Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69830
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李天浩
dc.contributor.authorJui-Hsiang Loen
dc.contributor.author羅瑞祥zh_TW
dc.date.accessioned2021-06-17T03:29:52Z-
dc.date.available2023-03-01
dc.date.copyright2018-03-01
dc.date.issued2018
dc.date.submitted2018-02-22
dc.identifier.citation[1] 新北市新店區大台北華城社區地中傾斜管監測資料
[2] 中華民國內建部營建署(2012),建築基地保水設計技術規範修正規定
[3] 涂根源 (1998),「長期水文模式推估地下水補注量之研究-以濁水溪沖積扇扇頂為例」,國立台灣大學土木工程學系研究所碩士論文
[4] 李文生 (2005),「變飽和地下水流數值模式之研究」,國立台灣大學土木工程學系研究所博士論文
[5] 財團法人中興工程顧問社(2004),側傾管量測數據釋疑暨地滑機制研判應用,中興工程第123期,p43 – p54
[6] 沈茂松(2010),實用土壤力學試驗,文笙書局
[7] 王金山, 鍾明劍, & 冀樹勇. (2011). 降雨誘發崩塌地滑動之監測回饋分析與預警應用探討. 中興工程, (110), 27-40.
[8] 羅鴻傑, 許世孟, 顧承宇, 蘇泰維, & 李錦發. (2010). 降雨特性對坡地穩定性影響之關聯性研究-以義興崩塌地為例. 中興工程, (106), 17-25.
[9] 蔡義誌, 洪靖惠, 林俐玲. (2008). 壓力鍋排水試驗張力平衡時間之研究.
[10] ASTM D854-06E1.26834 (2006)., “Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer1”
[11] ASTM D6836-02.25742 (2009)., “Standard Test Methods for Determination of the Soil Water Characteristic Curve for Desorption Using Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, or Centrifuge1”
[12] ASTM D2216-05.26466 (2016)., “Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass1”
[13] ASTM D2487.10332 (2016)., “Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)1”
[14] Boll, J., Brooks, E. S., Campbell, C. R., Stockle, C. O., Young, S. K., Hammel, J. E., & McDaniel, P. A. (1998, July). Progress toward development of a GIS based water quality management tool for small rural watersheds: modification and application of a distributed model. In ASAE Annual International Meeting in Orlando, Florida, July (pp. 12-16).
[15] Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous media and their relation to drainage design. Transactions of the ASAE, 7(1), 26-0028.
[16] Brooks, E. S., Boll, J., & McDaniel, P. A. (2004). A hillslope‐scale experiment to measure lateral saturated hydraulic conductivity. Water Resources Research, 40(4).
[17] Campbell, G. S. (1974). A simple method for determining unsaturated conductivity from moisture retention data. Soil science, 117(6), 311-314.
[18] Celia, M., Bouloutas, E. T., & Zarba, R. L. (1990). A general mass-conservative numerical soluition for the unsaturated flow equation. Water Resources Research, 26(1), 1483–1496
[19] Clement, T. P., Wise, W. R., & Molz, F. J. (1994). A physically based, two-dimensional, finite-difference algorithm for modeling variably saturated flow. Journal of Hydrology, 161(1–4), 71–90.
[20] Corey, A. T. (1994). Mechanics of immiscible fluids in porous media. Water Resources Publication.
[21] Cristiano, E., Bogaard, T., & Barontini, S. (2016). Effects of Anisotropy of Preferential flow on the Hydrology and Stability of Landslides. Procedia Earth and Planetary Science, 16, 204-214.
[22] Gardner, W. R. (1958). Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil science, 85(4), 228-232.
[23] Habib, E., Krajewski, W. F., & Ciach, G. J. (2001). Estimation of rainfall interstation correlation. Journal of Hydrometeorology, 2(6), 621-629.
[24] Haerter, J. O., Berg, P., & Hagemann, S. (2010). Heavy rain intensity distributions on varying time scales and at different temperatures. Journal of Geophysical Research: Atmospheres, 115(D17).
[25] Hewlett, J. D. (1961). Some ideas about storm runoff and baseflow. Process studies in hillslope hydrology, John Wiley & Sons, 314.
[26] Horton, R. (1933). The role of infitration in the hydrologic cycle. Transactions, American Geophysical Union, 14, 446–460.
[27] Houze Jr, R. A. (1997). Stratiform precipitation in regions of convection: A meteorological paradox?. Bulletin of the American Meteorological Society, 78(10), 2179-2196.
[28] Jackson, C. R., & Cundy, T. W. (1992). A model of transient, topographically driven, saturated subsurface flow. Water Resources Research, 28(5), 1417-1427.
[29] Jackson, C. R., Bitew, M., & Du, E. (2014). When interflow also percolates: Downslope travel distances and hillslope process zones. Hydrological Processes, 28(7), 3195–3200.
[30] Kirkby, M. J. (1985). Hillslope hydrology. Hydrological Forecasting, John Wiley and Sons, New York, New York 1985. p 37-75.
[31] Kossieris, P., Makropoulos, C., Onof, C., & Koutsoyiannis, D. (2016). A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures. Journal of Hydrology.
[32] Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water resources research, 12(3), 513-522
[33] Noguchi, S., Tsuboyama, Y., Sidle, R. C., & Hosoda, I. (1999). Morphological characteristics of macropores and the distribution of preferential flow pathways in a forested slope segment. Soil Science Society of America Journal, 63(5), 1413-1423
[34] Onof, C., Townend, J., & Kee, R. (2005). Comparison of two hourly to 5-min rainfall disaggregators. Atmospheric Research, 77(1-4), 176-187.
[35] Shao, W., Bogaard, T. A., Bakker, M., & Greco, R. (2015). Quantification of the influence of preferential flow on slope stability using a numerical modelling approach. Hydrology and Earth System Sciences, 19(5), 2197.
[36] USDA – Natural Resources Conservation Service (Soils),( https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/office/ssr10/tr/?cid=nrcs144p2_074846 )
[37] Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44(5), 892-898.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69830-
dc.description.abstract本研究參與坡地社區自主防災計畫,主要工作為提供坡地穩定分析所需之坡地地下水水位,方法是使用平面二維坡面寬度函數和垂直二維變飽和度地下水模式,替代三維坡地的地下水水位的耗時模擬。因為案例現場的地文、水文資料不足,因此研究重點是放在解讀思考地文、水文與土壤的有限數據,研擬模擬模式輸入和參數化所需要的坡地水文過程的分析計算與參數化方法;同樣因為資料不足,故無法檢定優化與驗證。
首先,使用平滑化地表高程的方法估計坡地地下水位和流線,劃分坡地模擬範圍;再透過側入流流量面積化與坡面寬度等價化方法,簡化模擬範圍內側入流的影響,決定平面二維坡面寬度的擬合函數。簡化坡地土壤水力特性地參數化過程中,使用單點採樣擾動土壤進行土壤試驗,採用單指數模型描述坡地土壤水力參數受風化與生物活動影響的垂直分佈。經過分析思考,認為案例中,坡地潛移和地中傾斜管地下水位歷線變化,推估監測井地下水水位已受到滑動面與坡腳溯源侵蝕之影響,並針對此現象提出土壤水力參數估計與最佳化之合理策略。
計算變飽和度地下水模式的地表邊界條件時,首先,將強降雨的小時平均雨量進行時間分配,求得時間解析度較高、降雨強度不同的組合;其次,再使用以計算植被與建築物截留、窪蓄損失為目標的「變更的SCS-CN法」,得到扣除截留、窪蓄、排水系統損失的「供應入滲的有效降雨」,供應垂直二維變飽和度地下水模式的地表邊界流量條件。計算初始條件和下邊界條件時,使用Dupuit假設估計垂直二維模式的地下水位,剖面底部的岩盤深層滲漏量(Deep Percolation)分佈,必須與使用Laplace Equation求解的深層地下水模式,迭代達到一致性。
根據Dupuit假設與穩態降雨估計穩態水分分佈,並模擬降雨入滲些許時間,以降低無法描述未飽和層的Dupuit假設,與Richards' Equation求解變飽和度地下水模式,兩者不同構成的Spin-up problem,及其對模式模擬造成的負面影響等。最後,再自然退水至近穩態狀態並作為模擬的初始條件,並以初始條件的模擬結果進行土壤水力參數與邊界條件的再調整,再模擬坡地地下水水位。
經比較模擬結果與歷史水位,說明方法論的合理性。最後,構思和說明,未來若參數資料充足的條件下,針對方法論中提及的各項假設之檢驗方法與建議。
zh_TW
dc.description.abstractThis study participates the Slopeland Community Voluntary Disaster Prevention Project and provides the groundwater simulation for the stability analysis of slopelands as the main task. Owing to the insufficiency of the field geographical and hydrological data, the study proposes a methodology for parameterizing and analyzing the slopeland hydrologic processes with the field data of the geography, hydrology and soil. The study utilizes the couple model of the vertical two-dimensional various saturation model and the horizontal two-dimensional slopeland width function to simulate the three-dimensional groundwater.
The study area is defined with the concept of stream line and smoothed elevation. Furthermore, the study simplifies the influence of the lateral inflow of the slopeland unit by transforming the lateral flow to an area and equivalent slope width and fitting the slope width function. To simplified the parameterizing process of soil parameters, the study applies the single exponential decay model to illustrate the influences of the weathering soil and biological activities on the soil characteristics and the slopeland soil hydraulic parameters distribution. By analyzing the monitoring data of the groundwater and the slope displacement, the study estimates the groundwater is impacted by the sliding surface and the head erosion from the slope foot.
For applying the couple model, this study redistributes the duration of the rainfall intensity with certain ratio to obtain the rainfall data with higher temporal resolution. Besides, the SCS method is applied to estimate the rainfall loss of the surface interception unit and draining system and to calculate the effective precipitation for infiltration. The deep percolation distribution of the bedrock at the bottom boundary is estimated by the couple model of the Dupuit assumption and the Laplace Equation.
The steady state distribution of groundwater is estimated by the Duapuit assumption and steady state precipitation. In order to provide reasonable initial condition efficiently with reduced Spin-up problem caused by the physical assumption difference between the Richards' Equaiton and Dupuit assumption, the study simulates the infiltration with the estimated steady state distribution of groundwater and precipitation. Afterward, the study simulates the recession until the distribution of groundwater approaches the steady state again and utilizes this distribution as the initial condition. According to results of the initial condition, the soil hydraulic parameters and boundary conditions are re-adjusted to obtain the new initial condition and utilized to simulate the distribution of groundwater in study area.
In the end, the rationality of the methodology can be described by comparing the results and historical groundwater data. Moreover, the study illustrates the method for calibrating the parameter and the assumption in the methodology with the sufficient data.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:29:52Z (GMT). No. of bitstreams: 1
ntu-107-R04521314-1.pdf: 11258108 bytes, checksum: 4f59aa64f06d87aff6f336e0b809602c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
中文摘要 ii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xv
第一章 緒論 1
1.1問題概述 1
1.2文獻回顧 4
1.2.1 降雨時間分配 4
1.2.2 邊坡滑動與崩塌 8
1.2.3 坡地地下水與坡地滲流面 9
1.2.4 坡地土壤物理現象與特性 13
1.2.5 變飽和地下水水流數值模式 18
1.3研究目標 20
1.4論文架構 21
第二章 研究方法 23
2.1研究區域概述 23
2.1.1 福康公園 23
2.1.2 大台北華城社區 33
2.2模擬範圍與數值模式 36
2.2.1 變飽和地下水水流模式簡介 37
2.2.2 坡面形狀函數 39
2.3土壤物理與水力特性參數 45
2.3.1 基礎土壤物理參數 45
2.3.2 土壤水力特性曲線 – 保水曲線與導水曲線 47
2.3.3 土壤飽和水力傳導度遞減函數 50
2.3.4 土壤水力參數最佳化 52
2.4模式應用 – 邊界條件與初始條件 53
2.4.1 地表邊界 54
2.4.1 滲流面邊界 64
2.4.2 垂直側邊邊界 65
2.4.3 底部邊界 67
2.4.4 初始條件 71
第三章 模擬與分析 77
3.1模擬時段 79
3.2坡地單元土壤飽和水力傳導度分佈 80
3.2.1 自然邊坡區域與建地區域 80
3.2.2 下游延伸區域之土壤水力參數分佈 82
3.3初始條件 83
3.4底部邊界滲漏量分佈之估計 85
3.5 BH-2飽和水位模擬結果 90
第四章 結論與建議 93
4.1研究結論 93
4.2研究建議 95
參考文獻 97
附錄A 變飽和度地下水水流方程式差分方程式 100
附錄B SCS法估計供應入滲之有效降雨 105
附錄C Universal Kriging全域性暫棲地下水水位估計 108
附錄D 壓力鍋排水試驗 112
附錄E BH-2監測水位與邊坡位移關係之分析 115
附錄F 坡地單元垂直剖面壓力水頭分佈 122
dc.language.isozh-TW
dc.title以坡地地下水模擬為目的之水文過程演算法與參數化研究zh_TW
dc.titleAlgorithms for Hydrologic Processes and Parameterization Studies on Slopeland Groundwater Simulationen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張良正,劉格非,卿建業,李文生
dc.subject.keyword坡地水文,地下水水位,岩盤滲漏,變飽和地下水水流模式,zh_TW
dc.subject.keywordSlopeland Hydrology,Groundwater,Bedrock Percolation,Variable Saturation Groundwater Model,en
dc.relation.page134
dc.identifier.doi10.6342/NTU201800458
dc.rights.note有償授權
dc.date.accepted2018-02-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
10.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved