Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6981
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曲芳華(Fang-Hua Chu)
dc.contributor.authorHwei-Choong Tohen
dc.contributor.author卓慧中zh_TW
dc.date.accessioned2021-05-17T09:22:59Z-
dc.date.available2012-03-19
dc.date.available2021-05-17T09:22:59Z-
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-01-10
dc.identifier.citation王升陽、徐麗芬、楊寧蓀(2003)傳統與科技結合-藥用與保健植物新發展。科
學發展 364: 50-55。
王松永(1983)商用木材 林產工業叢書。中華民國林產事業協會。377 頁。
邱年永、張光雄(1986)原色臺灣藥用植物圖鑒。南天出版社。287 頁。
吳志鴻(2004)相思樹心材具抗氧化及抗發炎成分之分析與鑑定。國立台灣大學
森林學研究所博士論文。191 pp。
陳正和(2002)台灣最普遍的森林喬木之ㄧ-相思樹。台灣林業 28(6): 59-61。
劉棠瑞(1960)台灣木本植物圖誌第一冊。國立台灣大學農業學院叢書,第 8 種;
林學叢書,第 1 種,台北。484 頁。
Achnine, L., E.B. Blancaflor, S. Rasmussen and R.A. Dixon (2004) Colocalization of
phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic
channeling in phenylpropanoid biosynthesis. Plant Cell 16: 3098-3109.
Adedapo, A.A., M.O. Sofidiya, P.J. Masika and A.J. Afolayan (2008) Anti-inflammatory
and analgesic activities of the aqueous extract of Acacia karroo stem bark in
experimental animals. Basic & Clinical Pharmacology & Toxicology 103:
397-400.
Austin, M.B. and J.P. Noel (2003) The chalcone synthase superfamily of type III
polyketide synthase. Natural Product Reports 20: 79-110.
Baker, E.N. and R.E. Hubbard (1984) Hydrogen bonding in globular proteins. Progress
in Biophysics and Molecular Biology 44: 97-139.
Besseau, S., L. Hoffmann, P. Geoffroy, C. Lapierre, B. Pollet and M. Legrand (2007)
Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin
transport and plant growth. Plant cell 19: 148-162.77
Bohm H., H. Boeing, J. Hempel, B. Raab and A. Kroke (1998) Flavonols, flavones and
anthocyanins as native antioxidants of food and their possible role in the prevention
of chronic diseases. Zeitschrift Fur Ernahrungswissenschaft 37: 147-163.
Britsch, L., W. Heller and H. Grisebach (1981) Conversion of flavanone to flavone,
dihydroflavonol and flavonol with an enzyme system from cell cultures of parsley.
Z. Naturforsch 36c: 742-750.
Brown, D.E., A.M. Rashotte, A.S. Murphy AS, J. Normanly, B.W. Tague, W.A. Peer, L.
Taiz and G.K. Muday (2001) Flavonoids act as negative regulators of auxin
transport in vivo in Arabidopsis. Plant Physiology 126: 524-535.
Brown, J.E., H. Khodr, R.C. Hider and C.A. Rice-Evans (1998) Structural dependence
of flavonoid interactions with Cu
2+
ions: implications for their antioxidant
properties. Biochemical Journal 330: 1173-1178.
Chang, S.T., J.H. Wu, S.Y. Wang, P.L. Kang, N.S. Yang and L.F. Shyur (2001)
Antioxidant activity of extracts from Acacia confusa bark and heartwood. Journal
of Agricultural and Food Chemistry 49: 3420-3423.
Chang, S., J. Puryear and J. Cairney (1993) A simple and efficient method for isolating
RNA from pine trees. Plant Molecular Biology Reporter 11: 113-116.
Chatti, I.B., I. Limem, J. Boubaker, I. Skandrani, S. Kilani, W. Bhouri, M. Ben Sghaier,
A. Nefatti, H. Ben Mansour, K. Ghedira and L. Chekir-Ghedira (2009)
Phytochemical, antibacterial, antiproliferative, and antioxidant potentials and DNA
damage-protecting activity of Acacia salicina Extracts. Journal of Medicinal Food
12: 675-683.
Chua, S.C., D. Biermann, K.S. Goo and T.S. Sim (2008) Elucidation of active site
residues of Arabidopsis thaliana flavonol synthase provides a molecular platform
for engineering flavonols. Phytochemistry 69: 66-75.
Daniel, S., K. Tiemann, U. Wittkampf, W. Bless, W. Hinderer and W. Barz (1990) 78
Elicitor-induced metabolic changes in cell cultures of chickpea (Cicer arietinum L.)
cultivars resistant and susceptible to Ascochyta rabiei. Planta 182: 270-278.
Davies, K.M., K.E. Schwinn, S.C. Deroles, D.G. Manson, D.H. Lewis, S.J. Bloor and
J.M. Bradley (2003) Enhancing anthocyanin production by altering competition for
substrate between flavonol synthase and dihydroflavonol 4-reductase. Euphytica
131: 259-268.
Dixon, R.A. and C.L. Steele (1999) Flavonoids and isoflavonoids: a gold mine for
metabolic engineering. Trends in Plant Science 4: 394-400.
Dongmo A.B., T. Miyamoto, K. Yoshikawa, S. Arihara and M.A. Lacaille-Dubois (2007)
Flavonoids from Acacia pennata and their cyclooxygenase (COX-1 and COX-2)
inhibitory activities. Planta Medica 73: 1202-1207.
Ferrer, J-L., J.M. Jez, M.E. Bowman, R.A. Dixon and J.P. Noel (1999) Structure of
chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nature
Structural & Molecular Biology 6: 775-784.
Ferreyra, M.L.F., S. Rius, J. Emiliani, L. Pourcel, A. Feller, K. Morohashi, P. Casati and
E. Grotewold (2010) Cloning and characterization of a UV-B-inducible maize
flavonol synthase. The Plant Journal 62: 77-91.
Franke, A.A., L.J. Custer, C.M. Cerna and K.K. Narala (1994) Quantitation of
phytoestrogens in legumes by HPLC. Journal of Agricultural and Food Chemistry
42: 1905-1913.
Fujita, A., N. Goto-Yamamoto, I. Aramaki and K. Hashizume (2006) Organ-specific
transcription of putative flavonol synthase genes of grapevine and effects of plant
hormones and shading on flavonol biosynthesis in grape berry skins. Bioscience,
Biotechnology, and Biochemistry 70: 632-638.
Grab, D., R. Loyal and J. Ebel (1985) Elicitor-induced phytoalexin synthesis in soybean
cells: Changes in the activity of chalcone synthase mRNA and the total population 79
of translatable mRNA. Archives of Biochemistry and Biophysics 243: 523-529.
Grace, M.H., G.R. Wilson, F.E. Kandil, E. Dimitriadis and R.M. Coates (2009)
Characteristic flavonoids from Acacia burkittii and A. acuminata heartwoods and
their differential cytotoxicity to normal and leukemia cells. Natural Product
Communications 4: 69-76.
Grotewold, E. (2005) Plant metabolic diversity: a regulatory perspective. Trends in
Plant Science 10: 57-62.
Habereder, H., G. Schroder and E. Jurgen (1989) Rapid induction of phenylalanine
ammonia-lyase and chalcone synthase mRNAs during fungus infection of soybean
(Glycine max L.) roots or elicitor treatment of soybean cell cultures at the onset of
phytoalexin synthesis. Planta 177: 58-65.
Halliwell, B. and J.M.C. Gutteridge (1999) Free radicals in biology and medicine.
Oxford, New York. 620 pp.
Harborne, J.B. and C.A. Williams (2000) Advances in flavonoid research since 1992.
Phytochemistry 55: 481-504.
Harborne, J.B. (1988) The flavonoids: advances in research since 1980. Chapman and
Hall, New York. 620 pp.
Haribal, M. and J.A. Renwick (1996) Oviposition stimulants for the monarch butterfly:
Flavonol glycosides from Asclepias curassavica. Phytochemistry 41: 139-144.
Hegnauer, R. and R.J. Gpayer-Barkmeijer (1993) Relevance of seed polysaccharides
and flavonoids for the classification of the Leguminosae: a chemotaxonomic
approach. Phytochemistry 34: 3-16.
Holton, T.A. and E.C. Cornish (1995) Genetics and biochemistry of anthocyanin
biosynthesis. Plant Cell 7: 1071-1083.
Hsieh, C.Y. and S.T. Chang (2010) Antioxidant activities and xanthine oxidase
inhibitory effects of phenolic phytochemicals from Acacia confusa twigs and 80
branches. Journal of Agricultural and Food chemistry 58: 1578-1583.
Jeon, J.H., H.S. Kim, K.H. Choi, Y.H. Joung, H. Joung and S.M. Byun (1996) Cloning
and characterization of one member of the chalcone synthase gene family from
Solanum tuberosum L.. Bioscience, Biotechnology, and Biochemistry 60:
1907-1910.
Jez, J.M., M.E. Bowman, R.A. Dixon and J.P. Noel (2000) Structure and mechanism of
chalcone isomerase: an evolutionarily unique enzyme in plants. Nature Structural &
Molecular Biology 7: 786-791.
Jorgensen, K., A.V. Rasmussen, M. Morant, A.H. Nielsen and N. Bjarnholt, M.
Zagrobelny, S. Bak and B.L. Moller (2005) Metabolon formation and metabolic
channeling in the biosynthesis of plant natural products. Current Opinion in Plant
Biology 8: 280-291.
Junghans, H., K. Dalkin and R.A. Dixon (1993) Stress responses in alfalfa (Medicago
sativa L.). 15. Characterization and expression patterns of members of a subset of
the chalcone synthase multigene family. Plant Molecular Biology 221: 239-253.
Kalaivani, T. and L. Mathew (2010) Free radical scavenging activity from leaves of
Acacia nilotica (L.) Wild. ex Delile, an Indian medicinal tree. Food and Chemical
Toxicology 48: 298-305.
Kim, J.D., L. Liu, W. Guo and M. Meydani (2006) Chemical structure of flavonols in
relation to modulation of angiogenesis and immune-endothelial cell adhesion. The
Journal of Nutritional Biochemistry 17: 165-176.
Kim, Y.H. and Y.J. Lee (2007) TRAIL apoptosis is enhanced by quercetin through Akt
dephosphorylation. Journal of Cellular Biochemistry 100: 998-1009.
Kim, B.G., J.H. Kim, J. Kim, C. Lee and J.H. Ahn (2008) Accumulation of flavonols in
response to ultraviolet-B irradiation in soybean is related to induction of flavanone
3-beta-hydroxylase and flavonol synthase. Molecules and Cells 25: 247-252.81
Korkina, L.G. and I.B. Afanašev (1997) Antioxidant in disease mechanisms and therapy.
Academic Press, San Diego.707 pp.
Kusano, R., S. Ogawa, Y. Matsuo, T. Tanaka, Y. Yazaki and I. Kouno (2011)
alpha-Amylase and lipase inhibitory activity and structural characterization of
Acacia bark proanthocyanidins. Journal of Natural Products 74: 119-128.
Lee, B.H., S.M. Jeong, J.H. Lee, J.H. Kim, I.S. Yoon, J.H. Lee, S.H. Choi, S.M. Lee,
C.G. Chang, H.C. Kim, Y. Han, H.D. Paik, Y. Kim and S.Y. Nah (2005) Quercetin
inhibits the 5-hydroxytryptamine type 3 receptor-mediated ion current by
interacting with pretransmembrane domain I. Molecules and Cells 20: 69-73.
Lee, T.H., D.Z. Liu, F.L Hsu, W.C. Wu and W.C. Hou (2006) Structure-activity
relationships of five myricetin galloylglycosides from leaves of Acacia confusa.
Botanical studies 47: 37-43.
Lee, T.H., F. Qiu, G.R. Waller and C.H. Chou (2000) Three new flavonol
galloylglycosides from leaves of Acacia confusa. Journal of Natural Products 63:
710-712.
Lepiniec, L., I. Debeaujon, J.M. Routaboul, A. Baudry, L. Pourcel, N. Nesi and M.
Caboche (2006) Genetics and biochemistry of seed flavonoids. Annual Review of
Plant Biology 57: 405-430.
Lin, G.Z., Y.J. Lian, J.H. Ryu, M.K. Sung, J.S. Park, H.J. Park, B.K. Park, J.S. Shin,
M.S. Lee and C.I. Cheon (2007) Expression and purification of His-tagged flavonol
synthase of Camellia sinensis from Escherichia coli. Protein Expression and
Purification 55: 287-292.
Liu, C.J. and R.A. Dixon (2001) Elicitor-induced association of isoflavone
O-methyltransferase with endomembranes prevents the formation and
7-O-methylation of daidzein during isoflavonoid phytoalexin biosynthesis. Plant
Cell 13: 2643-2658.82
Lukačin, R. and L. Britsch (1997) Identification of strictly conserved histidine and
arginine residues as part of the active site in Petunia hybrida flavanone
3β-hydroxylase. European Journal of Biochemistry 249: 748-757.
Lukačin, R., F. Wellmann, L. Britsch, S. Martens and U. Matern (2003) Flavonol
synthase from Citrus unshiu is a bifunctional dioxygenase. Phytochemistry 62:
287-292.
Manriquez-Torres, J.J., A. Zuniga-Estrada, M. Gonzalez-Ledesma and J.M.
Torres-Valencia (2007) The antibacterial metabolites and proacacipetalin from
Acacia cochliacantha. Journal of the Mexican Chemical Society 51: 228-231.
Marks, M.D. and J. Esch (2003) Initiating inhibition, control of epidermal cell
patterning in plants. EMBO Reports 4: 24-25
Mattana, C.M., S.E. Satorres, A. Sosa, M. Fusco and L.E. Alcaraz (2010) Antibacterial
activity of extracts of Acacia aroma agaisnt methicillin-resistant and
methicillin-sensitive Staphylococcus. Brazilian Journal of Microbiology 41:
581-587.
Mehdy, M.C. and C.J. Lamb (1986) Induction of chalcone isomerase gene expression in
plant cells in response to fungal cell wall components. Journal of Cellular
Biochemistry Supplement 10D: 63-63.
Mehdy, M.C. and C.J. Lamb (1987) Chalcone isomerase cDNA cloning and mRNA
induction by fungal elicitor, wounding and infection. EMBO Journal 6: 1527-1533.
Mellway, R.D., L.T. Tran, M.B. Prouse, M.M. Campbell and C.P. Constabel (2009) The
Wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3
MYB transcription factor that regulates proanthocyanidin synthesis in poplar. Plant
Physiology 150: 924-941.
Miyahisa, I., M. Kaneko, N. Funa, H. Kawasaki, H. Kojima, Y. Ohnishi and S.
Horinouchi (2005) Efficient production of (2S)-flavanones by Escherichia coli 83
containing an artificial biosynthetic gene cluster. Applied and Environmental
Microbiology 68: 498-504.
Mol, J., E. Grotewold and R. Koes (1998) How genes paint flowers and seeds. Trends in
Plant Science 3: 212-217.
Murphy, A., W.A. Peer and L. Taiz (2000) Regulation of auxin transport by
aminopeptidases and endogenous flavonoids. Planta 211: 315-324.
Namiki, M. (1990) Antioxidant/antimutagens in food. Critical Reviews in Food Science
and Nutrition 29: 273-300.
Owens, D.K., A.B. Alerding, K.C. Crosby, A.B. Bandara, J.H. Westwood and B.S.J.
Winkel (2008) Functional analysis of a predicted flavonol synthase gene family in
Arabidopsis. Plant Physiology 147: 1046-1061.
Pietta, P.G. (2000) Flavonoids as antioxidants. Journal of Natural Products 63:
1035-1042.
Prescott, A.G., N.P.J. Stamford, G. Wheelera and J.L. Firmina (2002) In vitro properties
of a recombinant flavonol synthase from Arabidopsis thaliana. Phytochemistry 60:
589-593.
Reddy, A.M., V.S. Reddy, B.E. Scheffler, U. Wienand and A.R. Reddy (2007) Novel
transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of
flavonoids leading to an increased antioxidant potential. Metabolic Engineering 9:
95-111.
Richard, S., G. Lapointe, R. G. Rutledge and A. Seguin (2000) Induction of chalcone
synthase expression in white spruce by wounding and jasmonate. Plant cell
Physiology 41: 982-987.
Rifai Y., M.A. Arai, T. Koyano, T. Kowithayakorn and M. Ishibashi (2010) Terpenoids
and a flavonoid glycoside from Acacia pennata leaves as hedgehog/GLI-mediated
transcriptional inhibitors. Journal of Natural Products 73: 995-997.84
Ryder, T.B., S.A. Hedrick, J.N. Bell, X.W. Liang, S.D. Clouse and C.J. Lamb (1987)
Organization and differential activation of a gene family encoding the plant defense
enzyme chalcone synthase in Phaseolus vulgaris. Molecular and General
Genetics 210: 219-233.
Saslowsky, D. and B. Winkel-Shirley (2001) Localization of flavonoid enzymes in
Arabidopsis roots. Plant Journal 27: 37-48.
Saslowsky, D.E., C.D. Dana and B. Winkel-Shirley (2000) An allelic series for the
chalcone synthase locus in Arabidopsis. Gene 255: 127-138.
Schijlen, E., C.H. Ric de Vos , H. Jonker, H. van den Broeck, J. Molthoff, A. van Tunen,
S. Martens and A. Bovy (2006) Pathway engineering for healthy phytochemicals
leading to the production of novel flavonoids in tomato fruit. Plant Biotechnology
Journal 4: 433-444.
Seigler, D.S. (2003) Phytochemistry of Acacia-sensu lato. Biochemical Systemtics and
Ecology 31: 845-873.
Shimada, N., T. Aoki, S. Sato, Y. Nakamura, S. Tabata, S. Ayabe (2003) A cluster of
genes encodes the two types of chalcone isomerase involved in the biosynthesis of
general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus.
Plant Physiology 131: 941-951.
Solomon-Wisdom, G.O. and G.A. Shittu (2010) In vitro antimicrobial and
phytochemical activities of Acacia nilotica leaf extract. Journal of Medicinal Plants
Research 46: 1268-1277.
Spayd, S.E., J.M. Tarara, D.L. Mee and J.C. Ferguson (2002) Separation of sunlight and
temperature effects on the composition of Vitis vinifera cv. Merlot berries.
American Journal of Enology and Viticulture 53: 171-182.
Stafford, H.A. (1991) Flavonoid evolution: an enzymic approach. Plant Physiology 96:
680-685.85
Suzuki, S., K. Suda, N. Sakurai, Y. Ogata, T. Hattori, H. Suzuki, D. Shibata and T.
Umezawa (2010) Analysis of expressed sequence tags in developing secondary
xylem and shoot of Acacia mangium. The Journal of Wood Science 57: 40-46.
Tahara, S. (2007) A journey of twenty-five years through the ecological biochemistry of
flavonoids. Bioscience, Biotechnology, and Biochemistry 71: 1387-1404.
Takahashi, R., S.M. Githiri, K. Hatayama, E.G. Dubouzet, N. Shimada, T. Aoki, S.
Ayabe, T. Iwashina, K. Toda and H. Matsumura (2007) A single-base deletion in
soybean flavonol synthase gene is associated with magenta flower color. Plant
Molecular Biology 63: 125-135.
Terahara, N., T. Honda, M. Hayashi and K. Ishimaru (2000) New anthocyanins from
purple pods of pea (Pisum spp.). Bioscience Biotechnology & Biochemistry 64:
2569-2574.
Tian, L., S.B. Wan, Q.H. Pan, J.C. Zheng and W.D. Huang (2008) A novel plastid
localization of chalcone synthase in developing grape berry. Plant Science 175:
431-436.
Tian, L., W.F. Kong, Q.H. Pan, J.C. Zhan, P.F. Wen, J.Y. Chen, S.B. Wan and W.D.
Huang (2006) Expression of the chalcone synthase gene from grape and preparation
of an anti-CHS antibody. Protein Expression and Purification 50: 223-228.
Todkar, S.S., V.V. Chavan, and A.S. Kulkarni (2010) Antimicrobial activity and
screening of secondary metabolites from Acacia concinna. Research Journal of
Microbiology 5: 974-979.
Tropf, S., B. Karcher, G. Schroder and J. Schroder (1995) Reaction mechanisms of
homodimeric plant polyketide synthases (stilbene and chalcone synthase). The
Journal of Biological Chemistry 270: 7922-7928.
Turnbull, J.J., J. Nakajima, R.W. Welford, M. Yamazaki, K. Saito and C.J. Schofield
(2004) Mechanistic studies on three 2-Oxoglutarate-dependent oxygenases of 86
flavonoid biosynthesis: anthocyanidin synthase, flavonol synthase and flavanone
3beta-hydroxylase. The Journal of Biological Chemistry 279: 1206-1216.
Tung, Y.T., J.H. Wu, C.Y. Huang, Y.H. Kuo and S.T. Chang (2009a) Antioxidant
activities and phytochemical characteristics of extracts from Acacia confusa bark.
Bioresource Technology 100: 509-514.
Tung, Y.T., J.H. Wu, C.Y. Hsieh, P.S. Chen and S.T. Chang (2009b) Free
radical-scavenging phytochemicals of hot water extracts of Acacia confusa leaves
detected by an on-line screening method. Food Chemistry 115: 1019-1024.
Volikakis, G.J. and C.E. Efstathiou (2005) Fast screening of total flavonols in wines,
tea-infusions and tomato juice by flow injection/adsorptive stripping voltammetry.
Analytica Chimica Acta 551: 124-131.
Wellmann, F., M. Griesser, W. Schwab, S. Martens, W. Eisenreich, U. Matern and R.
Lukačin (2006) Anthocyanidin synthase from Gerbera hybrida catalyzes the
conversion of (1)-catechin to cyanidin and a novel procyanidin. FEBS Letters 580:
1642-1648.
Wilmouth, R.C., J.J. Turnbull, R.W.D. Welford, I.J. Clifton, A.G. Prescott and C.J.
Schofield (2002) Structure and Mechanism of Anthocyanidin Synthase from
Arabidopsis thaliana. Structure 10: 93-103.
Winkel-Shirley, B. (2001) Flavonoid biosynthesis. A colorful model for genetics,
biochemistry, cell biology, and biotechnology. Plant Physiology 126: 485-493.
Winkel-Shirley, B. (2002) Biosynthesis of flavonoids and effects of stress. Current
Opinion in Plant Biology 5: 218-223.
Wu, J.H., Y.T. Tung, S.Y. Wang, L.F. Shyur, Y.H. Kuo and S.T. Chang (2005) Phenolic
antioxidants from the heartwood of Acacia confusa. Journal of Agricultural and
Food Chemistry 53: 5917-5921.
Wu, J.H., C.Y. Huang, Y.T. Tung and S.T. Chang (2008a) Online RP-HPLC-DPPH 87
screening method for detection of radical-scavenging phytochemicals from flowers
of Acacia confusa. Journal of Agricultural and Food Chemistry 56: 328-332.
Wu, J.H., Y.T. Tung, S.C. Chien, S.Y. Wang, Y.H. Kuo, L.F. Shyur and S.T. Chang
(2008b) Effect of phytocompounds from the heartwood of Acacia confusa on
inflammatory mediator production. Journal of Agricultural and Food Chemistry 56:
1567-1573.
Yamamoto, T., L.K. Juneja, D.C. Chu and M. Kim (1997) Chemistry and application of
green tea. CPC Press, New York. 160 pp.
Yamazaki, Y., D.Y. Suh, W. Sitthithaworn, K. Ishiguro, Y. Kobayashi, M. Shibuya, Y.
Ebizuka and U. Sankawa (2001) Diverse chalcone synthase superfamily enzymes
from the most primitive vascular plant, Psilotum nudum. Planta 214: 15-84.
Yan, Y.J., A. Kohli and M.A.G. Koffas (2005) Biosynthesis of natural flavanones in
Saccharomyces cerevisiae. Applied and Environmental Microbiology 71:
5610-5613.
Yazaki, K. (2005) Transporters of secondary metabolites. Current Opinion in Plant
Biology 8: 301-307.
Zhang, H.C., J.M. Liu, H.Y. Lu and S.L. Gao (2009) Enhanced flavonoid production in
hairy root cultures of Glycyrrhiza uralensis Fisch by combining the over-expression
of chalcone isomerase gene with the elicitation treatment. Plant Cell Reports 28:
1205-1213.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6981-
dc.description.abstract臺灣相思樹(Acacia confusa)之葉、花、枝條、樹皮與心材含有豐富的黃酮
類化合物,並且具有良好的抗氧化活性,這些黃酮類主要為黃酮醇化合物。本研
究中,以聚合酶鏈鎖反應及 cDNA 末端快速擴增法,由相思樹葉片獲得查爾酮合
成酶(AcCHS)、查爾酮異合酶(AcCHI)以及黃酮醇合成酶(AcFLS)基因全長,此三基因之核酸序列轉譯區長度分別為 1170 bp、720 bp 以及 996 bp,對應產生43 kDa、26 kDa 和 38 kDa 的蛋白質。以鄰近連接演化樹分析法(Neighbor-joining)分析親緣關係,發現 AcCHS、AcCHI 以及 AcFLS 分別被歸類於 CHS 超級基因家族中的 CHS、非豆科專屬的 Type I CHI 以及 2-ODD 超級家族中的 FLS。經過反轉錄聚合酶連鎖反應檢測,發現相思樹小苗 AcCHS,AcCHI 以及 AcFLS 的表現在葉組織最佳;而成齡相思樹之 AcCHS,AcCHI 以及 AcFLS 在花的表現最爲明顯。此外,爲了鑑定 AcFLS 之活性,本研究以高效液相層析儀檢測此蛋白質體外反應之產物。首先將 AcFLS 建構在 His-tag 系統之表現載體 pET-21a(+),並轉型至大腸桿菌中進行大量蛋白質表現,經過不同的基質檢測結果,AcFLS 可將二氫楊梅素、二氫檞皮素以及柚皮素分別轉化成楊梅素、檞皮素以及山奈醇。本研究為相思樹首篇有關於黃酮醇生合成途徑之報告,對未來的研究將可提供有用的參考價值。
zh_TW
dc.description.abstractThe flavonoids are abundant in the leaves, flowers, branches, bark and heart wood of Acacia confusa, which possesses a remarkable antioxidant activities. The major
class of compounds of the flavonoids is flavonols. In this study, polymerase chain reaction (PCR) and rapid amplification of cDNA end (RACE) were used to obtain full
sequence of AcCHS, AcCHI, and AcFLS, which have 1170 bp, 720 bp and 996 bp coding region respectively. The molecular weights (Mw) of these three enzymes are 43 kDa, 26 kDa and 38 kDa, respectively. AcCHS belongs to the CHS group of the chalcone synthase superfamily; AcCHI belongs to the non-legume Type I CHI; AcFLS belongs to the FLS group of 2-ODD superfamily. In the reverse transcription-PCR(RT-PCR) test for the expression of AcCHS, AcCHI, and AcFLS, these three genes showed the best expression in the leave of the seedling, and in the flower of the mature tree. To characterize the corresponding enzyme of AcFLS in vitro, AcFLS is constructed into vector pET-21a (+) of histidine tag (His-tag) fusion protein system, and expressed in Escherichia coli for AcFLS recombinant protein. In the enzyme activity analysis, we found that AcFLS could transform dihydromyricetin, dihydroquercetin and naringenin into flavonol myricetin, quercetin and kaempferol,
respectively. This is the first study of flavonols biosynthesis pathway in A. confusa, and the result might provide a useful reference for the future studies.
en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:22:59Z (GMT). No. of bitstreams: 1
ntu-101-R98625006-1.pdf: 2980077 bytes, checksum: d55e0e00d236105b5330bf18603a3bd8 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口詴委員會審定書..........................................................................................................i
誌謝.................................................................................................................................ii
目錄................................................................................................................................iii
圖目錄............................................................................................................................vi
表目錄............................................................................................................................ix
摘要.................................................................................................................................x
Abstract...........................................................................................................................xi
壹、前言............................................................................................................................1
貳、文獻回顧....................................................................................................................3
2.1 黃酮類化合物....................................................................................................3
2.1.1 黃酮類化合物之簡介..............................................................................3
2.1.2 黃酮類化合物在植物中的分佈..............................................................4
2.1.3 黃酮類化合物之功能..............................................................................4
2.1.4 黃酮類化合物之生合成途徑..................................................................5
2.2 黃酮類生合成途徑之相關生合成酶................................................................9
2.2.1 黃酮類之相關生合成酶簡介..................................................................9
2.2.2 黃酮類於細胞組織之表現情形...............................................................9
2.2.3 蛋白質立體結構....................................................................................11
2.2.4 黃酮醇途徑之相關生合成酶研究........................................................11
2.2.4.1 查爾酮合成酶 Chalcone synthase...............................................11
2.2.4.2 查爾酮異合酶 Chalcone isomerase.............................................13
2.2.4.3 黃酮醇合成酶 Flavonol synthase................................................14
2.3 相思樹............................................................................................................16iv
2.3.1 相思樹之簡介........................................................................................16
2.3.2 相思屬植物之二次代謝物活性研究....................................................17
2.3.3 相思樹之黃酮類化合物成分與活性分析............................................18
叄、材料與方法..............................................................................................................22
3.1 詴驗詴材.......................................................................................................... 22
3.1.1 植物詴材................................................................................................... 22
3.1.2 載體之選用................................................................................................22
3.1.3 菌株之選用................................................................................................23
3.1.4 常用培養基與溶劑配方........................................................................... 23
3.2 實驗方法...........................................................................................................25
3.2.1 相思樹 CHS,CHI,FLS 基因之選殖..................................................25
3.2.2 譜系分析.............................................................................................26
3.2.2.1 AcCHS..........................................................................................26
3.2.2.2 AcCHI...........................................................................................27
3.2.2.3 AcFLS...........................................................................................27
3.2.3 AcFLS 蛋白質質體的建構............................................................... 28
3.2.4 重組蛋白質表現.................................................................................29
3.2.5 聚丙烯醯胺膠體電泳.........................................................................30
3.2.6 西方墨點詴驗.....................................................................................31
3.2.7 蛋白質酵素純化.................................................................................31
3.2.8 AcFLS 酵素活性反應....................................................................... 32
3.2.9 化合物 HPLC 定性分析.....................................................................32
3.2.10 相思樹創傷處理.................................................................................33
3.2.11 反轉錄聚合酶連鎖反應.....................................................................33
肆、詴驗結果..................................................................................................................34
4.1 AcCHS、AcCHI、AcFLS 基因序列分析......................................................... 34v
4.1.1 核苷酸序列..........................................................................................34
4.1.2 胺基酸序列..........................................................................................38
4.2 演化樹分析.....................................................................................................41
4.2.1 查爾酮合成酶......................................................................................41
4.2.2 查爾酮異合酶......................................................................................44
4.2.3 黃酮醇合成酶......................................................................................47
4.3 蛋白質結構預測.............................................................................................50
4.4 重組蛋白表現.................................................................................................54
4.5 蛋白質反應與產物定性.................................................................................55
4.6 AcCHS、AcCHI、AcFLS 在相思樹不同組織之轉錄表現...............................59
4.7 AcCHS、AcCHI、AcFLS 在相思樹葉片創傷處理之轉錄表現.......................60
伍、討論..........................................................................................................................62
5.1 AcCHS、AcCHI、AcFLS之功能性保守序列..................................................62
5.2 AcCHS、AcCHI、AcFLS之親緣關係分析......................................................64
5.3 AcCHS、AcCHI、AcFLS之蛋白質結構分析..................................................66
5.4 AcCHS、AcCHI、AcFLS 於相思樹不同組織的表現.......................................71
5.5 AcCHS、AcCHI、AcFLS 於相思樹葉片創傷處理之反應...............................71
5.6 AcFLS之雙重功能..........................................................................................72
陸、結論..........................................................................................................................75
柒、參考文獻..................................................................................................................76
捌、附錄..........................................................................................................................88
附錄 引子序列表..................................................................................................88vi
圖目錄
圖 1. 類苯丙醇合成途徑以及黃酮類生合成途徑(Austin and Noel, 2003)。............7
Fig. 1. Phenlypropanoid biosynthetic pathway and flavonoids biosynthetic pathway
(Austin and Noel, 2003).
圖 2 黃酮類化合物在細胞内之分佈(Lepiniec et al., 2006)。................................10
Fig. 2. Intracellular distribution of seed flavonoids (Lepiniec et al., 2006).
圖 3. 豆科植物中的黃酮醇生合成途徑(Shimada et al., 2003)。..............................14
Fig. 3. The flavonoids pathway in leguminous plants(Shimada et al., 2003).
圖 4. 黃酮類化合物之基本化學結構。.......................................................................21
Fig. 4. Basic chemical structures of flavonoids.
圖 5. 相思樹、荔枝及葡萄之查爾酮合成酶核苷酸序列分析比對。.........................35
Fig. 5. Nucleic acid sequence aligment of CHSs between A. confusa, L. chinensis and
V. vinifera.
圖 6. 相思樹、金花茶和歐洲甜櫻桃之查爾酮異合酶核苷酸序列分析比對。.........36
Fig. 6. Nucleic acid sequence aligment of CHIs between A. confusa, C. nitidissima and
P. avium.
圖 7. 相思樹、葡萄與茶樹之黃酮醇合成酶核苷酸序列分析比對。.........................37
Fig. 7. Nucleic acid sequence aligment of FLSs between A. confusa, V. vinifera and C.
sinensis.
圖 8. 相思樹、荔枝及葡萄之查爾酮合成酶胺基酸序列分析比對。........................ 39
Fig. 8. Amino acid sequence aligment of CHSs between A. confusa, L. chinensis and V.
vinifera.
圖 9. 相思樹、金花茶和歐洲甜櫻桃之查爾酮異合酶胺基酸序列分析比對。….....39vii
Fig. 9. Amino acid sequence aligment of CHIs between A. confusa, C. nitidissima and
P. avium.
圖 10. 相思樹、葡萄與茶樹之黃酮醇合成酶胺基酸序列分析比對。......................40
Fig. 10. Amino acid sequence aligment of FLSs between A. confusa, V. vinifera and
C. sinensis.
圖 11. CHS 超級家族的胺基酸序列之演化樹圖。.....................................................42
Fig. 11. Phylogenetic tree based on amino acid sequences of CHS-superfamily
enzymes.
圖 12. Type I CHIs 與Type II CHIs 之演化樹圖。.......................................................44
Fig. 12. Phylogenetic tree based on amino acid sequences of Type I CHIs and Type II
CHIs.
圖 13. AcCHI與Type I CHI、Type II CHI之胺基酸序列比對。...........................…..46
Fig. 13. Amino acid sequence aligment between AcCHI, Type I CHIs and Type II
CHIs.
圖 14. 黃酮類生合成途徑之2-ODD超級家族的演化樹圖。....................................48
Fig. 14. Phylogenetic tree based on amino acid sequences of 2-ODD superfamily
enzymes involved in the flavonoids biosynthetic pathway.
圖 15. AcCHS 之預測蛋白質立體模型。.....................................................................52
Fig. 15. Structural analysis of AcCHS protein.
圖 16. AcCHI與AcFLS之預測蛋白質立體模型。.....................................................53
Fig. 16. Structural analysis of AcCHI and AcFLS proteins.
圖 17. AcCHS與AcFLS之SDS-PAGE以及Western blot結果分析圖。...................55
Fig. 17. SDS-PAGE and Western blot analysis of AcCHS and AcFLS.
圖 18. 以HPLC檢測AcFLS催化基質二氫楊梅素之酵素反應分析。.....................56
Fig. 18. HPLC analysis of dihydromyricetin reaction products with AcFLS.
圖 19. 以HPLC檢測AcFLS催化基質二氫檞皮素之酵素反應分析。.....................57viii
Fig. 19. HPLC analysis of dihydroquercetin reaction products with AcFLS.
圖 20. 以HPLC檢測AcFLS催化基質柚皮素之酵素反應分析。.............................58
Fig. 20. HPLC analysis of narigenin reaction products with AcFLS.
圖 21. AcCHS、AcCHI和AcFLS於不同組織之RT-PCR結果。..................................60
Fig. 21. RT-PCR analysis of AcCHS, AcCHI and AcFLS gene expressions in various
parts of A. confusa.
圖 22. AcCHS、AcCHI和AcFLS創傷處理反應之RT-PCR結果。..............................61
Fig. 22. RT-PCR analysis of AcCHS, AcCHI and AcFLS gene expressions after
wounding treatment.
圖 23. CHS 蛋白質二聚體及單體結構。.....................................................................67
Fig. 23. Protein structures of CHS dimer and monomer.
圖 24. AcCHI蛋白質構型,氫鍵網活性區以及Tyr106穩定水分子的機制。.............68
Fig. 24. Structure of AcCHI protein, active site hydrogen bond network and the
mechanism of water molecule stabilized by Try106.
圖 25. AcFLS 的蛋白質結構與活性區。.....................................................................70
Fig. 25. Protein structure and active site of AcFLS.
圖 26. 2-ODDs的基本反應機制(Turnbull et al., 2004)。...........................................73
Fig. 26. General reaction mechanism of 2-ODDs (Turnbull et al., 2004).
圖 27. 相思樹黃酮醇化合物生合成途徑。.................................................................74
Fig. 27. Flavonols biosynthetic pathway in A. confusa.
dc.language.isozh-TW
dc.title參與相思樹黃酮醇生合成之酵素基因選殖與特性分析zh_TW
dc.titleMolecular Cloning and Characterization of the Enzymes Involved in Flavonol Biosynthesis in Acacia confusaen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee何政坤(Cheng-Kun Ho),王升陽(Sheng-Yang Wang),張上鎮(Shang-Tzen Chang),簡慶德(Ching-Te Chen)
dc.subject.keyword相思樹,生合成,黃酮類,黃酮醇,山奈醇,楊梅素,檞皮素,zh_TW
dc.subject.keywordAcacia confusa,biosynthesis,flavonoids,flavonols,kaempferol,myricetin,quercetin,en
dc.relation.page89
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-01-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf2.91 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved