Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69771
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟(Jaw-Lin Wang)
dc.contributor.authorMu-Cyun Tsengen
dc.contributor.author曾牧群zh_TW
dc.date.accessioned2021-06-17T03:27:14Z-
dc.date.available2021-02-20
dc.date.copyright2021-02-20
dc.date.issued2021
dc.date.submitted2021-02-17
dc.identifier.citation1. Urban, J.P. and S. Roberts, Degeneration of the intervertebral disc. Arthritis Res Ther, 2003. 5(3): p. 120.
2. Neidlinger-Wilke, C., et al., Mechanical loading of the intervertebral disc: from the macroscopic to the cellular level. European Spine Journal, 2014. 23(3): p. 333-343.
3. Andersson, G.B.J.T.l., Epidemiological features of chronic low-back pain. 1999. 354(9178): p. 581-585.
4. Koes, B., M. Van Tulder, and S. Thomas, Diagnosis and treatment of low back pain. Bmj, 2006. 332(7555): p. 1430-1434.
5. Luoma, K., et al., Low back pain in relation to lumbar disc degeneration. Spine, 2000. 25(4): p. 487-492.
6. Deyo, R.A., J. Rainville, and D.L. Kent, What can the history and physical examination tell us about low back pain? Jama, 1992. 268(6): p. 760-765.
7. Nwuga, V.J.A.o.p.m. and rehabilitation, Ultrasound in treatment of back pain resulting from prolapsed intervertebral disc. 1983. 64(2): p. 88-89.
8. Ebadi, S., et al., Therapeutic ultrasound for chronic low‐back pain. Cochrane Database of Systematic Reviews, 2014(3).
9. Miller, J.A., C. Schmatz, and A.J.S. Schultz, Lumbar disc degeneration: correlation with age, sex, and spine level in 600 autopsy specimens. 1988. 13(2): p. 173-178.
10. Boos, N., et al., Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. 2002. 27(23): p. 2631-2644.
11. Adams, M.A. and P.J. Roughley, What is intervertebral disc degeneration, and what causes it? Spine, 2006. 31(18): p. 2151-2161.
12. Mosley, G.E., et al., Looking beyond the intervertebral disc: the need for behavioral assays in models of discogenic pain. Annals of the New York Academy of Sciences, 2017. 1409(1): p. 51.
13. Gruber, H.E., et al., Proinflammatory cytokines modulate the chemokine CCL2 (MCP-1) in human annulus cells in vitro: CCL2 expression and production. Experimental and molecular pathology, 2015. 98(1): p. 102-105.
14. Johnson, Z.I., et al., Disc in flames: Roles of TNF-α and IL-1β in intervertebral disc degeneration. European cells materials, 2015. 30: p. 104.
15. Olmarker, K., M. Nutu, and R. Størkson, Changes in spontaneous behavior in rats exposed to experimental disc herniation are blocked by selective TNF-alpha inhibition. Spine, 2003. 28(15): p. 1635-1641.
16. Stefanakis, M., et al., Annulus fissures are mechanically and chemically conducive to the ingrowth of nerves and blood vessels. Spine, 2012. 37(22): p. 1883-1891.
17. Maroudas, A., et al., Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. Journal of anatomy, 1975. 120(Pt 1): p. 113.
18. Iatridis, J.C., et al., Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the nucleus pulposus of the human intervertebral disc. Spine, 1996. 21(10): p. 1174-1184.
19. Hunter, C., J. Matyas, and N. Duncan, The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue engineering, 2003. 9(4): p. 667-677.
20. Warden, S.J., A New Direction for Ultrasound Therapy in Sports Medicine. Sports Medicine, 2003. 33(2): p. 95-107.
21. Khanna, A., et al., The effects of LIPUS on soft-tissue healing: a review of literature. British medical bulletin, 2009. 89(1): p. 169-182.
22. Welgus, H.G., J.J. Jeffrey, and A.Z. Eisen, Human skin fibroblast collagenase. Assessment of activation energy and deuterium isotope effect with collagenous substrates. Journal of Biological Chemistry, 1981. 256(18): p. 9516-9521.
23. Miyamoto, K., et al., Exposure to Pulsed Low Intensity Ultrasound Stimulates Extracellular Matrix Metabolism of Bovine Intervertebral Disc Cells Cultured in Alginate Beads. Spine, 2005. 30(21): p. 2398-2405.
24. Hiyama, A., et al., Synergistic effect of low-intensity pulsed ultrasound on growth factor stimulation of nucleus pulposus cells. Journal of Orthopaedic Research, 2007. 25(12): p. 1574-1581.
25. Kobayashi, Y., et al., Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line. Eur Cell Mater, 2009. 17(3): p. 15-22.
26. Chan, S.C., S.J. Ferguson, and B. Gantenbein-Ritter, The effects of dynamic loading on the intervertebral disc. European Spine Journal, 2011. 20(11): p. 1796.
27. MacLean, J.J., et al., Anabolic and catabolic mRNA levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression. Journal of Orthopaedic Research, 2004. 22(6): p. 1193-1200.
28. VINARDELL, T., et al., Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells. 2008.
29. Elder, S., K. Fulzele, and W. McCulley, Cyclic hydrostatic compression stimulates chondroinduction of C3H/10T1/2 cells. Biomechanics and modeling in mechanobiology, 2005. 3(3): p. 141-146.
30. Urban, J. and A. Maroudas, Swelling of the intervertebral disc in vitro. Connective tissue research, 1981. 9(1): p. 1-10.
31. Ariga, K., et al., Mechanical stress-induced apoptosis of endplate chondrocytes in organ-cultured mouse intervertebral discs: an ex vivo study. Spine, 2003. 28(14): p. 1528-1533.
32. Illien-Jünger, S., et al., The combined effects of limited nutrition and high-frequency loading on intervertebral discs with endplates. Spine, 2010. 35(19): p. 1744-1752.
33. Korecki, C.L., et al., Intervertebral disc cell response to dynamic compression is age and frequency dependent. Journal of orthopaedic research, 2009. 27(6): p. 800-806.
34. Urban, J., et al., Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clinical orthopaedics and related research, 1982(170): p. 296-302.
35. Sivan, S., et al., Diurnal fluid expression and activity of intervertebral disc cells. Biorheology, 2006. 43(3, 4): p. 283-291.
36. Agell, N., et al., Modulation of the Ras/Raf/MEK/ERK pathway by Ca2+, and calmodulin. Cellular signalling, 2002. 14(8): p. 649-654.
37. Cullen, P.J. and P.J. Lockyer, Integration of calcium and Ras signalling. Nature reviews Molecular cell biology, 2002. 3(5): p. 339-348.
38. Chen, H.-J., et al., A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron, 1998. 20(5): p. 895-904.
39. Liu, Q., et al., CAPRI and RASAL impose different modes of information processing on Ras due to contrasting temporal filtering of Ca2+. The Journal of cell biology, 2005. 170(2): p. 183-190.
40. Berridge, M.J., Calcium signalling remodelling and disease. 2012, Portland Press Ltd.
41. Kolch, W.J.B.J., Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. 2000. 351(2): p. 289-305.
42. Cuesta, A., et al., Acid-sensing ion channels in healthy and degenerated human intervertebral disc. Connective tissue research, 2014. 55(3): p. 197-204.
43. Wemmie, J.A., R.J. Taugher, and C.J. Kreple, Acid-sensing ion channels in pain and disease. Nature Reviews Neuroscience, 2013. 14(7): p. 461-471.
44. Uchiyama, Y., et al., Expression of acid‐sensing ion channel 3 (ASIC3) in nucleus pulposus cells of the intervertebral disc is regulated by p75NTR and ERK signaling. Journal of Bone and Mineral Research, 2007. 22(12): p. 1996-2006.
45. Sun, Y., et al., Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. Journal of Receptors and Signal Transduction, 2015. 35(6): p. 600-604.
46. Iwashina, T., et al., Low-intensity pulsed ultrasound stimulates cell proliferation and proteoglycan production in rabbit intervertebral disc cells cultured in alginate. Biomaterials, 2006. 27(3): p. 354-361.
47. Erdogmus, S., et al., Helix 8 is the essential structural motif of mechanosensitive GPCRs. Nature communications, 2019. 10(1): p. 1-15.
48. Berridge, M.J., Calcium signalling and cell proliferation. Bioessays, 1995. 17(6): p. 491-500.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69771-
dc.description.abstract非典型下背痛與椎間盤退化有極大關係,並與其內髓核細胞退化有關,透過探討髓核細胞核內p-ERK訊號以及鈣離子濃度調控來了解髓核細胞受外力刺激時的反應。發展出能夠即時觀察之超音波刺激壓力載台,能在壓力環境下給予超音波刺激,發現NP細胞為一對外力敏感的細胞,在壓力及超音波刺激下p-ERK訊號皆增強,且會增加Sox9表現量,而長時間的壓力刺激也會增加髓核細胞的第二型膠原蛋白製造。以超音波玻璃針尖刺激及快速壓力變化探討髓核細胞的鈣離子反應,超音波刺激會透過ASIC3及GPCR增加細胞內鈣離子濃度,而在動態壓力下,增壓及洩壓時NP細胞也都會有鈣離子的正調控。NP細胞在人體內因從事運動而受到脊椎變形產生椎間盤內壓變化,會透過鈣離子調控進而影響下游細胞訊號,然而無法促進NP細胞增生,但能夠維持其生理功能,分泌細胞外基質,使椎間盤維持於健康狀態。椎間盤退化患者若無法從事運動,超音波治療可能扮演著提供相同刺激之工具,透過不同鈣離子及細胞因子調控路徑,促進NP生理功能,可能減緩椎間盤退化情形,維持椎間盤健康條件。zh_TW
dc.description.abstractUltrasound therapy were used as treatment to atypical low back pain and have been reported effective of patients’ chef complaint, while the mechanism still remains unknown. We investigate the nucleus pulposus cells’ intracellular calcium response and phosphorylation of ERK(p-ERK) to external mechanical force stimulation by hydrostatic pressure and ultrasound-micropipette. NP cells p-ERK was increased and highly translocated into nucleus after pressurized and ultrasonic stimuli. With ultrasound-micropipette investigation, which offering acoustic pressure and acoustic streaming stimuli, intracellular calcium was upregulated through ASIC3 and GPCR. Also, pressure change elevated calcium concentration, whether pressurizing or relief. Hence, we consider exercise could maintain intervertebral disc health with p-ERK activated through calcium signal pathway. Moreover, ultrasound therapy would utilize the high mechanosensitivity of NP to provide similar effect of exercises to NP to retards degeneration of intervertebral disc potentiallyen
dc.description.provenanceMade available in DSpace on 2021-06-17T03:27:14Z (GMT). No. of bitstreams: 1
U0001-1602202100233100.pdf: 4959213 bytes, checksum: 8c8e2da00a8e2f77b9f68787bd26edc1 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents中文摘要 V
ABSTRACT VI
第一章、緒論 1
1.1下背痛(LOW BACK PAIN, LBP) 1
1.2椎間盤(INTERVERTEBRAL DISCS, IVD) 2
1.3椎間盤退化(DEGENERATIVE DISC DISEASE, DDD) 3
1.4髓核細胞(NUCLEUS PULPOSUS CELLS, NP CELLS) 4
1.5醫療超音波 5
1.6低能量超音波在髓核細胞(LOW-INTENSITY PULSE ULTRASOUND, LIPUS) 6
1.7靜水壓(HYDROSTATIC PRESSURE) 7
1.8鈣離子-細胞外調節蛋白酶訊號路徑(CALCIUM- EXTRACELLULAR REGULATED PROTEIN KINASES PATHWAY) 8
1.9酸敏感離子通道(ACIDS-SENSING IONS CHANNEL, ASICS) 10
第二章、壓力下超音波刺激對髓核細胞之調控 12
2.1髓核細胞(NUCLEUS PULPOSUS)準備 12
2.1.1髓核細胞初代培養(Primary Culture) 12
2.1.2細胞繼代(Cell Culture) 13
2.2壓力作用環境之超音波刺激設備校正 14
2.2.1壓力刺激影像載台(Pressurized Imaging Chamber, PIC) 14
2.2.2壓力刺激影像載台之超音波壓台設計 15
2.2.3壓力刺激氣壓液壓轉換裝置設計 16
2.2.4壓力刺激影像載台實驗架設 17
2.2.5壓力刺激影像載台超音波校正實驗架設 17
2.2.6壓力刺激影像載台溫度校正 19
2.2.7壓力刺激設備設計 21
2.2.8壓力刺激腔體實驗架設 21
2.3髓核細胞靜水壓與超音波刺激P-ERK訊號實驗 22
2.3.1實驗設計 22
2.3.2免疫螢光染色(Immunoflourescent)細胞準備 23
2.3.3西方墨點法(Western Blot)細胞準備 24
2.3.4壓力環境及超音波刺激實驗結果 25
2.3.5壓力刺激模式對p-ERK影響實驗 30
2.3.6壓力刺激對髓核細胞的增生實驗 32
2.4髓核細胞靜水壓與超音波刺激相關因子實驗 34
2.4.1訊息核糖核酸(messengerRNA)檢測細胞準備 34
2.4.2髓核細胞靜水壓與超音波刺激mRNA實驗 35
2.4.3西方墨點法細胞準備 37
2.4.4壓力及超音波刺激調控髓核細胞Sox9實驗 38
2.5髓核細胞靜水壓與超音波刺激實驗討論 42
2.6髓核細胞靜水壓與超音波刺激鈣離子實驗 43
2.6.1髓核細胞靜水壓與超音波刺激鈣離子實驗設計 43
2.6.2鈣離子即時影像細胞式樣準備 44
2.6.3鈣離子螢光染色影像 44
2.6.4髓核細胞靜水壓與超音波刺激鈣離子實驗結果 45
2.7髓核細胞靜水壓刺激鈣離子調控路徑實驗 49
2.7.1使用藥品 49
2.7.2實驗流程 50
2.7.3髓核細胞靜水壓刺激鈣離子調控路徑實驗結果 50
2.8壓力刺激鈣離子FURA2影像實驗 59
2.8.1 Fura2實驗細胞準備 59
2.7.2鈣離子Fura2螢光染色影像 60
2.8.2鈣離子Fura2結果 60
2.9壓力刺激鈣離子影像實驗討論 62
第三章、超音波刺激對髓核細胞之調控 64
3.1超音波刺激髓核細胞鈣離子即時影像之實驗準備 64
3.1.1鈣離子即時影像細胞式樣準備 64
3.1.2鈣離子螢光染色影像 65
3.1.3細胞刺激影像載台(Live Imaging Chamber, LIC) 65
3.1.4玻璃針尖(Micropipette)超音波刺激設備 66
3.1.5玻璃針尖(Micropipette)超音波能量校正 67
3.2超音波玻璃針尖刺激之鈣離子實驗 69
3.3超音波調控髓核細胞鈣離子路徑實驗 71
3.3.1使用藥品 71
3.3.2實驗流程 72
3.4超音波玻璃針尖刺激之鈣離子實驗討論 78
第四章、結論 80
參考文獻 80
dc.language.isozh-TW
dc.subject靜水壓zh_TW
dc.subject椎間盤退化zh_TW
dc.subject下背痛zh_TW
dc.subject髓核細胞zh_TW
dc.subject超音波zh_TW
dc.subjectnucleus pulposusen
dc.subjecthydrostatic pressureen
dc.subjectLow back painen
dc.subjectultrasounden
dc.subjectintervertebral discen
dc.title髓核細胞對外力刺激的反應zh_TW
dc.titleThe response of nucleus pulposus to external force stimulationen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林頌然(Sung-Jan Lin),劉浩澧(Hao-Li Liu),賴伯亮(Po-Liang Lai)
dc.subject.keyword下背痛,椎間盤退化,髓核細胞,超音波,靜水壓,zh_TW
dc.subject.keywordLow back pain,intervertebral disc,nucleus pulposus,ultrasound,hydrostatic pressure,en
dc.relation.page83
dc.identifier.doi10.6342/NTU202100703
dc.rights.note有償授權
dc.date.accepted2021-02-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1602202100233100.pdf
  未授權公開取用
4.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved