Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69786
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李岳聯
dc.contributor.authorChien-Yu Huangen
dc.contributor.author黃千彧zh_TW
dc.date.accessioned2021-06-17T03:27:53Z-
dc.date.available2023-04-18
dc.date.copyright2018-04-18
dc.date.issued2018
dc.date.submitted2018-03-28
dc.identifier.citation1. R. E. Sanders, Technology Innovation in Aluminium Products. The Journal of The Minerals, 2001. 53(2): p. 21–25.
2. J. Ko 鋁合金應用介紹. 2011.
3. S. Hong, H. C. Wu, C. H. Liu, K. M. Lin and H. C. Lin, A study on the aging treatment of 6066 and 6061aluminum alloy, in Material Science and Engineering. National Taiwan University.
4. Properties of Wrought Aluminum and Aluminum Alloys Committee, Editor. 1990. p. 102.
5. C. Vargel, Corrosion of Aluminium. 2004: Elsevier.
6. S. Wernick, R. Pinner and P. G. Sheasby, The Surface Treatment and Finishing of Aluminium and its Alloys. 6 ed. ASM International. Vol. 1. 2001.
7. E. V. Koroleva, G. E. Thompson, G. Hollrigl and M. Bloeck, Surface morphological changes of aluminium alloys in alkaline solution: effect of second phase material. Corros. Sci, 1991. 41: p. 1475–1495.
8. V. Dalmoro, J. H. Z. d. Santos, E. Armelin, C. Alemán and D. S. Azambuja, A synergistic combination of tetraethylorthosilicate and multiphosphonic acid offers excellent corrosion protection to AA1100 aluminum alloy. Appl. Surf. Sci, 2013. 273: p. 758–768.
9. M. Witkowska, G. E. Thompson, T. Hashimoto and E. Koroleva, Assessment of the surface reactivity of AA1050 aluminium alloy. Surf. Interface Anal, 2013. 45: p. 1585–1589.
10. G. Grundmeier, W. Schmidt and M. Stratmann, Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation. Electrochim. Acta 2000. 45: p. 2515–2533.
11. S. S. Golru, M. M. Attar and B. Ramezanzadeh, Studying the influence of nano- Al2O3 particles on the corrosion performance and hydrolytic degradation resistance of an epoxy/polyamide coating on AA-1050. Prog. Org. Coat, 2014. 77: p. 1391–1399.
12. J. B. Bajat, V. B. Miskovic-Stankovic and Z. Kacarevic-Popovic, Corrosion stability of epoxy coatings on aluminum pretreated by vinyltriethoxysilane. Corros. Sci. , 2008. 50: p. 2078–2084.
13. L. D. Rosa, T. Monetta, F. Bellucci, D. B. Mitton, A. Atienza and C. Sinagra, The effect of a conversion layer and organic coating on the electrochemical behavior of 8006 and 8079 aluminum alloys. Prog. Org. Coat, 2002. 44 p. 153–160.
14. J. M. Hu, J. Q. Zhang and C. N. Cao, Determination of water uptake and diffusion of Cl− ion in epoxy primer on aluminum alloys in NaCl solution by electrochemical impedance spectroscopy. Prog. Org. Coat., 2003. 46: p. 273–279.
15. K. F. Lorking and J. E. O. Mayne, The corrosion of aluminium. J. Appl. Chem., 1961. 11: p. 170–180.
16. S. G. Prolongo and A. Urena, Effect of surface pre-treatment on the adhesive strength of epoxy–aluminium joints. Inter. J. Adhes. Adhes. , 2009. 29 (p. 23–31.
17. O. Lunder, F. Lapiqu, B. Johnsen and K. Nisancioglu, Effect of pre-treatment on the durability of epoxy-bonded AA6060 aluminium joints. Inter. J. Adhes. Adhes. , 2004. 24: p. 107–117.
18. O. Lunder, B. Olsen and K. Nisancioglu, Pre-treatment of AA6060 aluminium alloy for adhesive bonding. Inter. J. Adhes. Adhes., 2002. 22 p. 143–150.
19. S. M. Mirabedini and S. Moradian, Relationship between adhesive strength and surface energy Sixth Iranian Seminar on Polymer Science and Technology 2003: p. 12–15.
20. R. Posner, O. Ozcan and G. Grundmeier, Design of Adhesive Joints under Humid Conditions, ed. L.F.M. da Silva. 2013, Berlin Heidelberg: Germany, Springer.
21. A. Hughes, G. Theodossiou, S. Elliott, T. Harvey, P. Miller, J. Gorman and P. Paterson, Study of deoxidation of 2024-T3 with various acids. Mater. Sci. Technol., 2001. 17: p. 1642–1652.
22. S. S. Golru, M. M. Attara and B. Ramezanzadeh, Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating. Applied Surface Science, 2015. 354: p. 360–368.
23. R. Peierls, Remarks on the Theory of Metals. Z Phys, 1934. 88: p. 786-791.
24. R. Peierls, On the Statistical Basis for the Electron Theory of Metals. Helv Phys Acta., 1934. 7: p. 24-30.
25. R. Peierls, Remarks on Transition Temperatures. Helv Phys Acta., 1934. 7: p. 81-83.
26. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang and S. V. Dubonos, Electric field effect in atomically thin carbon films. Science, 2004. 306: p. 666-669.
27. G. AK., Graphene: status and prospects. Science., 2009. 324: p. 1530-1534.
28. J. Wu, W. Pisula and K. Müllen, Graphenes as potential material for electronics. Chem Rev. , 2007. 107: p. 718-747.
29. C. Rao, A. Sood, R. Voggu and K. S. . Some Novel Attributes of Graphene. J Phys Chem Lett. , 2010. 1: p. 572-580.
30. M. J. Allen, V. C. Tung and R. B. Kaner, Honeycomb carbon: a review of graphene. Chem Rev, 2010. 110: p. 132-145.
31. C. Lee, X. Wei, J. W. Kysar and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321: p. 385-388.
32. v. d. B. J., Graphene: from strength to strength. Nat Nanotechnol, 2007. 2: p. 199-201.
33. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan and F. Miao, Superior thermal conductivity of single-layer graphene. Nano Lett. , 2008. 8: p. 902-907.
34. S. Schadler, C. Giannris and P. Ajayan, Load Transfer in Carbon Nanotube Epoxy Composites. Appl Phys Lett. , 1998. 73: p. 3842-3847.
35. Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005. 438: p. 201- 204.
36. A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil and L. A. Ponomarenko, Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. , 2011. 11: p. 2396-2399.
37. G. AK., Graphene: status and prospects. Science, 2009. 324: p. 1530-1534.
38. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth and T. Stauber, Fine structure constant de nes visual transparency of graphene. Science, 2008. 320.
39. J. Raee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari and Y. Shi, Wetting transparency of graphene. Nat Mater, 2012. 11: p. 217-222.
40. F. R, Service, Carbon sheets an atom thick give rise to graphene dreams. Science 2009. 324: p. 875-877.
41. W. RT and Y. A., Nano materials :Graphene rests easy. Nat Nano tech nol. , 2010. 5: p. 699-700.
42. I. Jeon, H. Choi, S. Bae, D. Chang and J. Baek, Wedging Graphite into Graphene and Graphene-like Platelets by Dendritic Macromolecules. J Mater Chem, 2011. 21: p. 7820-7826.
43. V. P. V, A. C. Neto and N. Peres, Tight-Binding Approach to Uniaxial Strain in Graphene. . Phys Rev B. , 2009. 80: p. 045401.
44. J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. v. Zande, J. M. Parpia and H. G. Craighead, Impermeable atomic membranes from graphene sheets. . Nano Lett. , 2008. 8: p. 2458-2462.
45. V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson and R. B. Kaner, Low- temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. . Nano Lett. , 2009. 9: p. 949-1955.
46. W. J and K. R., Graphene Promising Transparent Conductor. Mater Today, 2010. 13: p. 52-59.
47. H. D and K. R., Solution-Processed Transparent Electrodes. . MRS Bull. , 2011. 36: p. 749-755.
48. B. L. Chen S, Levendorf M, Cai W, Ju SY, Edgeworth J. , Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. . ACS Nano. , 2011. 5: p. 321-1327.
49. M. N. Chaparro AM, Atienza C, Daza L. , Study of electrochemical instabilities of PEMFC electrodes in aqueous solution by means of membrane inlet mass spectrometry. J Electroanal Chem 2006. 591(1): p. 69–73.
50. D. A. Jones, Principles and prevention of corrosion. 2 ed. 1996., NJ, USA: Prentice Hall.
51. S. Sreevatsa, A. Banerjee and G. Haim, Graphene as a permeable ionic barrier. . ECS Meeting Abstracts 2009. 901(38): p. 1319.
52. N. T. Kirkland, T. Schiller, N. Medhekar and N. Birbilis, Exploring graphene as a corrosion protection barrier. . Corros Sci 2012. 56: p. 1–4.
53. D. Prasai, J. C. Tuberquia, R. R. Harl, G. K. Jennings and K. I. Bolotin, Graphene: corrosion-inhibiting coating. . ACS Nano 2012. 6(2): p. 1102.
54. R. K. S. Raman, P. C. Banerjee, D. E. Lobo, H. Gullapalli, M. Sumandasa, A. Kumar, L. Choudhary, R. Tkacz, P. M. Ajayan and M. Majumder, Protecting copper from electrochemical degradation by graphene coating. CARBON 2012. 50: p. 4040–4045.
55. S. Mayavan, T. Siva and S. Sathiyanarayanan, Graphene ink as a corrosion inhibiting blanket for iron in an aggressive chloride environment. RSC Advances, 2013. 3.
56. J. Liu, L. Hua, S. Li and M. Yu, Graphene dip coatings: An effective anticorrosion barrier on aluminum Applied Surface Science, 2015. 327: p. 241-245
.
57. Y.-d. H. Chao-lei BAN, Xin SHAO, Juan DU, Effect of pretreatment on electrochemical etching behavior of Al foil in HCl–H2SO4. Transactions of Nonferrous Metals Society of China, 2013. 23(4): p. 1039-1045.
58. N. M. Zain, S. H. Ahmad and E. S. Ali, Effect of surface treatments on the durability of green polyurethane adhesive bonded aluminium alloy. International Journal of Adhesion and Adhesives, 2014. 55: p. 43-55.
59. Y. Liu, J. Zhang, S. Li, Y. Wang, Z. Han and L. Ren, Fabrication of a superhydrophobic graphene surface with excellent mechanical abrasion and corrosion resistance on an aluminum alloy substrate. RSC Advances, 2014. 4: p. 45389-45396.
60. L. G. Guex, B. Sacchi, K. F. Peuvot, R. L. Andersson, A. M. Pourrahimi, V. Ström, S. Farris and R. T. Olsson, Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale, 2017. 9: p. 9562-9571.
61. P.-C. Chiang, Controlled Orientation of Pentacene Molecules Using Substrate Templating in Organic Solar Cells 2013, Taipei Technology University.
62. P. R. G. D. J. Gardiner, H J Bowley, in Practical Raman Spectroscopy. 1990, Springer.
63. H.-B. Yi, A Study of Trivalent Chromium Conversion Coatings on Alumium Alloy 2024-T3, in Materials Science and Engineering. 2015, National Taiwan University. p. 55.
64. G. Ragoisha. Potentiodynamic Electrochemical Impedance Spectroscopy. 2013.
65. R. W. Revie, Heterogeneous Electrode Process and Localized Corrosion. 2013: Wiley & Sons, Inc., Hoboken, New Jersey.
66. 原子力顯微鏡原理.
67. 羅聖全, 科學基礎研究之重要利器—掃瞄式電子顯微鏡 (SEM). 材料世界, 2013. 52(5): p. 1-4.
68. D. E. Packham, Surface energy, surface topography and adhesion. International Journal of Adhesion & Adhesives, 2003. 23: p. 437–448.
69. N. J. HALLAB, K. J. BUNDY, K. O’CONNOR, R. L. MOSES and J. J. JACOBS, Evaluation of Metallic and Polymeric Biomaterial Surface Energy and Surface Roughness Characteristics for Directed Cell Adhesion. TISSUE ENGINEERING, 2001. 7: p. 55-71.
70. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. H. Hong, Large-scale Pattern Groth of Graphene Films for Stretchatable Transparent Electrodes. Nature, 2009. 457: p. 706-710.
71. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Raman spectrum of graphene and graphene layers. PHYSICAL REVIEW LETTERS, 2006. 97(18): p. 187401.
72. 丁志華, 讓我們一同探索什麼是石墨烯?, in 奈米通訊. p. 32.
73. O. Lunder, K. F. Heen and K. Nisancioglu, Pretreatment of Aluminum Alloy 6060 by Selective Removal of Surface Intermetallics. NACE International, 2004. 60(7): p. 622-631.
74. A. Parsapour, S. N. Khorasani and M. H. Fathi, Effect of Surface Treatment and Metallic Coating on Corrosion Behavior and Biocompatibility of Surgical 316L Stainless Steel Implant. J. Mater. Sci. Technol., 2012. 28(2): p. 125–131.
75. R. R. L. D. Oliveira, D. A. C. Albuquerque, T. G. S. Cruz, F. M. Yamaji and F. L. Leit, Measurement of the Nanoscale Roughness by Atomic Force Microscopy: Basic Principles and Applications. Atomic Force Microscopy - Imaging, Measuring and Manipulating Surfaces at the Atomic Scale, ed. Bellitto. 2012.
76. M. R. Muda, M. M. Ramli, S. S. M. Isa, M. F. Jamlos, S. A. Z. Murad, Z. Norhanisah, M. M. Isa, S. R. Kasjoo, N. Ahmad, N. I. M. Nor and N. Khalid, Fundamental study of reduction graphene oxide by sodium borohydride for gas sensor application. AIP Conference Proceedings 2017. 1808: p. 020034.
77. J. Kang, D. Shin, S. Baea and B. H. Hong, Graphene transfer: key for applications. Nanoscale, 2012. 4: p. 5527–5537.
78. G. Macdougall and C. Ockrent, Surface energy relations in liquid/solid systems. The Royal Society's physical sciences research journal, 1941: p. 151-173
79. B. V. DERJAGUIN, V. M. MULLER and Y. P. TOPOROV, Effect of Contact Deformations on the Adhesion of Particles Journal of Colloid and Interface Science, 1975 53(2): p. 314-326.
80. K. E. EASTERLINGt and A. R. THoLkNf, SURFACE ENERGY AND ADHESION AT METAL CONTACTS. ACTA METALLURGICA, 1972 29: p. 1001-1008
81. K. L. JOHNSON, K. KENDALL and A. D. ROBERTS, Surface energy and the contact of elastic solids,. Proc. R. Sot. , 1971. A824: p. 361
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69786-
dc.description.abstract本篇論文分為兩部分,第一部分為鋁合金前處理對於石墨烯與鋁合金之間的附著性與抗蝕性影響,第二部分則為多層石墨烯之分散與噴塗對於鋁合金之抗蝕性分析。第一部分中我們以化學氣相沈積法製備單層石墨烯並轉印製鋁合金表面,並使用常見的酸洗液,如硫酸、硝酸、磷酸做鋁合金之酸洗,而後以接觸角儀測量不同液體與不同表面之接觸角,計算出表面能以分析石墨烯與鋁合金表面之附著度。實驗中以拉曼光譜儀分析石墨烯是否具有明顯之缺陷、以極化曲線測定單層石墨烯覆蓋於鋁合金後之抗蝕能力、以原子力顯微鏡分析不同表面處理所造成之鋁合金表面高低起伏,由上述實驗分析出硝酸前處理後鋁合金的表面最適合石墨烯附著。
第二部分我們使用購買之氧化石墨烯分散液,以硼氫化鈉做為還原劑,將氧化石墨烯還原後以高能超音波均質機還原之氧化石墨烯分散至無水酒精中,以噴塗方式將還原之氧化石墨烯噴塗至鋁合金表面,達到多層石墨烯的效果,並以極化曲線分析其抗蝕能力,以原子力顯微鏡觀察其表面形貌、以掃描式電子顯微鏡配以聚焦離子束切割,觀測噴塗之石墨稀薄膜厚度。由此方法有效解決化學氣相沈積法所製備之石墨烯無法大量、大面積合成的問題,以提高石墨烯作為抗蝕塗層之實際應用能力。
zh_TW
dc.description.abstractThis study is divided into two prats. The first part presents an investigation into the effect of surface pretreatment on the electrochemical characteristics and corrosion behavior on graphene coated 6061 aluminum alloy (Al 6061). The corrosion properties of graphene coated 6061 aluminum alloy with different surface pretreatments were studied using electrochemical impedance spectroscopy (EIS), and polarization measurement. Surface morphologies of pretreated and coated samples were analyzed by atomic force microscopy (AFM). The integrity of graphene transferred from the growth Cu substrate was examined by Raman spectroscopy. We also investigated the adhesion between the graphene and Al 6061 by measuring the water and diiodomethane contact angle, and calculating the surface free energy of various pretreated samples.
In the second part, solving the problem that chemical vapor deposition graphene can not be made and transferred in large area, we reduced graphene oxide by NaBH4 and spray it on the surface of 6061 aluminum. The corrosion properties of reduced graphene oxide film is analyzed by potentiodyanmic polarization, and the topography and thickness of reduced graphene oxide film is observed by AFM and scanning electron microscopy (SEM).
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:27:53Z (GMT). No. of bitstreams: 1
ntu-107-R05525124-1.pdf: 11104333 bytes, checksum: b97d4c6deb9e639a3618f8144446557c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 I
中文摘要 III
ABSTRACT IV
目錄 V
圖目錄 IX
表目錄 XII
第 1 章 前言 1
第 2 章 文獻探討 3
2.1 鋁合金簡介 3
2.1.1 鋁合金種類 3
2.1.2 6061 鋁合金介紹 8
2.2 鋁合金的表面處理 9
2.3 石墨烯簡介 13
2.3.1 石墨烯之性質與應用 13
2.3.2 CVD 石墨烯之抗蝕應用 17
2.3.3 r-GO 之抗蝕應用 22
第 3 章 實驗方法及步驟 27
3.1 試片表面前處理 27
3.2 製程條件 27
3.3 化學氣相沉積法製備石墨烯 28
3.4 Reduced Graphene Oxide (r-GO) 製備 30
3.5 表面性質分析 32
3.5.1 表面能量測 32
3.5.2 拉曼光譜 34
3.6 石墨稀薄膜抗蝕性質分析 35
3.6.1 動電位極化曲線 35
3.7 表面微結構觀察 37
3.7.1 原子力顯微鏡 37
3.7.2 掃描式電子顯微鏡與聚焦離子束 40
第 4 章 實驗結果與討論 42
4.1 材料特性性質分析 42
4.1.1 表面能量測 42
4.1.2 單層石墨烯之拉曼光譜 44
4.2 單層石墨稀薄膜抗蝕性分析 48
4.2.1 極化曲線 48
4.3 單層石墨烯表面形貌觀測 54
4.3.1 AFM觀察 54
4.4 r-GO之物性觀察 59
4.4.1 顏色比較 59
4.4.2 AFM觀察 61
4.5 r-GO之抗蝕性質分析 64
4.5.1 極化曲線 64
4.6 r-GO之微結構觀測 67
4.6.1 SEM 與 FIB 觀察 67
第 5 章 討論 71
第 6 章 結論 75
REFERENCE 78
dc.language.isozh-TW
dc.subject石墨烯zh_TW
dc.subject抗蝕zh_TW
dc.subject表面處理zh_TW
dc.subjectAnticorrosionen
dc.subjectGrapheneen
dc.subjectSurface Pretreatmenten
dc.title石墨烯塗層對鋁合金表面抗蝕性質之影響zh_TW
dc.titleThe Effect of Corrosion Performance for Graphene Coating on 6061 Aluminum Alloyen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee宋家驥,鄭憶中,簡順億
dc.subject.keyword石墨烯,表面處理,抗蝕,zh_TW
dc.subject.keywordGraphene,Surface Pretreatment,Anticorrosion,en
dc.relation.page85
dc.identifier.doi10.6342/NTU201800706
dc.rights.note有償授權
dc.date.accepted2018-03-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
10.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved