請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69707
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 邱銘章(Ming-Jang Chiu) | |
dc.contributor.author | Ling-Yun Fan | en |
dc.contributor.author | 范齡勻 | zh_TW |
dc.date.accessioned | 2021-06-17T03:24:38Z | - |
dc.date.available | 2020-08-01 | |
dc.date.copyright | 2018-08-01 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-06-04 | |
dc.identifier.citation | Alves, G. S., O'Dwyer, L., Jurcoane, A., Oertel-Knochel, V., Knochel, C., Prvulovic, D., Sudo, F., Alves, C. E., Valente, L., Moreira, D., Fusser, F., Karakaya, T., Pantel, J., Engelhardt, E., & Laks, J. (2012). Different patterns of white matter degeneration using multiple diffusion indices and volumetric data in mild cognitive impairment and Alzheimer patients. PLoS One, 7, e52859.
Amariglio, R. E., Becker, J. A., Carmasin, J., Wadsworth, L. P., Lorius, N., Sullivan, C., Maye, J. E., Gidicsin, C., Pepin, L. C., Sperling, R. A., Johnson, K. A., & Rentz, D. M. (2012). Subjective cognitive complaints and amyloid burden in cognitively normal older individuals. Neuropsychologia, 50, 2880-2886. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain's default network. Neuron, 65, 550-562. Bartley, M., Bokde, A. L., Ewers, M., Faluyi, Y. O., Tobin, W. O., Snow, A., Connolly, J., Delaney, C., Coughlan, T., Collins, D. R., Hampel, H., & O'Neill, D. (2012). Subjective memory complaints in community dwelling healthy older people: the influence of brain and psychopathology. Int J Geriatr Psychiatry, 27, 836-843. Baur, V., Hanggi, J., Langer, N., & Jancke, L. (2013). Resting-state functional and structural connectivity within an insula-amygdala route specifically index state and trait anxiety. Biol Psychiatry, 73, 85-92. Benton, A. L. (1945). A visual retention test for clinical use. Arch Neurol Psychiatry, 54, 212-216. Bloom, G. S. (2014). Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol, 71, 505-508. Bosch, B., Arenaza-Urquijo, E. M., Rami, L., Sala-Llonch, R., Junque, C., Sole-Padulles, C., Pena-Gomez, C., Bargallo, N., Molinuevo, J. L., & Bartres-Faz, D. (2012). Multiple DTI index analysis in normal aging, amnestic MCI and AD. Relationship with neuropsychological performance. Neurobiol Aging, 33, 61-74. Braak, H., & Braak, E. (1995). Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging, 16, 271-278; discussion 278-284. Brickman, A. M., Meier, I. B., Korgaonkar, M. S., Provenzano, F. A., Grieve, S. M., Siedlecki, K. L., Wasserman, B. T., Williams, L. M., & Zimmerman, M. E. (2012). Testing the white matter retrogenesis hypothesis of cognitive aging. Neurobiol Aging, 33, 1699-1715. Chand, G. B., Wu, J., Hajjar, I., & Qiu, D. (2017). Interactions of the Salience Network and Its Subsystems with the Default-Mode and the Central-Executive Networks in Normal Aging and Mild Cognitive Impairment. Brain Connect, 7, 401-412. Chen, Y., Chen, H. (2002). Wechsler Adult Intelligence Scale-third edition (WAIS-III) Manual for Taiwan. Taipei, Taiwan: The Chinese Behavioral Science Corporation. Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci, 3, 655-666. Das, S. R., Mancuso, L., Olson, I. R., Arnold, S. E., & Wolk, D. A. (2016). Short-Term Memory Depends on Dissociable Medial Temporal Lobe Regions in Amnestic Mild Cognitive Impairment. Cereb Cortex, 26, 2006-2017. De Renzi, E., & Vignolo, L. A. (1962). The token test: A sensitive test to detect receptive disturbances in aphasics. Brain, 85, 665-678. Delis, D. C., Kramer, J.H., Kaplan, E., & Ober, B.A. (1987). CVLT, California Verbal Learning Test: Adult Version: Manual.: Psychological Corporation. Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., Meguro, K., O'Brien, J., Pasquier, F., Robert, P., Rossor, M., Salloway, S., Stern, Y., Visser, P. J., & Scheltens, P. (2007). Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol, 6, 734-746. Fujie, S., Namiki, C., Nishi, H., Yamada, M., Miyata, J., Sakata, D., Sawamoto, N., Fukuyama, H., Hayashi, T., & Murai, T. (2008). The role of the uncinate fasciculus in memory and emotional recognition in amnestic mild cognitive impairment. Dement Geriatr Cogn Disord, 26, 432-439. Gili, T., Cercignani, M., Serra, L., Perri, R., Giove, F., Maraviglia, B., Caltagirone, C., & Bozzali, M. (2011). Regional brain atrophy and functional disconnection across Alzheimer's disease evolution. J Neurol Neurosurg Psychiatry, 82, 58-66. Hsu, Y. H., Huang, C.F., Tu, M.C., & Hua, M.S. (2015). Prospective memory in subjective cognitive decline: a preliminary study on the role of early cognitive marker in dementia. Alzheimer Dis Assoc Disord, 29, 229-235. Hua, M. S. (1986). Word Sequence Learning Test-Revised. Unpublished manuscript. In D. o. P. Chung Yuan University (Ed.). Chungli, Taiwan. Hua, M. S., Chang, S. H., & Chen, S. T. (1997). Factor structure and age effects with an aphasia test battery in normal Taiwanese adults. Neuropsychology, 11, 156-162. Hua, M. S., Chang, B.S., Lin, K.N., Yang, J.M., Lu, S.R., & Chen, S.Y. (2005). Wechsler Memory Scale-Third Edition (WMS-III) Manual for Taiwan. . Taipei: Chinese Behavioral Science Corporation Hunsaker, M. R., Chen, V., Tran, G. T., & Kesner, R. P. (2013). The medial and lateral entorhinal cortex both contribute to contextual and item recognition memory: a test of the binding of items and context model. Hippocampus, 23, 380-391. Jack, C. R., Jr., & Holtzman, D. M. (2013). Biomarker modeling of Alzheimer's disease. Neuron, 80, 1347-1358. Jessen, F., Amariglio, R. E., van Boxtel, M., Breteler, M., Ceccaldi, M., Chetelat, G., Dubois, B., Dufouil, C., Ellis, K. A., van der Flier, W. M., Glodzik, L., van Harten, A. C., de Leon, M. J., McHugh, P., Mielke, M. M., Molinuevo, J. L., Mosconi, L., Osorio, R. S., Perrotin, A., Petersen, R. C., Rabin, L. A., Rami, L., Reisberg, B., Rentz, D. M., Sachdev, P. S., de la Sayette, V., Saykin, A. J., Scheltens, P., Shulman, M. B., Slavin, M. J., Sperling, R. A., Stewart, R., Uspenskaya, O., Vellas, B., Visser, P. J., Wagner, M., & Subjective Cognitive Decline Initiative Working, G. (2014). A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease. Alzheimers Dement, 10, 844-852. Joo, S. H., Lim, H. K., & Lee, C. U. (2016). Three Large-Scale Functional Brain Networks from Resting-State Functional MRI in Subjects with Different Levels of Cognitive Impairment. Psychiatry Investig, 13, 1-7. Kahn, I., Andrews-Hanna, J. R., Vincent, J. L., Snyder, A. Z., & Buckner, R. L. (2008). Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J Neurophysiol, 100, 129-139. Kertesz, A., Davidson, W., & Fox, H. (1997). Frontal behavioral inventory: diagnostic criteria for frontal lobe dementia. Can J Neurol Sci, 24, 29-36. Kiuchi, K., Morikawa, M., Taoka, T., Nagashima, T., Yamauchi, T., Makinodan, M., Norimoto, K., Hashimoto, K., Kosaka, J., Inoue, Y., Inoue, M., Kichikawa, K., & Kishimoto, T. (2009). Abnormalities of the uncinate fasciculus and posterior cingulate fasciculus in mild cognitive impairment and early Alzheimer's disease: a diffusion tensor tractography study. Brain Res, 1287, 184-191. Knierim, J. J., Neunuebel, J. P., & Deshmukh, S. S. (2014). Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local-global reference frames. Philos Trans R Soc Lond B Biol Sci, 369, 20130369. Koppara, A., Frommann, I., Polcher, A., Parra, M. A., Maier, W., Jessen, F., Klockgether, T., & Wagner, M. (2015). Feature Binding Deficits in Subjective Cognitive Decline and in Mild Cognitive Impairment. J Alzheimers Dis, 48 Suppl 1, S161-170. Lai, Y. M. (2012). A normative study of the content- and context- related memory performaces on the modified family pictures subset in Taiwan Healthy Adults In T. n. u. c. p. center (Ed.). Le Berre, A. P., Muller-Oehring, E. M., Schulte, T., Serventi, M. R., Pfefferbaum, A., & Sullivan, E. V. (2017). Deviant functional activation and connectivity of the right insula are associated with lack of awareness of episodic memory impairment in nonamnesic alcoholism. Cortex, 95, 15-28. Lee, S. D., Ong, B., Pike, K. E., & Kinsella, G. J. (2017). Prospective memory and subjective memory decline: A neuropsychological indicator of memory difficulties in community-dwelling older people. J Clin Exp Neuropsychol, 1-15. Lezak, M. D., Howieson, D. B., & Loring, D. W. (2004). Neuropsychological assessment (4th ed.): New York: Oxford University Press. Libby, L. A., Ekstrom, A. D., Ragland, J. D., & Ranganath, C. (2012). Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging. J Neurosci, 32, 6550-6560. Lim, H. K., Nebes, R., Snitz, B., Cohen, A., Mathis, C., Price, J., Weissfeld, L., Klunk, W., & Aizenstein, H. J. (2014). Regional amyloid burden and intrinsic connectivity networks in cognitively normal elderly subjects. Brain, 137, 3327-3338. Lu, P. H., Boone, K. B., Cozolino, L., & Mitchell, C. (2003). Effectiveness of the Rey-Osterrieth Complex Figure Test and the Meyers and Meyers recognition trial in the detection of suspect effort. Clin Neuropsychol, 17, 426-440. Meiberth, D., Scheef, L., Wolfsgruber, S., Boecker, H., Block, W., Traber, F., Erk, S., Heneka, M. T., Jacobi, H., Spottke, A., Walter, H., Wagner, M., Hu, X., & Jessen, F. (2015). Cortical thinning in individuals with subjective memory impairment. J Alzheimers Dis, 45, 139-146. Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci, 15, 483-506. Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct, 214, 655-667. Morikawa, M., Kiuchi, K., Taoka, T., Nagauchi, K., Kichikawa, K., & Kishimoto, T. (2010). Uncinate fasciculus-correlated cognition in Alzheimer's disease: a diffusion tensor imaging study by tractography. Psychogeriatrics, 10, 15-20. Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc, 53, 695-699. Nelson, H. E. (1976). A modified card sorting test sensitive to frontal lobe defects. Cortex, 12, 313-324. Oishi, K., Faria, A. V., Hsu, J., Tippett, D., Mori, S., & Hillis, A. E. (2015). Critical role of the right uncinate fasciculus in emotional empathy. Ann Neurol, 77, 68-74. Olson, I. R., Von Der Heide, R. J., Alm, K. H., & Vyas, G. (2015). Development of the uncinate fasciculus: Implications for theory and developmental disorders. Dev Cogn Neurosci, 14, 50-61. Peng, B., Wu, L., Zhang, L., & Chen, Y. (2015). Volumetric changes in amygdala and entorhinal cortex and their relation to memory impairment in patients with medial temporal lobe epilepsy with visually normal MR imaging findings. Epilepsy Res, 114, 66-72. Perrotin, A., de Flores, R., Lamberton, F., Poisnel, G., La Joie, R., de la Sayette, V., Mezenge, F., Tomadesso, C., Landeau, B., Desgranges, B., & Chetelat, G. (2015). Hippocampal Subfield Volumetry and 3D Surface Mapping in Subjective Cognitive Decline. J Alzheimers Dis, 48 Suppl 1, S141-150. Peter, J., Scheef, L., Abdulkadir, A., Boecker, H., Heneka, M., Wagner, M., Koppara, A., Kloppel, S., Jessen, F., & Alzheimer's Disease Neuroimaging, I. (2014). Gray matter atrophy pattern in elderly with subjective memory impairment. Alzheimers Dement, 10, 99-108. Reitan, R. M. W., D. . (1985). The Halstead-Reitan neuropsychological test battery: Theory and clinical interpretation: Tucson, AZ: Neuropsychological Press. Remy, F., Vayssiere, N., Saint-Aubert, L., Barbeau, E., & Pariente, J. (2015). White matter disruption at the prodromal stage of Alzheimer's disease: relationships with hippocampal atrophy and episodic memory performance. Neuroimage Clin, 7, 482-492. Ryu, S. Y., Lim, E. Y., Na, S., Shim, Y. S., Cho, J. H., Yoon, B., Hong, Y. J., & Yang, D. W. (2017). Hippocampal and entorhinal structures in subjective memory impairment: a combined MRI volumetric and DTI study. Int Psychogeriatr, 29, 785-792. Sargent-Cox, K., Cherbuin, N., Sachdev, P., & Anstey, K. J. (2011). Subjective health and memory predictors of mild cognitive disorders and cognitive decline in ageing: the Personality and Total Health (PATH) through Life Study. Dement Geriatr Cogn Disord, 31, 45-52. Saykin, A. J., Wishart, H. A., Rabin, L. A., Santulli, R. B., Flashman, L. A., West, J. D., McHugh, T. L., & Mamourian, A. C. (2006). Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology, 67, 834-842. Scheef, L., Spottke, A., Daerr, M., Joe, A., Striepens, N., Kolsch, H., Popp, J., Daamen, M., Gorris, D., Heneka, M. T., Boecker, H., Biersack, H. J., Maier, W., Schild, H. H., Wagner, M., & Jessen, F. (2012). Glucose metabolism, gray matter structure, and memory decline in subjective memory impairment. Neurology, 79, 1332-1339. Schultz, A. P., Chhatwal, J. P., Hedden, T., Mormino, E. C., Hanseeuw, B. J., Sepulcre, J., Huijbers, W., LaPoint, M., Buckley, R. F., Johnson, K. A., & Sperling, R. A. (2017). Phases of Hyperconnectivity and Hypoconnectivity in the Default Mode and Salience Networks Track with Amyloid and Tau in Clinically Normal Individuals. J Neurosci, 37, 4323-4331. Schultz, H., Sommer, T., & Peters, J. (2015). The Role of the Human Entorhinal Cortex in a Representational Account of Memory. Front Hum Neurosci, 9, 628. Schultz, S. A., Oh, J. M., Koscik, R. L., Dowling, N. M., Gallagher, C. L., Carlsson, C. M., Bendlin, B. B., LaRue, A., Hermann, B. P., Rowley, H. A., Asthana, S., Sager, M. A., Johnson, S. C., & Okonkwo, O. C. (2015). Subjective memory complaints, cortical thinning, and cognitive dysfunction in middle-aged adults at risk for AD. Alzheimers Dement (Amst), 1, 33-40. Serra, L., Cercignani, M., Basile, B., Spano, B., Perri, R., Fadda, L., Marra, C., Giubilei, F., Caltagirone, C., & Bozzali, M. (2012). White matter damage along the uncinate fasciculus contributes to cognitive decline in AD and DLB. Curr Alzheimer Res, 9, 326-333. Serrano-Pozo, A., Frosch, M. P., Masliah, E., & Hyman, B. T. (2011). Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med, 1, a006189. Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb Cortex, 22, 158-165. Sierra-Rio, A., Balasa, M., Olives, J., Antonell, A., Iranzo, A., Castellvi, M., Bosch, B., Grau-Rivera, O., Fernandez-Villullas, G., Rami, L., Llado, A., Sanchez-Valle, R., & Molinuevo, J. L. (2016). Cerebrospinal Fluid Biomarkers Predict Clinical Evolution in Patients with Subjective Cognitive Decline and Mild Cognitive Impairment. Neurodegener Dis, 16, 69-76. Slot, R. E., Van Harten, A. C., Kester, M. I., Jongbloed, W., Bouwman, F. H., Teunissen, C. E., Scheltens, P., Veerhuis, R., & van der Flier, W. M. (2017). Apolipoprotein A1 in Cerebrospinal Fluid and Plasma and Progression to Alzheimer's Disease in Non-Demented Elderly. J Alzheimers Dis, 56, 687-697. Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., Iwatsubo, T., Jack, C. R., Jr., Kaye, J., Montine, T. J., Park, D. C., Reiman, E. M., Rowe, C. C., Siemers, E., Stern, Y., Yaffe, K., Carrillo, M. C., Thies, B., Morrison-Bogorad, M., Wagster, M. V., & Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7, 280-292. Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A, 105, 12569-12574. Stewart, R., Dufouil, C., Godin, O., Ritchie, K., Maillard, P., Delcroix, N., Crivello, F., Mazoyer, B., & Tzourio, C. (2008). Neuroimaging correlates of subjective memory deficits in a community population. Neurology, 70, 1601-1607. Stewart, R., Godin, O., Crivello, F., Maillard, P., Mazoyer, B., Tzourio, C., & Dufouil, C. (2011). Longitudinal neuroimaging correlates of subjective memory impairment: 4-year prospective community study. Br J Psychiatry, 198, 199-205. Striepens, N., Scheef, L., Wind, A., Meiberth, D., Popp, J., Spottke, A., Kolsch, H., Wagner, M., & Jessen, F. (2011). Interaction effects of subjective memory impairment and ApoE4 genotype on episodic memory and hippocampal volume. Psychol Med, 41, 1997-2006. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 642-662. Sun, Y., Yang, F. C., Lin, C. P., & Han, Y. (2015). Biochemical and neuroimaging studies in subjective cognitive decline: progress and perspectives. CNS Neurosci Ther, 21, 768-775. Taylor, K. I., & Probst, A. (2008). Anatomic localization of the transentorhinal region of the perirhinal cortex. Neurobiol Aging, 29, 1591-1596. Thal, D. R., Rub, U., Orantes, M., & Braak, H. (2002). Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology, 58, 1791-1800. Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization of memory. New York: Academic Press., 381-402. Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci, 16, 55-61. van der Flier, W. M., van Buchem, M. A., Weverling-Rijnsburger, A. W., Mutsaers, E. R., Bollen, E. L., Admiraal-Behloul, F., Westendorp, R. G., & Middelkoop, H. A. (2004). Memory complaints in patients with normal cognition are associated with smaller hippocampal volumes. J Neurol, 251, 671-675. Vannini, P., Hanseeuw, B., Munro, C. E., Amariglio, R. E., Marshall, G. A., Rentz, D. M., Pascual-Leone, A., Johnson, K. A., & Sperling, R. A. (2017). Hippocampal hypometabolism in older adults with memory complaints and increased amyloid burden. Neurology, 88, 1759-1767. Verfaillie, S. C., Tijms, B., Versteeg, A., Benedictus, M. R., Bouwman, F. H., Scheltens, P., Barkhof, F., Vrenken, H., & van der Flier, W. M. (2016). Thinner temporal and parietal cortex is related to incident clinical progression to dementia in patients with subjective cognitive decline. Alzheimers Dement (Amst), 5, 43-52. Wang, Y., West, J. D., Flashman, L. A., Wishart, H. A., Santulli, R. B., Rabin, L. A., Pare, N., Arfanakis, K., & Saykin, A. J. (2012). Selective changes in white matter integrity in MCI and older adults with cognitive complaints. Biochim Biophys Acta, 1822, 423-430. Wechsler, D. (1997). Wechsler Memory Scale: San Antonio, TX: The psychological Corporation. Wolfsgruber, S., Polcher, A., Koppara, A., Kleineidam, L., Frolich, L., Peters, O., Hull, M., Ruther, E., Wiltfang, J., Maier, W., Kornhuber, J., Lewczuk, P., Jessen, F., & Wagner, M. (2017). Cerebrospinal Fluid Biomarkers and Clinical Progression in Patients with Subjective Cognitive Decline and Mild Cognitive Impairment. J Alzheimers Dis, 58, 939-950. Yasmin, H., Nakata, Y., Aoki, S., Abe, O., Sato, N., Nemoto, K., Arima, K., Furuta, N., Uno, M., Hirai, S., Masutani, Y., & Ohtomo, K. (2008). Diffusion abnormalities of the uncinate fasciculus in Alzheimer's disease: diffusion tensor tract-specific analysis using a new method to measure the core of the tract. Neuroradiology, 50, 293-299. Zanchi, D., Giannakopoulos, P., Borgwardt, S., Rodriguez, C., & Haller, S. (2017). Hippocampal and Amygdala Gray Matter Loss in Elderly Controls with Subtle Cognitive Decline. Front Aging Neurosci, 9, 50. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69707 | - |
dc.description.abstract | 研究背景
阿茲海默症目前仍然被認為是一種不可逆的神經退化疾病,近年來因生物標記的發展,我們對於它的研究也從失智症時期漸漸往前推展到臨床前期。除此之外,近年發現有一群人即使認知功能表現為正常,但卻自我感覺認知或記憶功能比起以往有下降的情形,這些人往後發展成為阿茲海默失智症或輕度認知障礙的比例較高。目前研究發現部分自覺認知衰退情形的確是阿滋海默症臨床前期的表現之一。阿茲海默症是一種不正常蛋白質堆積所導致的細胞凋亡過程:神經纖維纏結以及類澱粉蛋白為主要病理特性。本實驗目的在以研究自覺認知衰退個案,利用這兩種不正常蛋白質在腦中分佈的區域不同,探討其大腦皮質厚度,結構以及功能性連結的極早其變化,以及細微記憶成份的改變。另希望藉由大腦網絡的觀點找出自覺記憶衰退記性退化的解釋。 研究方法 本研究分做兩大部分:第一部分為大腦結構性(包含皮質厚度以及結構性連結)在自覺認知衰退的個案的變化,包含了34個正常受試者,43個來自門診的自主認知下降個案,以及44個輕度認知障礙的個案。第二部分為大腦功能性連結以及大腦網絡的探討,包含了25個正常受試者,27個來自社區的自覺認知衰退的個案,12個來自門診的自覺認知衰退的個案,以及32個輕度認知障礙的個案。在神經心理測驗方面,我們分別利用魏氏記憶量表第三版中家庭圖片改良版以及邏輯記憶,兩個子測驗和腦部結構及功能性連結的相關性,來探討自覺認知衰退個案的極早期記憶缺損特徵。因此其他研究工具即包含了高解析度T1-weighted腦部核磁造影以及靜息態功能性核磁造影。 研究結果 在我們的第一個研究發現,自覺認知衰退的個案在兩側顳葉內側包含:parahippocampal cortex、 perirhinal、entorhinal cortex 的皮質厚度已顯著減少;另外,大腦白質的神經纖維束則在雙側鉤束(uncinate fasciculi)的非等向性指標(fraction anisotropy, FA)下降。在第二個功能性連結的研究部分,結果顯示自主認知下降個案的大腦預設模式(default mode network)網絡以及警覺網絡(salience network)的網絡內功能性連結皆下降,但位於警覺網絡的雙側腦島(insula)與大腦預設模式網絡的功能性連結則顯著增強,且此現象和腦島在警覺網絡內的連結呈負相關; 另外,旁海馬迴系統的網絡內功能性連結也有中度增強的情形。最後,我們發現自覺認知衰退個案的大腦結構性改變大多與情境相關記憶有關; 而功能性連結的網絡變化在本階段並未看到與記憶表現相關。 結論 自覺認知衰退個案在雙側顳葉內側皮質厚度減少和早期神經纖維纏結出現的位置一致,而在此區功能性連結相對增強,或可視為代償機制。另外,大腦預設模式網絡:即為早期類澱粉蛋白沈積位置,其功能性連結下降。腦島為大腦警覺網絡的重要腦區,其和大腦預設模式的連結增強,我們推測和「自覺認知衰退」的「警訊」相關。藉由這些影像變化,我們推論神經纖維纏結直接造成大腦皮質神經元的凋亡,而類澱粉蛋白主要造成神經突觸的功能下降。 | zh_TW |
dc.description.abstract | Background
Alzheimer’s disease (AD) is considered a continuity that progresses from the pre-clinical stage to dementia. While people with subjective cognitive decline (SCD) have normal cognitive performance, some may be in the pre-clinical stage of AD. Neurofibrillary tangles (NFT) appear first in the transentorhinal cortex, followed by the entorhinal cortex in the clinically silent stage of AD. Our research rationale was that subtle but measurable structural as well as functional connectivity (FC) changes are present in the vulnerable brain areas subjects to AD pathology in individuals with SCD. Methods In cohort A, we recruited 43 subjects with spontaneous SCD (sSCD), 44 subjects with amnesic mild cognitive impairment (aMCI), and 34 normal controls (NC) without memory complaints from neurology and memory clinics; in this cohort, we perform structural analysis. In cohort B, there were 27 subjects with SCD on request (rSCD) and 25 NC from community, 12 sSCD from neurology and memory clinic, and 32 aMCI from both community and clinic, to investigate functional connectivity. Magnetic T1 weighted resonance images were used to assess cortical thickness and subcortical gray matter volume, diffusion tensor images were used to assess white matter tract integrity and resting state functional images were used to analyze FC. In cohort A we used the modified Family Picture subtest of the Wechsler Memory Scale-III, examining the performance of episodic memory subcomponents to assess neural correlates of structure and structural connectivity. In cohort B we used Logical Memory to assess neural correlates of functional connectivity. Results Our results demonstrated that subjects with sSCD showed significant cortical thinning in their medial temporal subfields, including the bilateral parahippocampal, perirhinal and entorhinal cortices, but not in their hippocampal regions. sSCD subjects also exhibited significantly decreased mean fractional anisotropy in their bilateral uncinate fasciculi. However, the functional connectivity of sSCD within the ventral default mode network (vDMN) and salience network (SAL) were both decreased whereas the FC between bilateral anterior insula (AI) and DMN were increased. Lastly, the FC intra-PHC was slightly increased. Conclusion The diminution of cortical thickness as well as hyper-connectivity in PHC corresponding to brain areas with early NFT deposition may represent a cognitive reserve in the clinically silent SCD stage. For the structures showing early diminution: parahippocampal and perirhinal cortices contribute to visual context association memory. On the other hand, brain regions with early amyloid deposition overlapping vDMN shows hypo-connectivity change. In addition, the interplay between bilateral AI to DMN is closely related to its intra-SAL FC, which, we assume may contribute to neural mechanism underpinning enhanced subjective feeling of cognitive deficit. Lastly, we propose a possible pathological attribute that neurofibrillary tangles result in direct neuronal loss while the amyloid beta mediate synaptic dysfunction | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:24:38Z (GMT). No. of bitstreams: 1 ntu-107-R05454002-1.pdf: 11130817 bytes, checksum: cee9a67d3b54507a5ce7fd1f1217118c (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | List of Tables p11
List of Figures p12 List of Appendixes p13 Abbreviation table p14 Chapter 1 Introduction 1.1 Background p15 1.1.1 Pathology of Alzheimer’s disease dementia p15 1.1.2 Subjective cognitive decline p16 1.1.3 Resting state network p17 1.1.4 Memory subsystem and its neural correlates p19 1.2 Aim and Hypothesis p20 Chapter 2 Subjects and Methods 2.1 Subjects and methods of the cohort A study p23 2.1.1 Subjects p23 2.1.2 Neuropsychological assessment p24 2.1.3 Image acquisition and analysis p26 2.1.4 Statistical analysis p29 2.2 Subjects and methods of the cohort B study p31 2.2.1 Subjects p31 2.2.2 Neuropsychological assessment p32 2.2.3 Image acquisition and analysis p33 2.2.4 Statistical analysis p37 Chapter 3 Results 3.1 Results of the cohort A study p41 3.1.1 Demographic data p41 3.1.2 Neuropsychological performance p41 3.1.3 Cortical thickness difference between groups p41 3.1.4 Regression analysis between memory tasks and brain structural changes p43 3.2 Results of the cohort B study p45 3.2.1 Demographic data p45 3.2.2 Neuropsychological performance p45 3.2.3 Cortical thickness difference between groups p46 3.2.4 Network connectivity difference between groups p47 3.2.5 Neural correlates of connectivity strength within DMN and memory performance p49 3.2.6 Correlation between inter-network connectivity and intra-network connectivity p50 Chapter 4 Discussion 4.1 Structural changes in individuals with subjective cognitive decline p51 4.2 The correlation of memory subcomponent with structural changes p53 4.3 Functional connectivity changes in individuals with subjective cognitive decline and their neural correlates p57 4.4 The discrepancy of structural change and functional connectivity alternation p63 4.5 Limitations and strengths of the study p63 Chapter 5 Conclusion 5.1 Future works p66 References p67 | |
dc.language.iso | en | |
dc.title | 大腦灰質與功能網絡在自覺認知衰退個體的改變 | zh_TW |
dc.title | Cortical atrophy and functional connectivity change in individuals with subjective cognitive decline | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳恩賜(Oon-Soo Goh),饒敦(Tun Jao) | |
dc.subject.keyword | 自覺認知衰退,阿茲海默症,情境相關記憶,大腦功能性連結,預設模式網絡,警覺網絡,旁海馬迴系統, | zh_TW |
dc.subject.keyword | subjective cognitive decline,Alzheimer’s disease,Context-associated memory,Functional Connectivity,Default mode network,Salience network,Parahippocampal complex, | en |
dc.relation.page | 98 | |
dc.identifier.doi | 10.6342/NTU201800896 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-06-04 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 腦與心智科學研究所 | zh_TW |
顯示於系所單位: | 腦與心智科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 10.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。