 122-127.
Goldstein, J. I. (2012). Practical Scanning Electron Microscopy: Electron and Ion Microprobe Analysis. New York.
Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W. M., Scott, J. H. J., & Joy, D. C. (2017). Scanning Electron Microscopy and X-Ray Microanalysis. New York.
Godreuil, S., Galimand, M., Gerbaud, G., Jacquet, C., & Courvalin, P. (2003). Efflux pump lde is associated with fluoroquinolone resistance in Listeria monocytogenes. Antimicrobial Agents and Chemotherapy, 47(2), 704-708.
Gurtovenko, A. A., & Vattulainen, I. (2007). Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance. Biophysical Journal, 92(6), 1878-1890.
Hammond, J. B. W., & Kruger, N. J. (1988). The bradford method for protein quantitation. New Protein Techniques, 25-32.
Hancock, R. E. W. (1997). The bacterial outer membrane as a drug barrier. Trends in Microbiology, 5(1), 37-42.
Hiramatsu, K., Kuroda, M., Baba, T., & Okuma, K. (2002). The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends in Microbiology, 9(10), 486-493.
Hiroshi, N. (1994). Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science, 264, 382-388.
Hussain, F. M., Boyle-Vavra, S., Bethel, C. D., & Daum, R. S. (2000). Current trends in community-acquired methicillin-resistant Staphylococcus aureus at a tertiary care pediatric facility. The Pediatric Infectious Disease Journal, 19, 1163-1166.
Jaradat, N., Adwan, L., K’aibni, S., Shraim, N., & Zaid, A. N. (2016). Chemical composition, anthelmintic, antibacterial and antioxidant effects of Thymus bovei essential oil. BMC Complementary and Alternative Medicine, 16(418), 1-7.
Jenkins, G. C., Hughes, D. T. D., & Hall, P. C. (1970). A haematologcal study of patients receiving long-term treatment with trimethoprim and suiphonamide. Journal of Clinical Pathology, 23, 392-396.
Jevons, M. P. (1961). Penicillinase. British Medical Journal, 1, 124–125.
Joyce, L. F., Downes, J., Stockman, K., & Andrew, J. H. (1992). Comparison of five methods, including the PDM Epsilometer test (E test), for antimicrobial susceptibility testing of Pseudomonas aeruginosa. Journal of Clinical Microbiology, 30(10), 2709–2713.
Kaatz, G. W., McAleese, F., & Seo, S. M. (2005). Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrobial Agents and Chemotherapy, 49, 1857-1864.
Katayama, Y., Ito, T., & Hiramatsu, K. (2000). A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 44, 1549–1555.
Katsura, H., Tsukiyama, R. I., Suzuki, A., & Kobayashi, M. (2001). In vitro antimicrobial activities of bakuchiol against oral microorganisms. Antimicrobial Agents and Chemotherapy, 45(11), 3009-3013.
Kernodle, D.S., Fischetti, V. A., Novick, P. P., Ferretti, J. J., Portnoy, D. A., & Rood, J. I. (2000). Mechanisms of resistance to β-lactam antibiotics. In Gram-positive pathogens. American Society for Microbiology, 609–620.
Khatune, N. A., Ekramul, I. M., Ekramul, H. M., Khondkar, P., & Mukhlesur, R. M. (2004). Antibacterial compounds from the seeds of Psoralea corylifolia. Fitoterapia, 75(2), 228-230.
Kim, D. W. (2001). Real time quantitative PCR. Experimental & molecular medicine, 33(1), 101-109.
Kirby, W. M. M. (1944). Extraction of a higly potent penicillin inactivator from penicillin resistant staphylococci. Science, 99, 452–453.
Kotan, R., Kordali, S., & Cakir, A. (2007). Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 62(7), 507-513.
Krishnamurthi, A. K., Manjunath, B. L., Sastri, B. N., Deshaprabhu, S. B., & Chadha, Y. R. (1969). The wealth of India: raw materials, vol. VII, CSIR, New Delhi.
Lester, W. (1972). Rifampin: a semisynthetic derivative of rifamycin-a prototype for the future. Annual Review of Microbiology, 26, 85-102.
Levy, S. B. (2001). Antibiotic resistance: consequences of inaction. Clinical Infectious Diseases, 33(3), 124-129.
Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Journal of Natural Medicines, 10(l), 122–129.
Lowy, F. D. (2003). Antimicrobial resistance: the example of Staphylococcus aureus. Journal of Clinical Investigation, 111(9), 1265-1273.
Lui, D. (2000). Chinese medicine, Shanghai Scientific and Technical Publishers, China.
Lv, F., Liang, H., Yuan, Q., & Li, C. (2011). In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Research International, 44(9), 3057-3064.
Lynch, A. S. (2006). Efflux systems in bacterial pathogens: an opportunity for therapeutic intervention? An industry view. Biochemical Pharmacology, 71, 949-956.
Markham, P. N., Neyfakh, A. A. (1996) Inhibition of the multidrug transporter NorA prevents emergence of norfloxacin resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 40, 2673–2674.
Markham, P. N., Westhaus, E., Klyachko, K., Johnson, M. E., & Neyfakh, A. A. (1999). Multiple novel inhibitors of the norA multidrug transporter of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 43(10), 2404-2408.
Marquez, B. (2005). Bacterial efflux systems and efflux pumps inhibitors. Biochimie, 87(12), 1137-1147.
Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157(11), 2893-2902.
Mata, M. T., Baquero, E., Perez-Diaz, J. C. (2000). A multidrug efflux transporter in Listeria monocytogenes. FEMS Microbiology Letters, 187, 185-188.
Maxwell, A. (1997). DNA gyrase as a drug target. Trends in Microbiology, 5(3), 102-109.
Mayrhofer, S., Paulsen, P., Smulders, J. M. F., & Hilbert, F. (2004). Antimicrobial resistance of five major food-borne pathogens isolated from beef, pork and poultry. International Journal of Food Microbiology, 97, 23-29.
McGowan, J. E. (2001). Economic impact of antimicrobial resistance. Emerging Infectious Diseases, 7(2), 286-292.
Menninger, J. R., & OTTO, D. P. (1982). Erythromycin, carbomycin, and spiramycin inhibit protein synthesis by stimulating the dissociatioi of peptidyl-tRNA from ribosomes. Antimicrobial Agents and Chemotherapy, 21(5), 811-818.
Naczk, M., & Shahidi, F. (2006). Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis, 41(5), 1523-1542.
Ncube, N. S. (2008). Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. African Journal of Biotechnology, 7 (12), 1797-1806.
Newton, S. M., Lau, C., Gurcha, S. S., Besra, G. S., & Wright, C. W. (2002). The evaluation of forty-three plant species for in vitro antimycobacterial activities; isolation of active constituents from Psoralea corylifolia and Sanguinaria canadensis. Journal of Ethnopharmacology, 79(1), 57-67.
Notley-Robb, L., Death, A., & Ferenci, T. (1997) The relationship between external glucose concentration and cAMP levels inside Escherichia coli : implications for models of phosphotransferase-medi-ated regulation of adenylate cyclase. Microbiology, 143, 1909-1918.
Okada, Y., Monden, S., Suzuki1, H., Nakama, A., Ida, M., & Igimi, S. (2015). Antimicrobial susceptibilities of Listeria monocytogenes isolated from the imported and the domestic foods in Japan. Journal of Food and Nutrition Sciences, 3(1), 70-73.
Okeke, I. N., Lamikanra, A., & Edelman, R. (1999). Socioeconomic and behavioral factors leading to acquired bacterial resistance to antibiotics in developing countries. Emerging Infectious Diseases, 5(1), 18-27.
Oatley, C. W., Nixon, W. C., & Pease, R. F. W. (1966). Scanning electron microscopy. Advances in Electronics and Electron Physics, 21, 181-247.
Parekh, J., Karathia, N., & Chanda, S. (2006). Screening of some traditionally used medicinal plants for potential antibacterial activity. Indian Journal of Pharmaceutical Sciences, 68(6), 832-834.
Pérez-Díaz, J. C., Vicente, M. F., & Baquero, F. (1982). Plasmids in Listeria. Plasmid, 8(2), 112-118.
Pesavento, G., Ducci, B., Nieri, D., Comodo, N., & Lo, N. A. (2010). Prevalence and antibiotic resistance of Listeria spp. isolated from raw meat and retail foods. Food Control, 21, 708–713.
Petrus, E. M., Tinakumari, S., Chai, L. C., Ubong, A., Tunung, R., Elexson, N., Chai, L. F., & Son, R. (2011). A study on the minimum inhibitory concentration and minimum bactericidal concentration of Nano Colloidal Silver on food-borne pathogens. International Food Research Journal, 18, 55-66.
Popham, D. L., & Young, K. D. (2003). Role of penicillin-binding proteins in bacterial cell morphogenesis. Current Opinion in Microbiology, 6, 594-599.
Poyart-Salmeron, C., Carlier, C., Trieu-Cuot, P., Courtieu, A. L., & Courvalin, P. (1990). Transferable plasmid-mediated antibiotic resistance in Listeria monocytogenes. The Lancet, 335, 1422-1426.
Quillin, S. J., Schwartz, K. T., & Leber, J. H. (2011). The novel Listeria monocytogenes bile sensor BrtA controls expression of the cholic acid efflux pump MdrT. Molecular Microbiology, 81(1), 129-142.
Rand, J. D., Danby, S. G., Greenway, D. L. A. & England, R. R. (2002). Increased expression of the multidrug efflux genes acrAB occurs during slow growth of Escherichia coli. FEMS Microbiology Letters, 207, 91-95.
Rajeevan, M. S., Ranamukhaarachchi, D. H., VernonElizabeth, S. D., & Unger. E. R. (2001). Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 25(4), 443-451.
Rammelkamp, C. H., & Maxon, T. (1942). Resistance of Staphylococcus aureus to the action of penicillin. Proceedings of the Society for Experimental Biology and Medicine, 51, 386–389.
Richter, S. S., Doern, G. V., Heilmann, K. P., Miner, S., Tendolkar, S., Riahi, F., & Diekemab, D. J. (2016). Detection and prevalence of penicillin-susceptible staphylococcus aureus in the United States in 2013. Journal of Clinical Microbiology, 54(3), 812-814.
Roberts, M. C., Facinelli, B., Giovanetti, E., & Varaldo, P. E. (1996). Transferable erythromycin resistance in Listeria spp. isolated from food. Applied and Environmental Microbiology, 62, 269–270.
Romanova, N. A., Wolffs, P. F. G., Brovko, L. Y., & Griffiths, M. W. (2006). Role of efflux pumps in adaptation and resistance of Listeria monocytogenes to benzalkonium chloride. Applied and Environmental Microbiology, 72(5), 3498-3503.
Rowe, B., Ward, L. R., & Threlfall, E. J. (1997). Multidrug-resistant Salmonella typhi: a worldwide epidemic. Clinical Infectious Diseases, 24 (1), 106-109.
Ruijter, J. M., Ramakers, C., Hoogaars, W. M. H., Karlen, Y., Bakker, O., van den Hoff, M. J. B., & Moorman, A. F. M. (2009). Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Research, 37(6), e45.
Russell, A. D. (1999). Bacterial resistance to disinfectants: present knowledge and future problems. Journal of Hospital Infection, 43(1), 57-68.
Schmittgen, T. D., & Zakrajsek, B. A. (2000). Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. Journal of Biochemical and Biophysical Methods, 46, 69-81.
Schmitz, F. J., Fluit, A. C., Luckefahr, M., Engler, B., Hofmann, B., Verhoef, J., Heinz, H. P., Hadding, U., & Jones, M. E. (1998). The effect of reserpine, an inhibitor of multidrug efflux pumps, on the in vitro activities of ciprofloxacin, sparfloxacin and moxifloxacin against clinical isolates of S. aureus. Journal of Antimicrobial Chemotherapy, 42, 807-810.
Schwartz, K. T., Carleton, J. D., Quillin, S. J., Rollins, S. T., Portnoy, D. A., & Leber, J. H. (2012). Hyperinduction of host beta interferon by a Listeria monocytogenes strain naturally overexpressing the multidrug efflux pump MdrT. Infection and Immunity, 80(4), 1537-1545.
Shen, L. L. (1993). In quinolone antibacterial agents. American Society for Microbiology, Washington DC.
Shen, S., Zhang, T., Yuan, Y., Lin, S., Xu, J., & Ye, H. (2015). Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control, 47, 196-202.
Shimoda, M., Ohki, K., Shimamoto, Y., & Kohashi, O. (1995). Morphology of defensin-treated Staphylococcus aureus. Infection and Immunity, 63(8), 2886-2891.
Sikkema, J. I., De Bont, J. A. M., & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiology and Molecular Biology Reviews, 59(2), 201-222.
Singleton, P. (1999). Bacteria in biology, biotechnology and medicine. New York.
Srinivasan, V., Nam, H. M., Nguyen, L. T., Tamilselvam, B., Murinda, S.E., & Oliver, S. P. (2005). Prevalence of antimicrobial resistance genes in Listeria monocytogenes isolated from dairy farms. Foodborne Pathogens and Disease, 2, 201–210.
Storm, D. R., Rosenthal, K. S., & Swanson, P. E. (1977). Polymyxin and related peptide antibiotics. Annual Review of Biochemistry, 46, 723-763.
Sun, T., & Ho, C. T. (2005). Antioxidant activities of buckwheat extracts. Food Chemistry, 90(4), 743-749.
Tenover, F. C., Swenson, J. M., O’Hara, C. M., & Stocker, S. A. (1995). Ability of commercial and reference antimicrobial susceptibility testing methods to detect vancomycin resistance in enterococci. Journal of Clinical Microbiology, 33(6), 1524-1527.
Truong-Bolduc, Q. C., & Hooper, D. C. (2007). Transcriptional regulators NorG and MgrA modulate resistance to both quinolones and β-lactams in Staphylococcus aureus. Journal of Bacteriology, 189, 2996-3005.
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), 31-34.
VanGuilder, H. D., Vrana, K. E., & Freeman, W. M. (2008). Twenty-five years of quantitative PCR for gene expression analysis. BioTechniques 25th Anniversary, 44(5), 619-626.
Villet, R. A., Truong-Bolduc, Q. C., Wang, Y., Estabrooks, Z., Medeiros, H., & Hooper, D. C. (2014). Regulation of expression of abcA and its response to environmental conditions. Journal of Bacteriology, 196(8), 1532-1539.
Voravuthikunchai, S. P., & Kitpipit, L. (2005). Activity of medicinal plant extracts against hospital isolates of methicillin-resistant Staphylococcus aureus. Clinical Microbiology and Infection, 11(6), 510-512.
Wang, H. W., & Liu, Y. Q. (2010). Chemical composition and antibacterial activity of essential oils from different parts of Litsea cubeba. Chemistry & Biodiversity, 7(1), 229-235.
Wang, J. L., Wang, J. T., Sheng, W. H., Chen, Y. C., & Chang, S. C. (2010). Nosocomial methicillin-resistant Staphylococcus aureus (MRSA) bacteremia in Taiwan: Mortality analyses and the impact of vancomycin, MIC = 2 mg/L, by the broth microdilution method. BMC Infectious Diseases, 10(159), 1-7.
Wu, C. M., Cao, J. L., Zheng, M. H., Ou, Y., Zhang, L., Zhu, X. Q., & Song, J. X. (2008). Effect and mechanism of andrographolide on the recovery of Pseudomonas aeruginosa susceptibility to several antibiotics. The Journal of International Medical Research, 36(1), 178-186.
Wu, V. C., Qiu, X., De los Reyes, B. G., Lin, C. S., & Pan, Y. (2009). Application of cranberry concentrate (Vaccinium macrocarpon) to control Escherichia coli O157:H7 in ground beef and its antimicrobial mechanism related to the downregulated slp, hdeA and cfa. Food Microbiology, 26(1), 32-38.
Yin, S., Fan, C. Q., Wang, Y., Dong, L., & Yue, J. M. (2004). Antibacterial prenylflavone derivatives from Psoralea corylifolia, and their structure activity relationship study. Bioorganic and Medicinal Chemistry, 12(16), 4387-4392.
Yin, S., Fan, C. Q., Dong, L., & Yue, J. M. (2006). Psoracorylifols A–E, five novel compounds with activity against Helicobacter pylori from seeds of Psoralea corylifolia. Tetrahedron, 62(11), 2569-2575.
Yoshida, H., Bogaki, M., Nakamura, S., Ubukata, K., & Konno, M. (1990). Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. Journal of Bacteriology, 172(12), 6942-6949.
Zhao, Y., Chen, M., Zhao, Z., & Yu, S. (2015). The antibiotic activity and mechanisms of sugarcane (Saccharum officinarum L.) bagasse extract against food-borne pathogens. Food Chemistry, 185, 112-118.
Zhang, Y. F., Yeh, E., Hall, G., Cripe, J., Bhagwat, A. A., & Meng, J. (2006). Characterization of Listeria monocytogenes isolated from retail foods. International Journal of Food Microbiology, 113(1), 47-53.
Zhang, Y., Liu, X., Wang, Y., Jiang, P., & Quek, S. Y. (2016). Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control, 59, 282-289.
Zhu, Y. G., Johnson, T. A., Su, J. Q., Qiao, M., Guo, G. X., Stedtfeld, R. D., Hashsham, S. A., & Tiedje, J. M. (2013). Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America, 110 (9), 3435-3440.
Zou, L., Hu, Y. Y., and Chen, W. X. 2015. Antibacterial mechanism and activities of black pepper chloroform extract. Journal Food Science Technology, 52(12), 8196-8203.
Zuo, G. Y., Wang, G. C., Zhao, Y. B., Xu, G. L., Hao, X. Y., & Zhao, J. H. (2008). Screening of Chinese medicinal plants for inhibition against clinical isolates of methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology, 120(2), 287-290.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69836-
dc.description.abstract補骨脂在傳統醫療上常被作為治療腎炎及白癲風的藥用植物,其種子萃取物含有許多的化合物,並具多種生物活性。本實驗採用補骨脂種子乙醇萃取物,針對食源性細菌進行抑菌能力分析及探討其可能的抑菌機制。結果顯示,補骨脂種子乙醇萃取物(Psoralea corylifolia seeds ethanol extracts, PCEE)能抑制革蘭氏陽性菌L. monocytogenes (LM)和multidrug-resistant Staphylococcus aureus (MRSA)。以濃度128000 μg/mL的PCEE,對菌量106 cfu的LM和MRSA進行瓊脂井化擴散試驗,抑菌圈大小分別為17和16 mm;進一步進行最小抑菌濃度(MIC)及最小殺菌濃度(MBC)試驗,菌量105 cfu的LM和MRSA有相同的最小抑菌濃度50 μg/mL,且分別在4及14小時,能被最小殺菌濃度100 μg/mL完全殺死。由上升的核酸、蛋白質及導電度數值可顯示PCEE能作用在細胞膜並造成不可逆的影響,在掃描式電子顯微鏡下觀察,也可看出經PCEE作用後的細菌,細胞膜完整性遭破壞,甚至出現變形及裂解的結果。以即時定量聚合酶連鎖反應的基因表現量結果中,添加了PCEE後,對於細菌多藥外排相關基因產生影響,在濃度100 μg/mL的PCEE處理下,109 cfu 的LM中mdrL、mdrT、lde和MRSA中的mepA基因表現量些微上升,因這些基因與排出染劑、巨環黴素、四級銨、氟奎諾酮類藥物和膽酸相關,透過基因的上調,增加細菌的存活機會;而PCEE也會透過消耗外排幫浦之所需能量,使MRSA中的norA和abcA基因表現量顯著下降(P<0.05),提升對於奎諾酮、β-內醯胺類藥物的敏感性。而將PCEE作用於由潮鯛生魚片生產廠中分離出的20株LM,得到MIC為6.25-50 μg/mL,對於豬場及肉品市場所採集的豬隻鼻腔和環境廢水分離出的10株SA,MIC為 50-100 μg/mL,顯示了PCEE對LM和SA野外株的確具有抑菌效果。而從PCEE中所提取的補骨脂(bakuchiol)純物質,對菌量105 cfu的LM和MRSA有良好的抑菌效果,最小抑菌濃度為1.56 μg/mL。綜上所述,我們可以推測補骨脂種子乙醇萃取物會改變LM和MRSA的細胞膜完整性、通透性、細菌型態,及影響多藥外排相關基因表現量,進而有效對抗LM和MRSA,並有機會使用於醫療上對於LM和MRSA等菌的控制。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-17T03:30:09Z (GMT). No. of bitstreams: 1
ntu-107-R04629019-1.pdf: 2375820 bytes, checksum: b67567596183dfbb8c8f0fd035e760bd (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝……………………………………………………………………………………I
縮寫表………………………………………………………………………………...II
中文摘要…………………………………………………………………………......IV
ABSTRACT……………………………………………………………………….....VI
目錄……………………………...…………………………………………………VIII
圖次………………….………………………………………..……………………...XI
表次……………………………………………………………………………...…XIII
第一章 緒言…………………………………………………………………………..1
第二章 文獻探討……………………………………………………………………..3
第一節 細菌抗藥性……………………………………………………………..3
第二節 抗生素的抑菌機制……………………………………………………..4
第三節LM和MRSA………………………………………………………….....6
2.3.1單核球增生李斯特菌………………………………….…………......6
2.3.2多重抗藥性金黃色葡萄球菌………………....……………………...7
第四節 補骨脂…………………...……………………………………………...9
2.4.1 補骨脂的介紹……...………………………………………………...9
2.4.2 補骨脂的抗菌活性…………………………………………………..9
第五節 抑菌能力測試……...………………………………………………….11
2.5.1瓊脂擴散法………………………………………………………….11
2.5.2 MIC、MBC測試…………………………………………...……….11
第六節 細菌細胞膜……...…………………………………………………….12
2.6.1細胞膜……...…………………………………………….………….12
2.6.2 以細菌懸浮液之核酸定量分析細胞膜完整性的改變….……..….12
2.6.3 以細菌懸浮液之蛋白質定量分析細胞膜完整性的改變……..…..13
2.6.4以細菌懸浮液之導電度分析細胞膜完整性的改變….……..……..14
2.6.5 以掃描式電子顯微鏡觀察細菌細胞型態的改變….……..…...…..14
第七節 以即時定量聚合酶連鎖反應分析多藥性外排基因之表現.….....…..16
第三章 材料與方法……………...………………………………………………….19
第一節 細菌製備……………...……………………………………………….19
第二節 抑菌能力試驗……………...………………………………………….20
3.2.1 萃取物來源…………………………………………………………20
3.2.2 瓊脂井化擴散法……………...…………………………………….20
3.2.3 最小抑菌及最小殺菌濃度測試……………...…………………….20
3.2.4 細菌生長曲線及時間殺菌曲線……....……...…………………….21
第三節 細胞膜完整性試驗……………...………………………………….22
3.3.1 細菌懸浮液核酸定量…………………...………………………….22
3.3.2 細菌懸浮液蛋白質定量…………………...……………………….22
第四節 細胞膜通透性試驗…………………...……………………………….24
第五節 觀察細菌細胞型態………………...……………………………….25
第六節 多藥性外排基因之表現….…………………...………………………26
3.6.1 以補骨脂種子乙醇萃取物攻菌….…………………...……………26
3.6.2 RNA萃取….………………...……………………………………26
3.6.3 即時定量聚合酶連鎖反應….…………………...…………………26
第七節 PCEE對LM及MRSA野外株之MIC測試………………………..28
第八節 PCEE中純物質對LM及MRSA標準珠之MIC測試……………..29
第九節 統計分析………………………………………………………………30
第四章 實驗結果…………………………….…………………...…………………31
第一節 抑菌試驗….…………………...………………………………………31
4.1.1 瓊脂井化擴散法….…………………...……………………………31
4.1.2 最小抑菌及最小殺菌濃度….…………………...…………………31
4.1.3 細菌生長曲線及時間殺菌曲線….…………………...……………31
第二節 細胞膜完整性試驗….…………………...……………………………33
4.2.1 細菌懸浮液核酸定量….…………………...………………………33
4.2.2 細菌懸浮液蛋白質定量….…………………...……………………33
第三節 細胞膜通透性試驗….…………………...……………………………34
第四節 細菌細胞型態的改變….…………………...…………………………35
第五節 多藥性外排基因之表現量改變….…………………...………………36
第六節 PCEE對LM及MRSA野生株之MIC測試……….……………..….37
第七節 PCEE中純物質對LM及MRSA標準珠之MIC測試……………..38
第五章 討論….…………………………………………………...…………………39
第一節PCEE之抑菌能力分析….………………..………...…………………39
第二節 探討PCEE之抑菌機制-細菌細胞膜的改變……...…………………41
5.2.1 細胞膜完整性的改變……...………………………………….……41
5.2.2 細胞膜通透性的改變……...……………………………………….42
5.2.3 細菌細胞型態的改變……...……………………………………….42
第三節 以即時定量聚合酶連鎖反應分析多藥性外排基因之表現…………44
第四節 PCEE對LM及MRSA野生株之MIC測試……..………….………..46
第五節 PCEE中純物質對LM及MRSA標準株之MIC測試………………..48
第六章 結論….…………………………………………………...…………………49
第七章 參考文獻…………………………………………………...…….…………51
dc.language.isozh-TW
dc.subject多重抗藥性金黃色葡萄球菌zh_TW
dc.subject補骨脂種子乙醇萃取物zh_TW
dc.subject李斯特菌zh_TW
dc.subject抑菌能力zh_TW
dc.subject抑菌機制zh_TW
dc.subject掃描式電子顯微鏡zh_TW
dc.subject即時定量聚合?連鎖反應zh_TW
dc.subjectMultidrug-resistant Staphylococcus aureusen
dc.subjectqRT-PCRen
dc.subjectSEMen
dc.subjectMechanisms of antibacterialen
dc.subjectAntibacterial activitiesen
dc.subjectPsoralea corylifolia seeds ethanol extracten
dc.subjectListeria monocytogenesen
dc.title補骨脂種子乙醇萃取物對單核球增多性李斯特菌及多重抗藥性金黃色葡萄球菌之抗菌效果分析zh_TW
dc.titleAntimicrobial effects of ethanol extracts from Psoralea corylifolia seeds against Listeria monocytogenes and multidrug-resistant Staphylococcus aureusen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張紹光,蔡向榮,王鐘毅,陳邦元
dc.subject.keyword補骨脂種子乙醇萃取物,李斯特菌,多重抗藥性金黃色葡萄球菌,抑菌能力,抑菌機制,掃描式電子顯微鏡,即時定量聚合?連鎖反應,zh_TW
dc.subject.keywordPsoralea corylifolia seeds ethanol extract,Listeria monocytogenes,Multidrug-resistant Staphylococcus aureus,Antibacterial activities,Mechanisms of antibacterial,SEM,qRT-PCR,en
dc.relation.page78
dc.identifier.doi10.6342/NTU201800642
dc.rights.note有償授權
dc.date.accepted2018-02-22
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved