請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69812完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊宏(Chun-Hung Lin) | |
| dc.contributor.author | Ting-Chien Lin | en |
| dc.contributor.author | 林鼎堅 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:29:02Z | - |
| dc.date.available | 2023-04-18 | |
| dc.date.copyright | 2018-04-18 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-26 | |
| dc.identifier.citation | 1. Wolfenden, R.; Lu, X.; Young, G., Spontaneous Hydrolysis of Glycosides. J. Am. Chem. Soc. 1998, 120 (27), 6814-6815.
2. Henrissat, B.; Davies, G., Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 1997, 7 (5), 637-44. 3. Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P. M.; Henrissat, B., The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014, 42 (Database issue), D490-5. 4. Koshland, D. E., Stereochemistry and the mechanism of enzymatic reactions. Biological Reviews 1953, 28 (4), 416-436. 5. M. Jespersen, T.; Bols, M.; R. Sierks, M.; Skrydstrup, T., Synthesis of isofagomine, a novel glycosidase inhibitor. Tetrahedron 1994, 50 (47), 13449-13460. 6. Jespersen, T. M.; Dong, W.; Sierks, M. R.; Skrydstrup, T.; Lundt, I.; Bols, M., Isofagomine, a Potent, New Glycosidase Inhibitor. Angew Chem Int Ed Engl 1994, 33 (17), 1778-1779. 7. Inouye, S.; Tsuruoka, T.; Ito, T.; Niida, T., Structure and synthesis of nojirimycin. Tetrahedron 1968, 24 (5), 2125-44. 8. Musa, B. U.; Doe, R. P.; Seal, U. S., Purification and Properties of Human Liver Beta-Glucuronidase. J Biol Chem 1965, 240 (7), 2811-6. 9. Boyer, M. J.; Tannock, I. F., Lysosomes, lysosomal enzymes, and cancer. Adv. Cancer Res. 1993, 60, 269-91. 10. Islam, M. R.; Tomatsu, S.; Shah, G. N.; Grubb, J. H.; Jain, S.; Sly, W. S., Active site residues of human beta-glucuronidase. Evidence for Glu(540) as the nucleophile and Glu(451) as the acid-base residue. J Biol Chem 1999, 274 (33), 23451-5. 11. Wong, A. W.; He, S.; Grubb, J. H.; Sly, W. S.; Withers, S. G., Identification of Glu-540 as the catalytic nucleophile of human beta-glucuronidase using electrospray mass spectrometry. J Biol Chem 1998, 273 (51), 34057-62. 12. Jain, S.; Drendel, W. B.; Chen, Z. W.; Mathews, F. S.; Sly, W. S.; Grubb, J. H., Structure of human beta-glucuronidase reveals candidate lysosomal targeting and active-site motifs. Nat Struct Biol 1996, 3 (4), 375-81. 13. Sly, W. S.; Quinton, B. A.; McAlister, W. H.; Rimoin, D. L., Beta glucuronidase deficiency: report of clinical, radiologic, and biochemical features of a new mucopolysaccharidosis. J. Pediatr. 1973, 82 (2), 249-57. 14. Aich, S.; Delbaere, L. T.; Chen, R., Expression and purification of Escherichia coli beta-glucuronidase. Protein Expr. Purif. 2001, 22 (1), 75-81. 15. Kim, D. H.; Jin, Y. H.; Jung, E. A.; Han, M. J.; Kobashi, K., Purification and characterization of beta-glucuronidase from Escherichia coli HGU-3, a human intestinal bacterium. Biol. Pharm. Bull. 1995, 18 (9), 1184-8. 16. Tomasic, J.; Keglevic, D., The kinetics of hydrolysis of synthetic glucuronic esters and glucuronic ethers by bovine liver and Escherichia coli beta-glucuronidase. Biochem J 1973, 133 (4), 789-95. 17. Jefferson, R. A.; Kavanagh, T. A.; Bevan, M. W., GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 1987, 6 (13), 3901-7. 18. Jefferson, R. A.; Burgess, S. M.; Hirsh, D., beta-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci U S A 1986, 83 (22), 8447-51. 19. Kim, H. S.; Kim, J. Y.; Park, M. S.; Zheng, H.; Ji, G. E., Cloning and expression of beta-glucuronidase from Lactobacillus brevis in E. coli and application in the bioconversion of baicalin and wogonoside. J Microbiol Biotechnol 2009, 19 (12), 1650-5. 20. Salleh, H. M.; Mullegger, J.; Reid, S. P.; Chan, W. Y.; Hwang, J.; Warren, R. A.; Withers, S. G., Cloning and characterization of Thermotoga maritima beta-glucuronidase. Carbohydr Res 2006, 341 (1), 49-59. 21. Beaud, D.; Tailliez, P.; Anba-Mondoloni, J., Genetic characterization of the beta-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus. Microbiology 2005, 151 (Pt 7), 2323-30. 22. Russell, W. M.; Klaenhammer, T. R., Identification and cloning of gusA, encoding a new beta-glucuronidase from Lactobacillus gasseri ADH. Appl Environ Microbiol 2001, 67 (3), 1253-61. 23. Wells, P. G.; Mackenzie, P. I.; Chowdhury, J. R.; Guillemette, C.; Gregory, P. A.; Ishii, Y.; Hansen, A. J.; Kessler, F. K.; Kim, P. M.; Chowdhury, N. R.; Ritter, J. K., Glucuronidation and the UDP-glucuronosyltransferases in health and disease. Drug Metab Dispos 2004, 32 (3), 281-90. 24. Shipkova, M.; Wieland, E., Glucuronidation in therapeutic drug monitoring. Clin. Chim. Acta 2005, 358 (1-2), 2-23. 25. Mulder, G. J., Glucuronidation and its role in regulation of biological activity of drugs. Annu. Rev. Pharmacol. Toxicol. 1992, 32, 25-49. 26. Dabek, M.; McCrae, S. I.; Stevens, V. J.; Duncan, S. H.; Louis, P., Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol Ecol 2008, 66 (3), 487-95. 27. Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C., DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 2010, 17 (5), 421-33. 28. Mathijssen, R. H.; van Alphen, R. J.; Verweij, J.; Loos, W. J.; Nooter, K.; Stoter, G.; Sparreboom, A., Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin. Cancer Res. 2001, 7 (8), 2182-94. 29. Ma, M. K.; McLeod, H. L., Lessons learned from the irinotecan metabolic pathway. Curr. Med. Chem. 2003, 10 (1), 41-9. 30. Levvy, G. A., The preparation and properties of beta-glucuronidase. IV. Inhibition by sugar acids and their lactones. Biochem J 1952, 52 (3), 464-72. 31. Niwa, T.; Tsuruoka, T.; Inoue, S.; Naito, Y.; Koeda, T., A new potent -glucuronidase inhibitor, D-glucaro- -lactam derived from nojirimycin. J Biochem 1972, 72 (1), 207-11. 32. Cenci di Bello, I.; Dorling, P.; Fellows, L.; Winchester, B., Specific inhibition of human beta-D-glucuronidase and alpha-L-iduronidase by a trihydroxy pipecolic acid of plant origin. FEBS Lett. 1984, 176 (1), 61-4. 33. Igarashi, Y.; Ichikawa, M.; Ichikawa, Y., Synthesis of a potent inhibitor of β-glucuronidase. Tetrahedron Lett. 1996, 37 (16), 2707-2708. 34. Watson, A. A.; Fleet, G. W.; Asano, N.; Molyneux, R. J.; Nash, R. J., Polyhydroxylated alkaloids -- natural occurrence and therapeutic applications. Phytochemistry 2001, 56 (3), 265-95. 35. Isobe, M.; Sakamura, S., The Structure of a New Piperidine Derivative from Buckwheat Seeds (<i>Fagopyrum esculentum</i> Moench). Agric. Biol. Chem. 1974, 38 (5), 1111-1112. 36. Welter, A.; Jadot, J.; Dardenne, G.; Marlier, M.; Casimir, J., 2,5-Dihydroxymethyl 3,4-dihydroxypyrrolidine dans les feuilles de Derris elliptica. Phytochemistry 1976, 15 (5), 747-749. 37. Elbein, A. D.; Solf, R.; Dorling, P. R.; Vosbeck, K., Swainsonine: an inhibitor of glycoprotein processing. Proc Natl Acad Sci U S A 1981, 78 (12), 7393-7. 38. Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J., Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 2004, 3 (11), 935-49. 39. Meng, X. Y.; Zhang, H. X.; Mezei, M.; Cui, M., Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 2011, 7 (2), 146-57. 40. Brooijmans, N.; Kuntz, I. D., Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 2003, 32, 335-73. 41. Yuriev, E.; Ramsland, P. A., Latest developments in molecular docking: 2010-2011 in review. J Mol Recognit 2013, 26 (5), 215-39. 42. Pagadala, N. S.; Syed, K.; Tuszynski, J., Software for molecular docking: a review. Biophys Rev 2017, 9 (2), 91-102. 43. Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009, 30 (16), 2785-91. 44. Huey, R.; Morris, G. M.; Olson, A. J.; Goodsell, D. S., A semiempirical free energy force field with charge-based desolvation. J Comput Chem 2007, 28 (6), 1145-52. 45. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19 (14), 1639-1662. 46. Agostino, M.; Jene, C.; Boyle, T.; Ramsland, P. A.; Yuriev, E., Molecular docking of carbohydrate ligands to antibodies: structural validation against crystal structures. J Chem Inf Model 2009, 49 (12), 2749-60. 47. Hill, A. D.; Reilly, P. J., A Gibbs free energy correlation for automated docking of carbohydrates. J Comput Chem 2008, 29 (7), 1131-41. 48. Kerzmann, A.; Fuhrmann, J.; Kohlbacher, O.; Neumann, D., BALLDock/SLICK: a new method for protein-carbohydrate docking. J Chem Inf Model 2008, 48 (8), 1616-25. 49. Copeland, R. A., Slow Binding Inhibitors. In Evaluation of Enzyme Inhibitors in Drug Discovery, John Wiley & Sons, Inc.: 2013; pp 203-244. 50. Xiong, A. S.; Peng, R. H.; Cheng, Z. M.; Li, Y.; Liu, J. G.; Zhuang, J.; Gao, F.; Xu, F.; Qiao, Y. S.; Zhang, Z.; Chen, J. M.; Yao, Q. H., Concurrent mutations in six amino acids in beta-glucuronidase improve its thermostability. Protein Eng Des Sel 2007, 20 (7), 319-25. 51. Flores, H.; Ellington, A. D., Increasing the thermal stability of an oligomeric protein, beta-glucuronidase. J Mol Biol 2002, 315 (3), 325-37. 52. Chen, K. C.; Wu, C. H.; Chang, C. Y.; Lu, W. C.; Tseng, Q.; Prijovich, Z. M.; Schechinger, W.; Liaw, Y. C.; Leu, Y. L.; Roffler, S. R., Directed evolution of a lysosomal enzyme with enhanced activity at neutral pH by mammalian cell-surface display. Chem Biol 2008, 15 (12), 1277-86. 53. Callanan, M. J.; Russell, W. M.; Klaenhammer, T. R., Modification of Lactobacillus beta-glucuronidase activity by random mutagenesis. Gene 2007, 389 (2), 122-7. 54. Weiss, J. N., The Hill equation revisited: uses and misuses. FASEB J. 1997, 11 (11), 835-41. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69812 | - |
| dc.description.abstract | 葡萄糖醛酸基化是人體主要的藥物代謝反應。腸道菌的β-葡萄糖醛酸酶(GUS) 會水解葡萄糖醛酸化的代謝物,在腸道中釋放出有毒性的醣苷配基,導致腸道的損傷。例如癌症化療藥物CPT-11被共生菌GUS在腸道中將其重新活化,所引發的腹瀉便是常見的劑量限制性毒性。選擇性的抑制細菌GUS而不必殺死菌群就能夠減輕這些副作用。uronic isofagomine是一個強的GUS抑制劑,但對於細菌與人類GUS不具備選擇性。我們設計與合成的一系列uronic isofagomine衍生物,可廣效的抑制多種細菌GUS,且對於人類GUS的選擇抑制比最多可達23378倍。這個選擇性與抑制劑延伸出的碳鏈所能作用到的醣苷配基結合位置 (Loop 3, Loop 5) 之胺基酸有關。與人類GUS不同,腸道菌GUS的醣苷配基結合位置以疏水性胺基酸為主,因此隨著抑制劑碳鏈的增長能獲得更多的疏水作用力。uronic isofagomine衍生物能夠通透入E. coli細胞內進行抑制,並且不會造成毒殺。我們進一步以小鼠動物模型證實了,口服這類衍生物能抑制腸道內之GUS活性,且不會傷害腸道組織。本研究首度以合理設計的方式,取得了具有親和力與選擇性的GUS抑制劑。藉由發展腸道菌的選擇性抑制劑將有助於避免藥物的代謝受到細菌酵素的干擾,而提升用藥的效率與安全性。 | zh_TW |
| dc.description.abstract | Glucuronidation is a major drug-metabolizing reaction in humans. Glucuronidated metabolites are hydrolyzed by intestinal bacterial β-glucuronidase (GUS) and release their toxic aglycones in intestines, resulting in intestinal damage. Diarrhea is a common dose-limiting toxicity caused by symbiotic bacterial GUS that reactivate cancer chemotherapeutic CPT-11 in the gut. Selective inhibition of bacterial GUS without killing microbiota alleviates these side effects. Although uronic isofagomine is a strong GUS inhibitor, while suffers from lack of selectivity. The derivatives of uronic isofagomine we designed and synthesized inhibit bacterial GUSs broadly. The human/E. coli GUS selectivity ratio reaches 23378. The selectivity was based on amino acids of aglycone binding site that alkyl chains of inhibitors interact with. Different from human GUS, bacterial GUSs possess more hydrophobic amino acids in aglycone binding site.
The derivatives of uronic isofagomine shows effective against GUS in living E. coli cells and did not kill the bacteria. We further validated the ability of inhibitors to disrupt GUS activities in gut by mouse model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:29:02Z (GMT). No. of bitstreams: 1 ntu-107-D96223130-1.pdf: 4184122 bytes, checksum: 1964dba4836d9020520dd4627954abf1 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 中文摘要 i
英文摘要 ii 縮寫表 iii 壹、緒論 1 1.1 糖苷水解酶 1 1.2 β-葡萄糖醛酸酶 5 1.3 腸道菌之β-葡萄糖醛酸酶 7 1.4 目前已知的β-葡萄糖醛酸酶抑制劑 12 1.5 吡咯烷與吡咯里西啶的衍生物作為糖苷水解酶抑制劑 14 1.6 分子嵌合 16 貳、材料與方法 17 2.1 實驗材料 17 2.2 蛋白質的純化與定量 17 2.3 酵素動力學性質之測定 19 2.3.1 pH profile之測定 19 2.3.2 Km, kcat 之測定 19 2.3.3 Ki 的計算 20 2.3.4 Slow-binding 21 2.4 E. coli細胞實驗 23 2.4.1 E. coli細胞毒性測試 23 2.4.2 E. coli細胞內GUS抑制性測試 23 2.5 分子嵌合 24 參、β-葡萄糖醛酸酶的選擇性抑制劑 25 3.1 β-葡萄糖醛酸酶的酵素動力學測定 25 3.2 N-substituted thiourea衍生物做為GUS抑制劑 28 3.3 化合物5-8做為β-葡萄糖醛酸酶抑制劑 32 3.4 化合物5-8對E. coli細胞內GUS抑制性與毒性測試 38 3.5 以小鼠作為動物模型檢視化合物7的活體內 (in vivo) 活性 40 3.6 討論 43 3.7 結論 48 肆、以分子嵌合解釋其他糖苷水解酶的抑制劑的結合模式 48 4.1 Polyhydroxylated pyrrolidine and 2-oxapyrrolizidine做為糖苷水解 酶的抑制劑 48 4.2 結論 51 伍、參考文獻 52 陸、附錄 56 Human β-glucuronidase kinetic parameters 57 Lactobacillus gasseri β-glucuronidase kinetic parameters 58 Lactobacillus brevis β-glucuronidase kinetic parameters 59 Escherichia coli β-glucuronidase kinetic parameters 60 Bifidobacterium dentium β-glucuronidase kinetic parameters 61 Clostridium perfringens β-glucuronidase kinetic parameters 62 Lactobacillus gasseri β-glucuronidase IC50 compound 6 (C3) 63 Lactobacillus gasseri β-glucuronidase Ki compound 6 (C3) 64 Lactobacillus gasseri β-glucuronidase Ki compound 7 (C6) 65 Bifidobacterium dentium β-glucuronidase Ki compound 6 (C3) 66 Bifidobacterium dentium β-glucuronidase Ki compound 7 (C6) 67 Lactobacillus gasseri β-glucuronidase Ki compound ASN03273363 68 Clostridium perfringens β-glucuronidase IC50 compound 5 (SJ5) 69 Clostridium perfringens β-glucuronidase Ki compound 5 (SJ5) 70 Clostridium perfringens β-glucuronidase IC50 compound 6 (C3) 71 Clostridium perfringens β-glucuronidase Ki compound 6 (C3) 72 Clostridium perfringens β-glucuronidase IC50 compound 7 (C6) 73 Clostridium perfringens β-glucuronidase Ki compound 7 (C6) 74 Clostridium perfringens β-glucuronidase IC50 compound 8 (C9) 75 Clostridium perfringens β-glucuronidase Ki compound 8 (C9) 76 圖目錄 圖1 糖苷水解酶的反應機構 3 圖2 人類β-葡萄糖醛酸酶之x-光結構 6 圖3 GUS之胺基酸序列比對 9 圖4 Slow-binding反應機構之判明 22 圖5 E. coli GUS的純化 25 圖6 各β-葡萄糖醛酸酶之pH值活性曲線 26 圖7 ASN03273363與E. coli GUS之結合模式 28 圖8 胺基酸序列比對顯示loop 3僅存在於腸道菌GUS 29 圖9 化合物5與E. coli GUS之結合模式 32 圖10 E. coli GUS的糖苷配基結合位置 34 圖11 人類GUS的糖苷配基結合位置 35 圖12 化合物5與人類GUS之結合模式 36 圖13 化合物5-8對E. coli GUS的分子嵌合計算 37 圖14 化合物6-8碳鏈之完全延展長度 37 圖15 化合物5-8對E. coli細胞內GUS的抑制 38 圖16 加入藥物並塗抹在培養基上經過16小時 39 圖17 加入藥物16小時後生成之E. coli菌落數 39 圖18 以蘇木精-伊紅染色檢視小鼠腸道組織的完整性 40 圖19 小鼠餵食化合物7後,各時間點之活體影像 41 圖20 化合物7對小鼠活體GUS抑制之螢光定量 42 圖21 化合物7與ASN03273363結合於E. coli GUS中的相對位置 44 圖22 C. perfringens與R. gnavus GUS的loop3之靈活度 45 圖23 化合物10與14分別對β-葡萄糖苷酶與α-半乳糖苷酶的LB plots 49 圖24 α-半乳糖、14分別與α-半乳糖苷酶的結合模式 50 表目錄 表1 各β-葡萄糖醛酸酶之酵素動力學參數 22 表2 化合物1-5對各β-葡萄糖醛酸酶的抑制 25 表3 化合物5-8對各β-葡萄糖醛酸酶的抑制 28 表4 化合物10-14對各糖苷水解酶的活性抑制測試 42 | |
| dc.language.iso | zh-TW | |
| dc.subject | 分子嵌合 | zh_TW |
| dc.subject | 抑制劑 | zh_TW |
| dc.subject | 醣?水解? | zh_TW |
| dc.subject | 葡萄糖醛酸? | zh_TW |
| dc.subject | glycosidase | en |
| dc.subject | molecular docking | en |
| dc.subject | inhibotir | en |
| dc.subject | glucuronidase | en |
| dc.title | 針對醣苷水解酶發展具有親和力與選擇性之抑制劑 | zh_TW |
| dc.title | Development of potent and selective glycosidase inhibitors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 方俊民(Jim-Min Fang),王宗興(Tsung-Shing Wang),吳世雄(Shih-Hsiung Wu),梁博煌(Po-Huang Liang) | |
| dc.subject.keyword | 葡萄糖醛酸?,抑制劑,醣?水解?,分子嵌合, | zh_TW |
| dc.subject.keyword | glucuronidase,inhibotir,glycosidase,molecular docking, | en |
| dc.relation.page | 76 | |
| dc.identifier.doi | 10.6342/NTU201800663 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-02-26 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
