Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69742
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李存修
dc.contributor.authorWei-Di Wangen
dc.contributor.author王偉地zh_TW
dc.date.accessioned2021-06-17T03:26:02Z-
dc.date.available2019-05-17
dc.date.copyright2018-05-17
dc.date.issued2018
dc.date.submitted2018-05-15
dc.identifier.citation1. Hutchinson, J. M., Lo, A. W., & Poggio, T. (1994). A nonparametric approach to pricing and hedging derivative securities via learning networks. The Journal of Finance, 49(3), 851-889.
2. Park, H., Kim, N., & Lee, J. (2014). Parametric models and non-parametric machine learning models for predicting option prices: Empirical comparison study over KOSPI 200 Index options. Expert Systems with Applications, 41(11), 5227-5237.
3. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
4. Werbos, P. J. (1994). The roots of backpropagation: from ordered derivatives to neural networks and political forecasting (Vol. 1). John Wiley & Sons.
5. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533.
6. Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation, 18(7), 1527-1554.
7. Hinton, G. (2010). A practical guide to training restricted Boltzmann machines. Momentum, 9(1), 926.
8. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
9. Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Highway networks. arXiv preprint arXiv:1505.00387.
10. Pastur-Romay, Lucas Antón, et al. 'Deep artificial neural networks and neuromorphic chips for big data analysis: pharmaceutical and bioinformatics applications.' International journal of molecular sciences 17.8 (2016): 1313.
11. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
12. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).
13. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
14. Jordan, M. I. (1997). Serial order: A parallel distributed processing approach. Advances in psychology, 121, 471-495.
15. Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179-211..
16. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
17. Liwicki, M., Graves, A., Fernàndez, S., Bunke, H., & Schmidhuber, J. (2007). A novel approach to on-line handwriting recognition based on bidirectional long short-term memory networks. In Proceedings of the 9th International Conference on Document Analysis and Recognition, ICDAR 2007.
18. Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems (pp. 3104-3112).
19. Vinyals, O., Kaiser, Ł., Koo, T., Petrov, S., Sutskever, I., & Hinton, G. (2015). Grammar as a foreign language. In Advances in Neural Information Processing Systems (pp. 2773-2781)..
20. White, H. (1988). Economic prediction using neural networks: The case of IBM daily stock returns.
21 .Ghiassi, M., & Saidane, H. (2005). A dynamic architecture for artificial neural networks. Neurocomputing, 63, 397-413.
22. de Menezes, L. M., & Nikolaev, N. Y. (2006). Forecasting with genetically programmed polynomial neural networks. International Journal of Forecasting, 22(2), 249-265.
23. Pekkaya, M., & Hamzaçebi, C. (2007). Yapay sinir ağları ile döviz kuru tahmini üzerine bir uygulama. YA/EM, 27, 973-978.
24. Yu, T. H. K., & Huarng, K. H. (2008). A bivariate fuzzy time series model to forecast the TAIEX. Expert Systems with Applications, 34(4), 2945-2952.
25. Guresen, E., Kayakutlu, G., & Daim, T. U. (2011). Using artificial neural network models in stock market index prediction. Expert Systems with Applications, 38(8), 10389-10397.
26. Di Persio, L., & Honchar, O. (2016). Artificial Neural Networks architectures for stock price prediction: comparisons and applications. International Journal of Circuits, Systems and Signal Processing, 10, 403-413.
27. Bardos, M. (1998). Detecting the risk of company failure at the Banque de France. Journal of Banking & Finance, 22(10), 1405-1419..
28. Laitinen, E. K. (1999). Predicting a corporate credit analyst's risk estimate by logistic and linear models. International Review of Financial Analysis, 8(2), 97-121.
29. Henley, W. E., & Hand, D. J. (1996). A k-nearest-neighbour classifier for assessing consumer credit risk. The statistician, 77-95.
30. West, D. (2000). Neural network credit scoring models. Computers & Operations Research, 27(11), 1131-1152.
31. Desai, V. S., Crook, J. N., & Overstreet, G. A. (1996). A comparison of neural networks and linear scoring models in the credit union environment. European Journal of Operational Research, 95(1), 24-37.
32. Tsai, C. F., & Wu, J. W. (2008). Using neural network ensembles for bankruptcy prediction and credit scoring. Expert systems with applications, 34(4), 2639-2649.
33. Jensen, H. L. (1992). Using neural networks for credit scoring. Managerial finance, 18(6), 15-26.
34. Chuang, C. L., & Lin, R. H. (2009). Constructing a reassigning credit scoring model. Expert Systems with Applications, 36(2), 1685-1694.
35. Zhang, G., Hu, M. Y., Patuwo, B. E., & Indro, D. C. (1999). Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis. European journal of operational research, 116(1), 16-32.
36. Lai K K, Yu L, Wang S, et al. Neural network metalearning for credit scoring[C]// International Conference on Intelligent Computing. Springer-Verlag, 2006:403-408.
37. Tsai, C. F., & Wu, J. W. (2008). Using neural network ensembles for bankruptcy prediction and credit scoring. Expert systems with applications, 34(4), 2639-2649.
38. Chuang, C. L., & Huang, S. T. (2011). A hybrid neural network approach for credit scoring. Expert Systems, 28(2), 185-196.
39. Gençay, R., & Qi, M. (2001). Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging. IEEE Transactions on Neural Networks, 12(4), 726-734.
40. Amilon, H. (2003). A neural network versus Black–Scholes: a comparison of pricing and hedging performances. Journal of Forecasting, 22(4), 317-335.
41. Wang, Y. H. (2009). Nonlinear neural network forecasting model for stock index option price: Hybrid GJR–GARCH approach. Expert Systems with Applications, 36(1), 564-570.
42. Lajbcygier, P. R., & Connor, J. T. (1997). Improved option pricing using artificial neural networks and bootstrap methods. International journal of neural systems, 8(04), 457-471.
43. Huang, S. C., & Wu, T. K. (2006). A hybrid unscented Kalman filter and support vector machine model in option price forecasting. Advances in Natural Computation, 303-312.
44. Liang X, Zhang H S, Xiao J G, et al. Improving option price forecasts with neural networks and support vector regressions[J]. Neurocomputing, 2009, 72(13/15): 3055–3065.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69742-
dc.description.abstract過去相關研究表明,使用歷史數據訓練後的神經網絡模型可以對選擇權進行定價,並且由於其不需要對模型做任何前提假設,在實際定價精度中要優於Black-Scholes等傳統參數模型。過去使用的神經網絡模型有兩個特徵,一是模型本身選用的是淺層的神經網絡模型,二是在設計輸入變量時,僅波動率被作為描述標的物波動情況的變量。
隨著近幾年人工智慧相關技術的發展,一些基於深度學習的神經網絡模型被應用於社會各個領域。本文就嘗試使用了基於深度學習的循環神經網絡模型對選擇權進行定價研究,同時直接將標的物的時間序列作為輸入變量直接放入模型中,希望能夠相對於之前的淺層神經網絡模型有更好的定價精度。
中國大陸的上證50ETF選擇權被選為本次研究的對象。經過對神經網絡模型結構的調整和選擇後,本文選取了一個淺層神經網絡模型、兩個循環神經網絡模型和一個Black-Scholes模型共4個模型,分別使用這4個模型對選擇權進行定價,並比較其定價精度的表現。最終結果表明,在樣本期間內,循環神經網絡模型在定價精度方面要顯著優於Black-Scholes模型和淺層神經網絡模型。
zh_TW
dc.description.abstractPrevious studies have shown that neural network models which are trained by historical data can be used to price options. Because of no assumption needed, neural network has better performance than those traditional parameter models such as Black-Scholes in pricing. Those neural network models used in the past have two characteristics. One is that those models have only several hidden layers, and the other is that only the volatility is used as a variable to describe the fluctuation of the underlying security when designing the input variables.
With the development of artificial intelligence-related technologies in recent years, some neural network models based on deep learning are applied to many fields of society. In this paper, we try to use the recurrent neural network to study the pricing of options, and directly put the time series data of the underlying security as input variables into the model, hoping to hoping to get a neural network model which has better performance than the formers do.
Shanghai Stock Exchange 50ETF option is selected as the object of this study. After the adjustment and selection of neural network model structure, this paper selects a neural network model with one hidden layer, two recurrent neural network models and a Black-Scholes model. We use these four models to price options and compare the performance in pricing accuracy. The final results show that in terms of the pricing accuracy, the recurrent neural network model is significantly superior to the Black-Scholes model and the neural network model with one hidden layer during the selected data samples.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:26:02Z (GMT). No. of bitstreams: 1
ntu-107-R05723072-1.pdf: 5085691 bytes, checksum: 6853711b204a8e3f67fb70d359d8358d (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目 錄
謝辭 i
中文摘要 ii
Abstract iii
第壹章、緒論 1
第一節、研究背景與動機 1
第二節、研究目的 3
第三節、研究方法 3
第四節、本文架構 5
第貳章、文獻回顧 6
第一節、神經網絡模型相關方法 6
第二節、相關方法在金融領域的應用研究 11
第三節、使用神經網絡對選擇權定價研究 13
第四節、本章小結 15
第三章、研究方法 17
第一節、數據選擇 17
第二節、模型設計 21
第三節、試驗過程設計 29
第四節、評價方法 30
第四章、實證結果 31
第一節、損失函數值比較 31
第二節、假設檢定 34
第三節、本章小結 34
第五章、結論與建議 36
第一節、文章結論 36
第二節、未來研究建議 37
參考文獻 38
附錄 41
dc.language.isozh-TW
dc.subject循環神經網絡zh_TW
dc.subject深度學習zh_TW
dc.subject選擇權定價zh_TW
dc.subjectRecurrent Neural Networken
dc.subjectOption pricingen
dc.subjectDeep learningen
dc.title基於循環神經網路模型的選擇權定價研究zh_TW
dc.titleThe Study of Option Pricing——Based on the Recurrent Neural Networken
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王耀輝,石百達
dc.subject.keyword選擇權定價,深度學習,循環神經網絡,zh_TW
dc.subject.keywordOption pricing,Deep learning,Recurrent Neural Network,en
dc.relation.page41
dc.identifier.doi10.6342/NTU201800813
dc.rights.note有償授權
dc.date.accepted2018-05-16
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved