Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69665
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林明仁
dc.contributor.authorPo Chu Chenen
dc.contributor.author陳伯駒zh_TW
dc.date.accessioned2021-06-17T03:22:59Z-
dc.date.available2021-06-21
dc.date.copyright2018-06-21
dc.date.issued2018
dc.date.submitted2018-06-14
dc.identifier.citationAndersen, Jesper, Anders Giversen, Allan H Jensen, Rune S Larsen, Torben Bach Pedersen, and Janne Skyt. 2000. “Analyzing clickstreams using subsessions.” In Pro- ceedings of the 3rd ACM international workshop on Data warehousing and OLAP.: 25–32, ACM.
Bucklin, Randolph E., James M. Lattin, Asim Ansari, Sunil Gupta, David Bell, Eloise Coupey, John D. C. Little, Carl Mela, Alan Montgomery, and Joel Steckel. 2002. “Choice and the Internet: From Clickstream to Research Stream.” Marketing Letters 13 (3): 245–258. .
Bucklin, Randolph E., and Catarina Sismeiro. 2009. “Click Here for Internet Insight: Advances in Clickstream Data Analysis in Marketing.” Journal of Interactive Market- ing 23(1): 35 – 48. , Anniversary Issue.
Chawla, Nitesh V, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. “SMOTE: synthetic minority over-sampling technique.” Journal of artificial intelligence research 16: 321–357.
e Costa Magalhães Teixeira, Ricardo Filipe Fernandes. 2015. “Using Clickstream Data to Analyze Online Purchase Intentions.” FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO.
Drummond, Chris, Robert C Holte et al. 2003. “C4. 5, class imbalance, and cost sen-
sitivity: why under-sampling beats over-sampling.” In Workshop on learning from imbalanced datasets II. 11, Citeseer Washington DC.
Gabadinho, Alexis, Gilbert Ritschard, Nicolas Séverin Mueller, and Matthias Studer.
2011. “Analyzing and visualizing state sequences in R with TraMineR.” Journal of
Statistical Software 40(4): 1–37.
Hop, Walter, and Michel van de Velden. 2013. “Web-shop order prediction using machine learning.” Ph.D. dissertation.
Kumar, T Vijaya, and HS Guruprasad. 2015. “Clustering of Web Usage Data using
Hybrid K-means and PACT Algorithms.” Our Major Indexing at International Level
4852, p. 871.
Lunardon, Nicola, Giovanna Menardi, and Nicola Torelli. 2014. “ROSE: A Package
for Binary Imbalanced Learning..” R Journal 6(1).
Menardi, Giovanna, and Nicola Torelli. 2014. “Training and assessing classification
rules with imbalanced data.” Data Mining and Knowledge Discovery: 1–31.
Moe, Wendy W., and Peter S. Fader. 2004. “Dynamic Conversion Behavior at E-
Commerce Sites.” Management Science 50(3): 326–335. .
Rizwan, Tanzim. 2017. “Purchase Predicting with Click Stream Data.” Ph.D. dissertation, East West University.
Sismeiro, Catarina, and Randolph E. Bucklin. 2004. “Modeling Purchase Behavior
at an E-Commerce Web Site: A Task-Completion Approach.” Journal of Marketing
Research 41(3): 306–323. .
Verheijden, Ruud. 2012. “Predicting purchasing behavior throughout the clickstream.”Eindhoven University of Technology, Identity(0609445), p. 32.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69665-
dc.description.abstract近年來,許多商業型態逐漸由實體商店轉型成網路商店,即我們所熟 知的電子商務。隨著網路運算的進步,這些網路平台儲存了鉅量的訪 客登入及瀏覽資訊,亦稱為點擊資料。在本研究中,我們主要分析一 家線上酒店零售商的網站點擊資料、使用兩種常用的機器學習模型: 決策樹與隨機森林,預測消費者最終的購買行為。除了引入消費者在 網站上的搜尋特徵,我們另外建立了一種根據消費者之登入頁面順序、 進行訪客分類的分群結果,並利用此分群結果作為統整性的特徵納入 學習模型。經過重複採樣消除非平衡數據的問題後,我們兩個最終的 學習模型都達到高於 90% 的整體預測率,並且提供了廠商未來可能進 一步行銷的訪客類型。zh_TW
dc.description.abstractIn the recent years, numerous commerces have gradually shifted from physi- cal store to web-shops, so-called the e-commerce. These online stores contain lots of log files in the back-end which basically record the pages accessed by visitors, namely the clickstream data. In this study, we predict consumers’ purchase decision by analyzing the clickstream data from an online wine re- tailer. We impose two modern machine learning model, decision tree and ran- dom forest, to predict consumers’ final purchase intention. Besides the normal features based on visitors’ activities on the website, we construct a new feature that clusters different groups of visitors according to the sequence page-type accessed. After re-sampling to remedy the unbalanced data, our two models both show high predictive accuracy up to 90% and provides a new insight for retailer to target some specific visitors on website.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:22:59Z (GMT). No. of bitstreams: 1
ntu-107-R04323050-1.pdf: 2945715 bytes, checksum: 8369a1d96d6e22abc6fdfa22ca1722bc (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents1 Introduction ...........................................1
2 Literature Review ..................................3
3 Data Processing ....................................6
3.1 Visitors’BrowsingHistory ..................7
3.2 OverviewofBrowsingBehavior ..........8
4 Model ...................................................10
4.1 SequenceClustering ........................11
4.2 DecisionTree....................................12
4.3 RandomForest .................................15
5 Result ....................................................16
5.1 WeightedClustering ............................ 16
5.2 Classifiers’Performance .......................... 18
5.2.1 HyperparametersTuning...................... 19
5.2.2 ConfusionMatrixandAccuracy .................. 20
5.2.3 VariableImportance ........................ 23
6 Conclusion and Remarks 28
References 31
A Result of Decision Tree 33
B Result of Random Forest 35
dc.language.isoen
dc.subject隨機森林zh_TW
dc.subject點擊資料zh_TW
dc.subject決策樹zh_TW
dc.subject電子商務zh_TW
dc.subjectE-Commerceen
dc.subjectClickstream Dataen
dc.subjectDecision Treeen
dc.subjectRandom Foresten
dc.title使用機器學習技法預測消費者的購買行為:以網站的點擊資料為例zh_TW
dc.titlePredicting Consumers’ Purchase Decision by Clickstream Data: A Machine Learning Approachen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江淳芳,陳釗而,盧信銘,朱建達
dc.subject.keyword點擊資料,決策樹,隨機森林,電子商務,zh_TW
dc.subject.keywordClickstream Data,Decision Tree,Random Forest,E-Commerce,en
dc.relation.page36
dc.identifier.doi10.6342/NTU201800957
dc.rights.note有償授權
dc.date.accepted2018-06-15
dc.contributor.author-college社會科學院zh_TW
dc.contributor.author-dept經濟學研究所zh_TW
顯示於系所單位:經濟學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved