Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69649
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林峯輝(Feng-Huei Lin)
dc.contributor.authorYu-Ling Yuen
dc.contributor.author余侑玲zh_TW
dc.date.accessioned2021-06-17T03:22:24Z-
dc.date.available2025-07-10
dc.date.copyright2020-09-15
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citation1. Gomes, M.J., et al., Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget, 2017. 8(12).
2. Morley, J.E., et al., Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc, 2011. 12(6): p. 403-9.
3. Cruz-Jentoft, A.J., et al., Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing, 2019. 48(1): p. 16-31.
4. Kim, T.N. and K.M. Choi, Sarcopenia: Definition, Epidemiology, and Pathophysiology. Journal of Bone Metabolism, 2013. 20(1).
5. Demontis, F., et al., Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models. Dis Model Mech, 2013. 6(6): p. 1339-52.
6. von Haehling, S., J.E. Morley, and S.D. Anker, An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle, 2010. 1(2): p. 129-133.
7. Moon, S.-S., Low skeletal muscle mass is associated with insulin resistance, diabetes, and metabolic syndrome in the Korean population: The Korea National Health and Nutrition Examination Survey (KNHANES) 2009-2010. Endocrine Journal, 2014. 61: p. 61-70.
8. Kim, J.E., et al., Early-stage chronic kidney disease, insulin resistance, and osteoporosis as risk factors of sarcopenia in aged population: the fourth Korea National Health and Nutrition Examination Survey (KNHANES IV), 2008-2009. Osteoporos Int, 2014. 25(9): p. 2189-98.
9. Beaudart, C., et al., Sarcopenia: burden and challenges for public health. Archives of Public Health, 2014. 72(45).
10. Kalyani, R.R., M. Corriere, and L. Ferrucci, Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. The Lancet Diabetes Endocrinology, 2014. 2(10): p. 819-829.
11. Dennison, E.M., A.A. Sayer, and C. Cooper, Epidemiology of sarcopenia and insight into possible therapeutic targets. Nat Rev Rheumatol, 2017. 13(6): p. 340-347.
12. Boutin, R.D., et al., Sarcopenia: Current Concepts and Imaging Implications. AJR Am J Roentgenol, 2015. 205(3): p. W255-66.
13. Zion Market Research. 2018.
14. Morley, J.E., Pharmacologic Options for the Treatment of Sarcopenia. Calcif Tissue Int, 2016. 98(4): p. 319-33.
15. Hardee, J.P. and G.S. Lynch, Current pharmacotherapies for sarcopenia. Expert Opin Pharmacother, 2019. 20(13): p. 1645-1657.
16. Dionyssiotis, Y., et al., Sarcopenia: From definition to treatment. HORMONES, 2017. 16(4): p. 429-439.
17. Wu, M., et al., Acetaminophen improves protein translational signaling in aged skeletal muscle. Rejuvenation Res, 2010. 13(5): p. 571-9.
18. Meng, S.J. and L.J. Yu, Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci, 2010. 11(4): p. 1509-26.
19. Zhou, J., et al., Cytokine Signaling in Skeletal Muscle Wasting. Trends Endocrinol Metab, 2016. 27(5): p. 335-347.
20. Pagliari, F., et al., Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano, 2012. 6(5): p. 3767-75.
21. Romanick, M., L.V. Thompson, and H.M. Brown-Borg, Murine models of atrophy, cachexia, and sarcopenia in skeletal muscle. Biochim Biophys Acta, 2013. 1832(9): p. 1410-20.
22. Priyadarsini, K.I., The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 2014. 19(12): p. 20091-112.
23. Receno, C.N., et al., Effects of Prolonged Dietary Curcumin Exposure on Skeletal Muscle Biochemical and Functional Responses of Aged Male Rats. Int J Mol Sci, 2019. 20(5).
24. Rondanelli, M., et al., A Systematic Review on the Effects of Botanicals on Skeletal Muscle Health in Order to Prevent Sarcopenia. Evid Based Complement Alternat Med, 2016. 2016: p. 5970367.
25. Sahebkar, A., et al., Curcumin: An effective adjunct in patients with statin-associated muscle symptoms? Journal of cachexia, sarcopenia and muscle, 2017. 8(1): p. 19-24.
26. Xu, C. and X. Qu, Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Materials, 2014. 6(3): p. e90-e90.
27. Hirst, S.M., et al., Anti-inflammatory properties of cerium oxide nanoparticles. Small, 2009. 5(24): p. 2848-56.
28. Wu, Y., et al., Novel iron oxide–cerium oxide core–shell nanoparticles as a potential theranostic material for ROS related inflammatory diseases. Journal of Materials Chemistry B, 2018. 6(30): p. 4937-4951.
29. Yokel, R.A., et al., Nanoceria biodistribution and retention in the rat after its intravenous administration are not greatly influenced by dosing schedule, dose, or particle shape. Environ. Sci.: Nano, 2014. 1(6): p. 549-560.
30. Arya, A., et al., Cerium oxide nanozyme modulate the ‘exercise’ redox biology of skeletal muscle. Materials Research Express, 2017. 4(5).
31. Scanning electron microscope. https://en.wikipedia.org/wiki/Scanning_electron_microscope.
32. 生化儀器分析: Dynamic light scattering. chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http://strbio.biochem.nchu.edu.tw/classes/aux_courses/instrumentation/DLS.pdf.
33. Murata, M., et al., Oxidative DNA damage induced by a hydroperoxide derivative of cyclophosphamide. Free Radic Biol Med, 2004. 37(6): p. 793-802.
34. Strauss, G., et al., 4-hydroperoxy-cyclophosphamide mediates caspase-independent T-cell apoptosis involving oxidative stress-induced nuclear relocation of mitochondrial apoptogenic factors AIF and EndoG. Cell Death Differ, 2008. 15(2): p. 332-43.
35. Tsai-Turton, M., et al., Cyclophosphamide-induced apoptosis in COV434 human granulosa cells involves oxidative stress and glutathione depletion. Toxicol Sci, 2007. 98(1): p. 216-30.
36. Degens, H., G. Gayan-Ramirez, and H.W. van Hees, Smoking-induced skeletal muscle dysfunction: from evidence to mechanisms. Am J Respir Crit Care Med, 2015. 191(6): p. 620-5.
37. Rom, O., et al., The effects of acetaldehyde and acrolein on muscle catabolism in C2 myotubes. Free Radic Biol Med, 2013. 65: p. 190-200.
38. Dorr, R.T. and K. Lagel, Effect of sulfhydryl compounds and glutathione depletion on rat heart myocyte toxicity induced by 4-hydroperoxycyclophosphamide and acrolein in vitro. Chemico-Biological Interactions, 1994. 93: p. 117-128.
39. Crouch, M.L., et al., Cyclophosphamide leads to persistent deficits in physical performance and in vivo mitochondria function in a mouse model of chemotherapy late effects. PLoS One, 2017. 12(7): p. e0181086.
40. Horie, M., et al., Protein Adsorption of Ultrafine Metal Oxide and Its Influence on Cytotoxicity toward Cultured Cells. Chem. Res. Toxicol., 2009. 22: p. 543–553.
41. 即時定量聚合酶連鎖反應(Real-time Quantitative PolymeraseChain Reaction,簡稱Q-PCR). chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://cmurdc.cmu.edu.tw/HVIS/workshop/990813%20Real-time%20PCR%20protocol.pdf.
42. 陳志宏教授, et al., 第15章核磁共振與磁振造影 (Nuclear Magnetic Resonance and Magnetic Resonance Imaging).
43. 饒若琪 and 陳博洲, 磁振造影:核磁共振產生影像有利精準診斷.
44. 腦造影實驗室. http://bml.ym.edu.tw/bmlab/mri22522264122140729702.html.
45. 鍾承穎, et al., 生物阻抗分析於內科學之應用. 內科學誌, 2012. 23: p. 245-253.
46. Chapman, M.E., et al., Bioimpedance spectroscopy for the estimation of body fluid volumes in mice. Am J Physiol Renal Physiol, 2010. 299(1): p. F280-3.
47. ILAGAN, J., et al., Estimation of body composition changes during weight
cycling by bioelectrical impedance analysis in rats. J Appl Physiol, 1993. 74(5): p. 2092-8.
48. W., Z., Nanoparticle Aggregation: Principles and Modeling. Nanomaterial, 2014. 811: p. 19-43.
49. Kumar, E., P. Selvarajan, and D. Muthuraj, Synthesis and characterization of CeO2 nanocrystals by solvothermal route. Materials Research, 2013. 16: p. 269-276.
50. Ozel, R.E., et al., Effect of cerium oxide nanoparticles on intestinal serotonin in zebrafish. RSC advances, 2013. 3(35): p. 15298-15309.
51. McDevitt, N.T. and W.L. Baun, Infrared absorption study of metal oxides in the low frequency region (700-240 cm−1). Spectrochimica Acta, 1964. 20(5): p. 799-808.
52. Babitha, K.K., et al., Structural characterization and optical studies of CeO2 nanoparticles synthesized by chemical precipitation. IJPAP, 2015. 53(9): p. 596-603.
53. Kalashnikova, I., et al., Nanoparticle delivery of curcumin induces cellular hypoxia and ROS-mediated apoptosis via modulation of Bcl-2/Bax in human neuroblastoma. Nanoscale, 2017. 9(29): p. 10375-10387.
54. Phoka, S., et al., Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route. Materials Chemistry and Physics, 2009. 115(1): p. 423-428.
55. Campbell, C.T. and C.H.F. Peden, Oxygen Vacancies and Catalysis on Ceria Surfaces. Science, 2005. 309(5735): p. 713.
56. Sujana, M.G., K.K. Chattopadyay, and S. Anand, Characterization and optical properties of nano-ceria synthesized by surfactant-mediated precipitation technique in mixed solvent system. Applied Surface Science, 2008. 254(22): p. 7405-7409.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69649-
dc.description.abstract肌少症為肌力以及肌肉量或質低於標準以下、且可能伴隨身體功能表現不良的現象。肌力的下降造成患者出現容易跌倒、走路速度緩慢、從椅子上起身困難等生活上極大的不便,並且主觀上容易感到疲倦、力不從心。再者肌少症患者預後多半不佳,有容易跌倒、骨折與失能風險增加的情形,且常見共病症(comorbidity)而導致更高死亡風險,以上無論對病患或照顧者皆造成長期生活、心理及經濟上的負擔。然而目前針對肌少症的治療方式仍有效果不足、存在副作用或需每天給藥的缺點,因此迫切需要一個有效、安全性高且能維持長期療效的治療方式。
許多因素已經被指出與肌少症的形成有關,但相關機轉仍未完全明瞭;而氧化壓力對於老化的貢獻於近幾十年來受到相當的重視,更被指出在骨骼肌的老化與肌少症的形成中扮演了重要角色,其能夠同時影響骨骼肌纖維中蛋白質合成、分解、apoptosis等pathway,並且會與發炎反應相互影響造成更嚴重的結果。因此本研究結合氧化鈰奈米粒子(cerium oxide nanoparticle, CONP)的長效抗氧化能力與薑黃素(curcumin)的抗氧化、抗發炎能力,利用長效配合短效 agent 的共同作用,並直接經由肌肉注射於患部,期望長效緩解老化肌肉細胞之氧化壓力與發炎狀態,達到預防肌少症的效果。
本研究於材料部分合成出粒徑約為20 nm之CONP,於水溶液中傾向團聚,平均粒徑上升至約140 nm。晶體為立方螢石型結構,表面包含三價與四價鈰離子並且比表面積落於正常範圍內,顯示其具有一定的催化能力與抗氧化能力。
In vitro的部分,CONP與CCONP之材料生物相容性均符合ISO 10993-5的標準,並且能夠預防小鼠myoblasts受到氧化傷害導致細胞死亡、有效清除ROS及降低IL-6、TNF-α、Atrogin-1及Caspase-3基因表現,具有增加肌肉細胞存活並減少蛋白質流失的潛力。
In vivo的部分,CCONP組有較顯著的效果,抓力測試結果顯示能夠增強老化小鼠上肢肌力,並且MRI結果顯示能夠提升腿部肌肉之質與量,但於滾輪跑步機測試及肌肉拉伸試驗雖可見平均測試結果之提升然而無統計上差異。
zh_TW
dc.description.abstractSarcopenia is characterized by progress loss of muscle strength and mass during aging, and is an important predictor of poor quality of life, disability, and mortality. Although many factors have been involved, the pathophysiology of sarcopenia is still not completely understood. In recent decades, while the contribution of oxidative stress to aging has received significant attention, oxidative stress is also been suggested as playing an important role in skeletal muscle aging and the progression of sarcopenia. It simultaneously influence protein synthesis, protein degradation, and apoptosis pathways, and can interact with inflammation state to exacerbate muscle atrophy. Therefore, in this study we utilize the combination of the long-term antioxidant effect of cerium oxide nanoparticles (CONP) and the antioxidant and anti-inflammatory effect of curcumin to treat sarcopenic muscle via intramuscular injection.
The material analysis showed that the particle size of CONP synthesized in this study is around 20 nm, and CONPs tend to agglomerate to reach an average size of around 140 nm. It also demonstrated that CONP crystallizes in the fluorite structure. Furthermore, the results of XRD and gas adsorption method respectively showed that the surface of CONP contains Ce3+ and Ce4+, and the specific surface area of CONP is in normal range. These two results mean that the CONP we synthesized has catalytic and antioxidative ability.
In vitro analysis showed that the biocompatibility of CONP and CCONP both meets the requirement of ISO 10993-5, and the materials can effectively reduce ROS level and have the potential to increase muscle cell viability and reduce protein degradation.
The effect of CCONP group is more evident for in vivo analysis. It showed that the muscle strength of forelimbs was improved in grip strength test, and the leg muscle quality and quantity were increased in MRI analysis. However, the results of rotarod test and tensile test showed no significant difference between the control group and experimental groups.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:22:24Z (GMT). No. of bitstreams: 1
U0001-1808202005030100.pdf: 2763947 bytes, checksum: 64945f34bd6d4bad7f06c7d69f90e5b4 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
公式目錄 ix
縮寫目錄 x
第一章 緒論 1
1.1 肌少症定義與症狀 1
1.2 流行與市場 3
1.3 診斷流程與方式 3
1.4 病因簡述 4
1.5 治療方法 4
1.5.1運動訓練 5
1.5.2 營養補充 5
1.5.3 發展中藥物 5
1.6研究目的 7
第二章 文獻回顧 9
2.1 氧化壓力對骨骼肌的影響 9
2.2.1 氧化壓力與發炎反應的相互影響 10
2.2 材料選擇 10
2.2.1 Curcumin 10
2.2.2 CONP 11
第三章 材料與方法 16
3.1 實驗藥品 16
3.2 實驗儀器 17
3.3 實驗架構 18
3.4 材料製備 20
3.4.1 CONP之製備 20
3.4.2 CCONP之製備 20
3.5 材料分析 20
3.5.1 SEM 20
3.5.2 TEM 21
3.5.3 DLS 21
3.5.4 XRD 22
3.5.5 EDS 22
3.5.6 FTIR 22
3.5.7 氣體吸附法 23
3.6 In vitro study 24
3.6.1 細胞株培養 25
3.6.2 氧化壓力模型的建立 25
3.6.3 材料的前處理 25
3.6.4 WST-1 cell proliferation assay 26
3.6.5 Live/Dead staining 26
3.6.6 DCFH-DA assay 27
3.6.7 qPCR 27
3.7 In vivo study 30
3.7.1 滾輪跑步機測試 30
3.7.2 抓力測試 31
3.7.3 MRI 31
3.7.4 BIA 33
3.7.5 肌肉拉伸試驗 34
3.7.6 TEM 35
3.8 統計分析 35
第四章 結果與討論 36
4.1 CONP材料分析 36
4.1.1 SEM 36
4.1.2 TEM 36
4.1.3 DLS 37
4.1.4 XRD 38
4.1.5 EDS 39
4.1.6 FTIR 39
4.1.7 XPS 40
4.1.8 氣體吸附法 41
4.2 In vitro study 41
4.2.1 材料細胞毒性測試 41
4.2.2 材料預防氧化傷害效果 42
4.2.3 材料ROS scavenging效果 43
4.2.3 基因表現 44
4.3 In vivo 46
4.3.1 體重變化 46
4.3.2 肌耐力與肌力測試 46
4.3.3 腿部肌肉組成與截面積 47
4.3.4 生物電阻抗分析 48
4.3.5 肌肉拉伸試驗 49
第五章 結論 50
第六章 參考文獻 51
dc.language.isozh-TW
dc.subject肌少症zh_TW
dc.subject氧化壓力zh_TW
dc.subject老化zh_TW
dc.subject氧化鈰奈米粒子zh_TW
dc.subject長效抗氧化能力zh_TW
dc.subject抗發炎能力zh_TW
dc.subject薑黃素zh_TW
dc.subjectanti-inflammatory effecten
dc.subjectsarcopeniaen
dc.subjectoxidative stressen
dc.subjectagingen
dc.subjectcerium oxide nanoparticlesen
dc.subjectcurcuminen
dc.subjectlong-term antioxidant effecten
dc.title氧化鈰奈米粒子與薑黃素用於肌少症預防之研究zh_TW
dc.titleThe Preparation and Evaluation of Cerium Oxide Nanoparticles Loaded with Curcumin for the Prevention of Sarcopeniaen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃義侑(Yi-You Huang),陳博洲(Po-Chou Chen)
dc.subject.keyword肌少症,氧化壓力,老化,氧化鈰奈米粒子,長效抗氧化能力,抗發炎能力,薑黃素,zh_TW
dc.subject.keywordsarcopenia,oxidative stress,aging,cerium oxide nanoparticles,long-term antioxidant effect,anti-inflammatory effect,curcumin,en
dc.relation.page53
dc.identifier.doi10.6342/NTU202003919
dc.rights.note有償授權
dc.date.accepted2020-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1808202005030100.pdf
  未授權公開取用
2.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved