Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69704
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 朱有花(You-Hua Chu) | |
dc.contributor.author | Ming-Feng Ho | en |
dc.contributor.author | 何銘峰 | zh_TW |
dc.date.accessioned | 2021-06-17T03:24:31Z | - |
dc.date.available | 2018-06-21 | |
dc.date.copyright | 2018-06-21 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-06-04 | |
dc.identifier.citation | [1] de Bernardis, P. et al. A at universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955–959 (2000).
[2] Hanany, S. et al. Maxima-1: A measurement of the cosmic microwave back- ground anisotropy on angular scales of 10’-5°. The Astrophysical Journal Letters 545, L5 (2000). [3] Halverson, N. W. et al. Degree angular scale interferometer rst results: A measurement of the cosmic microwave background angular power spectrum. The Astrophysical Journal 568, 38 (2002). [4] Scott, P. F. et al. First results from the very small array —iii. the cosmic microwave background power spectrum. Monthly Notices of the Royal Astro- nomical Society 341, 1076–1083 (2003). [5] Planck Collaboration et al. Planck 2015 results - xi. cmb power spectra, likeli- hoods, and robustness of parameters. A&A 594, A11 (2016). [6] Dodelson, S. 8 - anisotropies. In Modern Cosmology, 216 – 260 (Academic Press, 2003). [7] Hu, W. & Dodelson, S. Cosmic microwave background anisotropies. Annual Review of Astronomy and Astrophysics 40, 171–216 (2002). [8] Lewis, A. & Challinor, A. Weak gravitational lensing of the cmb. Physics Reports 429, 1 – 65 (2006). [9] Carron, J., Lewis, A. & Challinor, A. Internal delensing of planck cmb temper- ature and polarization. Journal of Cosmology and Astroparticle Physics 2017, 035 (2017). [10] Chiang, L.-Y. Excessive shift of the cmb acoustic peaks of the cold spot area. submitted to the Astrophysical Journal (2017). [11] Vielva, P., Martínez-González, E., Barreiro, R. B., Sanz, J. L. & Cayón, L. Detection of non-gaussianity in the wilkinson microwave anisotropy probe rst- year data using spherical wavelets. The Astrophysical Journal 609, 22 (2004). [12] Planck Collaboration et al. Planck 2015 results - xvi. isotropy and statistics of the cmb. A&A 594, 15:1–15:58 (2016). [13] Inoue, K. T. & Silk, J. Local voids as the origin of large-angle cosmic microwave background anomalies. i. The Astrophysical Journal 648, 23 (2006). [14] Sachs, R. K. & Wolfe, A. M. Perturbations of a cosmological model and angular variations of the microwave background. The Astrophysical Journal 147, 73 (1967). [15] Rees, M. J. & Sciama, D. W. Large-scale density inhomogeneities in the uni- verse. Nature 217, 511–516 (1968). [16] Mackenzie, R. et al. Evidence against a supervoid causing the cmb cold spot. Monthly Notices of the Royal Astronomical Society 470, 2328–2338 (2017). [17] Montroy, T. E. Measuring the cosmic microwave background with BOOMERANG. Ph.D. thesis, University of California, Santa Barbara (2003). [18] Viola, P. & Jones, M. Rapid object detection using a boosted cascade of sim- ple features. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1, I–511–I–518 vol.1 (2001). DOI 10.1109/CVPR.2001.990517. [19] Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classi cation with deep convolutional neural networks. Proceedings of the 25th International Confer- ence on Neural Information Processing Systems 1, 1097–1105 (2012). DOI 10.1109/CVPR.2001.990517. [20] Lecun, Y., Bottou, L., Bengio, Y. & Ha ner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 2278–2324 (1998). DOI 10.1109/5.726791. [21] Lecun, Y. & Cortes, C. The MNIST database of handwritten digits (2009). URL http://yann.lecun.com/exdb/mnist/. [22] Planck Collaboration et al. Planck 2015 results - ix. di use component separa- tion: Cmb maps. A&A 594, A9 (2016). [23] Górski, K. M. et al. Healpix: A framework for high-resolution discretization and fast analysis of data distributed on the sphere. The Astrophysical Journal 622, 759–771 (2005). [24] Planck Collaboration et al. Planck 2013 results. xvii. gravitational lensing by large-scale structure. A&A 571, A17 (2014). [25] Kovács, A. & Szapudi, I. Star–galaxy separation strategies for wise-2mass all-sky infrared galaxy catalogues. Monthly Notices of the Royal Astronomical Society 448, 1305–1313 (2015). [26] Chiang, L.-Y. & Chen, F.-F. Direct measurement of the angular power spectrum of cosmic microwave background temperature anisotropies in the wmap data. The Astrophysical Journal 751 (2012). [27] Newville, M., Stensitzki, T., Allen, D. B. & Ingargiola, A. Lm t: Non- linear least-square minimization and curve- tting for python (2014). DOI 10.5281/zenodo.11813. [28] More, J. Levenberg–marquardt algorithm: implementation and theory. Con- ference: Conference on numerical analysis (1977). [29] Nash, S. G. Newton-type minimization via the lanczos method. SIAM Journal on Numerical Analysis 21, 770–788 (1984). [30] Zhu, C., Byrd, R. H., Lu, P. & Nocedal, J. Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23, 550–560 (1997). [31] Powell, M. J. D. Direct search algorithms for optimization calculations. Acta Numerica 287–336 (1998). [32] Nocedal, J. & Wright, S. J. Numerical Optimization (Springer, 2006), second edn. [33] Powell, M. J. D. An e cient method for nding the minimum of a function of several variables without calculating derivatives. The Computer Journal 7, 155 (1964). [34] Powell, M. J. D. A simplex method for function minimization. The Computer Journal 7, 308 (1965). [35] Ho man, Y. Gaussian Fields and Constrained Simulations of the Large-Scale Structure, 565–583 (Springer Berlin Heidelberg, 2009). [36] Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. The Astrophysical Journal 500, 525–553 (1998). [37] Szapudi, I., Prunet, S., Pogosyan, D., Szalay, A. S. & Bond, J. R. Fast cosmic microwave background analyses via correlation functions. The Astrophysical Journal Letters 548, L115 (2001). [38] Finelli, F., García-Bellido, J., Kovács, A., Paci, F. & Szapudi, I. Supervoids in the wise–2mass catalogue imprinting cold spots in the cosmic microwave background. Monthly Notices of the Royal Astronomical Society 455, 1246– 1256 (2016). [39] Szapudi, I. e. a. The Cold Spot in the Cosmic Microwave Background: the Shadow of a Supervoid. In Proceedings, 49th Rencontres de Moriond on Cos- mology: La Thuile, Italy, March 15-22, 2014, 33–41 (2014). 1406.3622. [40] Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierar- chical Models. Analytical Methods for Social Research (Cambridge University Press, 2006). [41] Jeong, D., Chluba, J., Dai, L., Kamionkowski, M. & Wang, X. E ect of aber- ration on partial-sky measurements of the cosmic microwave background tem- perature power spectrum. Phys. Rev. D 89, 023003 (2014). [42] Notari, A., Quartin, M. & Catena, R. Cmb aberration and doppler e ects as a source of hemispherical asymmetries. Journal of Cosmology and Astroparticle Physics 2014, 019 (2014). [43] Betoule, M. et al. Improved cosmological constraints from a joint analysis of the sdss-ii and snls supernova samples. A&A 568, A22 (2014). DOI 10.1051/0004- 6361/201423413. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69704 | - |
dc.description.abstract | 宇宙微波背景輻射紀錄了宇宙的歷史,而宇宙的歷史也藉由微波背景的頻譜圖被 揭露。甚至對小片天區,頻譜圖的偏移也顯露了小片天區的訊息,如重力透鏡效 應、都卜勒增強效應、或者其他未知的效應。在分析隨機選擇的普朗克微波背景 小片天區時,我們建立了聲峰偏移的全天球特徵圖(feature map),這提供了我們 對全天球宇宙學研究的新途徑。在聲峰特徵圖中,我們發現了不少區域的聲峰有 往大尺度偏移的現象,也包括了著名的冷斑(Cold Spot)區域。在做聲峰圖的多 極展開時,與模擬相比,我們聲峰圖的偶極明顯大於大部分的模擬。另外,我們 還發現了這個偶極與 SDSS-II/SNLS3 超新星的距離殘差有空間相關性。這個相關 性可能顯示了膨脹在偶極方向上有變化性。 | zh_TW |
dc.description.abstract | Cosmic microwave background (CMB) temperature anisotropies encode the history of the universe, which manifest itself in the angular power spectrum. Variations in the power spectra even from small patches reveal informative details such as gravitational lensing, Doppler boosting effects, or even unknown effect. In doing data mining from ESA Planck CMB map, we compute the relative shifts of acoustic peak positions in power spectra from small patches and construct a full-sky peak-shift feature map, which provides a new way for statistics of full-sky cosmology. We found significant strong global dipole signal compared with simulations. The direction of the dipole, furthermore, spatially correlates with residuals of supernovae distances from best-fit ΛCDM cosmology in SDSS-II/SNLS3 Joint Light-Curve Analysis data. This correlation might indicate the variations of the expansion on the peak-shift dipole direction. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:24:31Z (GMT). No. of bitstreams: 1 ntu-107-R04244007-1.pdf: 12518252 bytes, checksum: 6fcde87dcdc3ed7766d937029a861c9c (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 1 Introduction 1
1.1 Background:Cosmology ......................... 2 1.2 What is a Feature Map? ......................... 3 1.3 Analysis Setup .............................. 5 1.4 Thesis Overview ............................. 5 2 Data & Background 7 2.1 Overview ................................. 7 2.2 Planck CMB Maps ............................ 7 2.3 Selection of Patches............................ 9 2.3.1 Independent Patches....................... 9 2.3.2 Randomly Placed Patches .................... 12 2.4 Measurements of Peak Shifts....................... 13 2.4.1 Power Spectrum Extraction ................... 13 2.4.2 Non-Linear Fitting with Four Gaussians . . . . . . . . . . . . 14 2.4.3 Univariate Peak-Shift Features ................. 16 3 Healpix as a 2D Spherical Histogram 19 3.1 WISE-2MASS Galaxy Density Map................... 20 3.2 Acoustic Peak-Shift Map......................... 22 4 Results 27 4.1 The Result of Independent Patches & I Feature Maps . . . . . . . . 28 4.2 Areas with Peak Shifts Toward Large Scales . . . . . . . . . . . . . . 34 4.3 Full-sky Correlation between WISE-2MASS Density Map and I Feature Map ................................. 35 4.4 Dipole Analysis.............................. 42 4.5 Linear Regression on Distance Residuals and the Peak-Shift Dipole 44 5 Discussion 49 A Non-Periodic Boundary 51 B Supplementary Results 53 C Application: A Simple Solution for CNN on Spheres – Using Hierarchical Spherical Data 55 Bibliography 61 | |
dc.language.iso | en | |
dc.title | 小天區的全天球聲峰偏移 | zh_TW |
dc.title | Full-Sky Acoustic Peak Shifts from Patches | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 蔣龍毅(Lung-Yih Chiang) | |
dc.contributor.oralexamcommittee | 後藤友嗣(Tomotsugu Goto),劉國欽(Guo-Chin Liou) | |
dc.subject.keyword | 大尺度結構,觀測宇宙學,微波背景,資料分析, | zh_TW |
dc.subject.keyword | large scale structure of the universe,cosmology: observation,cosmic microwave background,data analysis, | en |
dc.relation.page | 65 | |
dc.identifier.doi | 10.6342/NTU201800867 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-06-04 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 天文物理研究所 | zh_TW |
Appears in Collections: | 天文物理研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-107-1.pdf Restricted Access | 12.22 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.