請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69773完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳景然 | |
| dc.contributor.author | Ping-Sheng Wu | en |
| dc.contributor.author | 吳炳昇 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:27:19Z | - |
| dc.date.available | 2019-05-17 | |
| dc.date.copyright | 2018-05-17 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-04-17 | |
| dc.identifier.citation | [1] S.-Y. Cho, I.-O. Lee, J.-E. Park, and G.-W. Moon, 'Two-stage configuration for 60W universal-line AC-DC adapter,' in IEEE IECON, 2012, pp. 1445-1450.
[2] U. S. Padiyar and V. Kamath, 'Design and implementation of a universal input flyback converter,' in ICEEOT, 2016, pp. 3428-3433. [3] Universal Serial Bus, 'USB power delivery-1.0 introduction,' Available: http://www.usb.org/developers/docs/ [4] F. He, 'USB port and power delivery: an overview of USB port interoperabiliy,' in IEEE ISPCE, 2015, pp. 1-5. [5] Universal Serial Bus, 'USB battery charging 1.2 compliance plan recision 1.0,' Available: http://www.usb.org/developers/docs/devclass_docs/USB_Battery_Charging_1.2.pdf [6] G. C. Huang, T. J. Liang, and C. Kai-Hui, 'Losses analysis and low standby losses quasi-resonant flyback converter design,' in IEEE ISCAS, 2012, pp. 217-220. [7] Y. Li and J. Zheng, 'A low-cost adaptive multi-mode digital control solution maximizing AC/DC power supply efficiency,' in IEEE APEC, 2010, pp. 349-354. [8] Fairchild semiconductor, 'Highly integrated green-mode PWM controller, FAN6862 datasheet,' Available: http://www.fairchildsemi.com/ [9] NXP semiconductor, 'Green chip SMPS control IC, TEA1733A datashee,' Available: http://www.npx.com/ [10] Texas Instruments, 'Constant-voltage constant-current flyback controller using opto-coupled feedback, UCC28740 datasheet,' Available: http://www.ti.com/ [11] C. H. Cheng, C. J. Chen, and S. S. Wang, 'Small-signal model of flyback converter in continuous-conduction mode with peak-current control at variable switching frequency,' IEEE Trans. Power Electron., vol. 33, no. 5, pp. 4145-4156, 2018. [12] L. Huber and M. M. Jovanović, 'Small-signal analysis of DCM flyback converter in frequency-foldback mode of operation,' in IEEE APEC, 2013, pp. 1746-1752. [13] B. T. Irving, Y. Panov, and M. M. Jovanovic, 'Small-signal model of variable-frequency flyback converter,' in IEEE APEC, 2003, vol. 2, pp. 977-982 vol.2. [14] J. Lempinen and T. Suntio, 'Small-signal modeling for design of robust variable-frequency flyback battery chargers for portable device applications,' in IEEE APEC, 2001, vol. 1, pp. 548-554 vol.1. [15] C. J. Chen, C. H. Cheng, P. S. Wu, and S. S. Wang, 'Unified small-signal model and compensator design of flyback converter with peak-current control at variable frequency for USB power delivery,' IEEE Trans. Power Electron., vol. PP, no. 99, pp. 1-1, 2018. [16] R. D. Middlebrook and S. Cuk, 'A general unified approach to modelling switching-converter power stages,' in IEEE PESC, 1976, pp. 18-34. [17] J. Li and F. C. Lee, 'New modeling approach and equivalent circuit representation for current-mode control,' IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1218-1230, 2010. [18] S. Y. Chen, 'Small-signal model for a flyback converter with peak current mode control,' IET Power Electron., vol. 7, no. 4, pp. 805-810, 2014. [19] S. F. Hsiao, D. Chen, C. J. Chen, and H. S. Nien, 'A new multiple-frequency small-signal model for high-bandwidth computer V-Core regulator applications,' IEEE Trans. Power Electron., vol. 31, no. 1, pp. 733-742, 2016. [20] V. Vorperian, 'Simplified analysis of PWM converters using model of PWM switch. II. Discontinuous conduction mode,' IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 497-505, 1990. [21] S. Jian, D. M. Mitchell, M. F. Greuel, P. T. Krein, and R. M. Bass, 'Averaged modeling of PWM converters operating in discontinuous conduction mode,' IEEE Trans. Power Electron., vol. 16, no. 4, pp. 482-492, 2001. [22] J. Sun and H. Grotstollen, 'Averaged modelling of switching power converters: reformulation and theoretical basis,' in IEEE PESC 1992, pp. 1165-1172 vol.2. [23] S. S. Wang, 'Feedback control design of off-line flyback converter,' Available: http://www.richtek.com/zh-TW/ [24] M. Appel and A. Kruck, 'Guidelines for reading an optocoupler datasheet,' Available: http://www.vishay.com/ [25] R. Ridley, 'Using the TL431 in a power supply,' Available: http://cdn14.21dianyuan.com/download.php?id=32246 [26] C. Basso, 'The dark side of flyback converters,' Available: http://www.onsemi.com/ [27] C. Basso and P. Kadanka, 'The TL431 in switch-mode power supplies loops,' Available: http://www.cbasso.pagesperso-orange.fr/Downloads/Papers/The%20TL431%20in%20loop%20control.pdf [28] ON Semiconductior, 'The TL431 in the control of switching power supplies,' Available: https://www.onsemi.com/pub/Collateral/TND381-D.PDF [29] Y. Panov and M. M. Jovanovic, 'Small-signal analysis and control design of isolated power supplies with optocoupler feedback,' IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 823-832, 2005. [30] ON Semiconductor, 'TL431-programmable precision reference, TL431 datasheet,' Available: http://www.onsemi.com/ [31] C. Basso, 'Dealing with low-current optocouplers,' Available: http://www.powerelectronics.com./ | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69773 | - |
| dc.description.abstract | 返馳式轉換器因其電路架構簡單且具有電氣隔離的特性,所以被廣泛地採用於手持式裝置的低功率適配器中。為了使轉換器在寬範圍應用中達到高轉換效率,此架構經常會採用變頻峰值電流控制。此控制方法可以根據轉換器的輸出負載量自動調整其切換頻率,進而使轉換器於重載及輕載操作時維持高轉換效率。
本論文主要是研究變頻峰值電流控制的返馳式轉換器應用於日漸重要的串列匯流排電力傳輸技術。在此應用技術中,電源轉換器具有不同的輸出電壓以提供各式外部負載所需之電能。相較於傳統的適配器應用,此技術的操作範圍是更加地寬廣,使得變頻峰值電流控制返馳式轉換器的穩定度問題變得更為嚴苛。 在本論文中,電源轉換器在整個寬範圍操作下的各種控制行為會有詳盡的敘述。依據輸出負載的大小,轉換器共有四種不同控制模式。針對這四種控制模式,本論文會回顧其小訊號模型。由於同一組補償器將使用於四種不同的控制模式中來穩定轉換器操作,所以分析最差情形之未補償迴路轉移函數是必須的。根據這些分析將提出一套針對串列匯流排電力傳輸應用的補償設計策略。模擬及硬體實測證實此補償策略之可行性。 | zh_TW |
| dc.description.abstract | Flyback converters have been widely adopted in low-power adapters for many portable devices, mainly because of its simplicity and electrical isolation characteristic. In order to achieve high conversion efficiency over the entire load range, the variable-frequency peak-current mode (VFPCM) control scheme is often used in this topology. With this control scheme, the converter switching frequency can be automatically adjusted according to output load level, and therefore, maintains high efficiency under both the heavy-load and the light-load conditions.
In this thesis, a flyback converter with VFPCM control used for the up-and-coming universal serial bus power delivery (USB-PD) application is the focus. For such an application, the converter has to supply various output voltage levels for powering different loads. Compared with traditional adapter application, the operation range of this specification is much wider and the stability issue of VFPCM controlled flyback converter becomes more severe. In this thesis, a detailed description of the circuit control behaviors throughout a complete wide operation range is given. Depending on the output load condition, there are four control modes for this converter. The small-signal models for each of four control modes are reviewed. Since only one compensator is used for keeping the converter stable, a worst case analysis of uncompensated loop gain transfer functions is indispensable. Based on the analysis, a design strategy of compensation network for USB-PD application is proposed. Simulations are conducted and a hardware experimental circuit is built to verify the validity of the proposed strategy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:27:19Z (GMT). No. of bitstreams: 1 ntu-107-R04921117-1.pdf: 2420975 bytes, checksum: 105b24e9fc2b8bc5888608e8e43f4514 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv Table of Contents vi List of Figures ix List of Tables xii Chapter 1. Introduction 1 1.1 Background 1 1.2 Stability Issue for Circuit Employing VFPCM Scheme for USB-PD Application 5 1.3 Thesis Outline 8 Chapter 2. Review of Small-Signal Model of VFPCM Controlled Flyback Converter 10 2.1 Description of VFPCM Controlled Flyback Converter 10 2.2 Small-Signal Model of VFPCM Controlled Flyback Converter in CCM 15 2.2.1 Derivation of Factor1(s) of VFPCM Control in CCM 17 2.2.2 Derivation of the GVC(s) of VFPCM Control in CCM 19 2.2.3 Explanation of Modeling Results of GVC(s) in CCM 20 2.2.4 Comparison of VFPCM and CFPCM Control Behavior in CCM 22 2.2.5 Model Verification by Simulation 24 2.3 Small-Signal Model of VFPCM Controlled Flyback Converter in DCM 26 2.3.1 Derivation of the GVC(s) of VFPCM Control in DCM 26 2.3.2 Explanation of Modeling Results of GVC(s) in DCM 28 2.3.3 Comparison of VFPCM and CFPCM Control Behavior in DCM 28 2.3.4 Model Verification by Simulation 29 2.4 Summary 30 Chapter 3. Compensator Design of VFPCM Controlled Flyback Converter for USB-PD Application 33 3.1 Description of Wide Range Operation Conditions 33 3.2 Analysis of Poles and Zeros Movement in Wide Range Operations 35 3.2.1 Poles-Zeros Movement of VFPCM and CFPCM Control in DCM 35 3.2.2 Poles-Zeros Movement of VFPCM and CFPCM Control in CCM 37 3.2.3 Summary 40 3.3 Compensator Design for USB-PD 41 3.3.1 Worst-Case Analysis to Determine Loop Gain Bandwidth 42 3.3.2 Description of Compensation Circuit 44 3.3.3 Determination of the Compensation 47 3.3.4 Considerations of Compensator Design for USB-PD application 48 3.4 Compensator Design Example 49 3.5 Summary 54 Chapter 4. Experimental Verification 55 4.1 Description of Hardware 55 4.2 Verification of Control-to-Output Transfer Function 56 4.3 Verification of Loop-Gain Transfer Function 60 4.4 Discussion of Loop-Gain Experimental Results 64 4.4.1 Discussion about Gain Limit of TL431 at Low-Frequency Range 64 4.4.2 Discussion about the Characteristics of Opto-coupler 67 4.5 Summary 68 Chapter 5. Conclusions and Suggestions for Future Research 70 5.1 Conclusions 70 5.2 Suggestions for Future Research 71 References 72 | |
| dc.language.iso | en | |
| dc.subject | 返馳式轉換器 | zh_TW |
| dc.subject | 變頻峰值電流控制 | zh_TW |
| dc.subject | 串列匯流排電力傳輸 | zh_TW |
| dc.subject | 小訊號模型 | zh_TW |
| dc.subject | 補償器 | zh_TW |
| dc.subject | compensator | en |
| dc.subject | variable-frequency peak-current mode (VFPCM) | en |
| dc.subject | universal serial bus power delivery (USB-PD) | en |
| dc.subject | small-signal model | en |
| dc.subject | Flyback converter | en |
| dc.title | 應用於串列匯流排電力傳輸之變頻峰值電流控制返馳式轉換器之小訊號分析與補償器設計 | zh_TW |
| dc.title | Small-Signal Analysis and Compensator Design of Flyback Converters with Variable-Frequency Peak-Current Control for USB-PD Application | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳德玉,王信雄,邱煌仁 | |
| dc.subject.keyword | 返馳式轉換器,變頻峰值電流控制,串列匯流排電力傳輸,小訊號模型,補償器, | zh_TW |
| dc.subject.keyword | Flyback converter,variable-frequency peak-current mode (VFPCM),universal serial bus power delivery (USB-PD),small-signal model,compensator, | en |
| dc.relation.page | 75 | |
| dc.identifier.doi | 10.6342/NTU201800737 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-04-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
