Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69634
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉如熹
dc.contributor.authorShu-Yi Mengen
dc.contributor.author孟書怡zh_TW
dc.date.accessioned2021-06-17T03:21:51Z-
dc.date.available2023-08-15
dc.date.copyright2018-08-15
dc.date.issued2018
dc.date.submitted2018-06-21
dc.identifier.citation(1) Sankaran, S.; Ehsani, R. Introduction to the Electromagnetic Spectrum. Springer. 2014.
(2) Goldstein, E. B.; Brockmole, J. Sensation and Perception. Cengage Learning. 2016.
(3) Barton, H.; Byrne, K. Introduction to Human Vision, Visual Defects & Eye Tests. 2007.
(4) 劉偉仁 LED螢光粉技術. 2014.
(5) Ackerman, E. Considerable Material on Vision From a Medical Point of View. Biophysical Science. Prentice-Hall. 1962.
(6) DeCusatis, C. Handbook of Applied Photometry. American Inst. of Physics. 1997.
(7) Narisada, K.; Schreuder, D. Light Pollution Handbook. Springer Science & Business Media. 2013.
(8) Rao, P.; Rosen, M. R.; Berns, R. S. Munsell Color Science Laboratory. 2005.
(9) Eichhorn, K. LEDs in Automotive Lighting. International Society for Optics and Photonics. 2006.
(10) Livingston, J. Designing With Light: The Art, Science and Practice of Architectural Lighting Design. John Wiley & Sons. 2014.
(11) Burke, M. W. Image Acquisition: Handbook of Machine Vision Engineering. Springer Science & Business Media. 2012.
(12) Borbély, Á.; Sámson, Á.; Schanda, J. The Concept of Correlated Colour Temperature Revisited. Color Res. Appl. 2001, 26, 450–457.
(13) The 2014 Nobel Prize in Physics-Press Release. Nobelprize.org. 2014.
(14) Research Projects Five Years of Growth for Packaged LEDs and SSL. LEDs megazine 2014.
(15) Wang, C.; Sheu, T.; Su, Y.; Yokoyama, M. Deep Traps and Mechanism of Brightness Degradation in Mn-doped ZnS Thin-film Electroluminescent Devices Grown by Metal-organic Chemical Vapor Deposition. Jpn. J. Appl. Phys. 1997, 36, 2728–2734.
(16) Ropp, R. C. Luminescence and the Solid State. elsevier. 2013.
(17) Höppe, H. A. Recent Developments in the Field of Inorganic Phosphors. Angew. Chem. Int. Ed. 2009, 48, 3572–3582.
(18) Condon, E. U. Nuclear Motions Associated with Electron Transitions in Diatomic Molecules. Phys. Rev. 1928, 32, 858–872.
(19) Sild, O.; Haller, K. Zero-Phonon Lines: And Spectral Hole Burning in Spectroscopy and Photochemistry. Springer Science & Business Media. 2012.
(20) Albani, J. R. Structure and Dynamics of Macromolecules: Absorption and Fluorescence Studies. Elsevier. 2011.
(21) Johannesen, R. B. An Introduction to Transition-Metal Chemistry. Ligand-Field Theory. J. Am. Chem. Soc 1961, 83, 3354–3354.
(22) Pust, P.; Weiler, V.; Hecht, C.; Tücks, A.; Wochnik, A. S.; Henß, A. K.; Wiechert, D.; Scheu, C.; Schmidt, P. J.; Schnick, W. Narrow-Band Red-Emitting SrLiAl3N4: Eu2+ as a Next-Generation LED-Phosphor Material. Nat. Mater. 2014, 13, 891–896.
(23) Ueda, J.; Tanabe, S.; Nakanishi, T. Analysis of Ce3+ Luminescence Quenching in Solid Solutions Between Y3Al5O12 and Y3Ga5O12 by Temperature Dependence of Photoconductivity Measurement. J. Appl. Phys. 2011, 110, 053102.
(24) 徐敘瑢; 蘇勉曾 發光學與發光材料. 化學工業出版社. 2004.
(25) 孫家躍; 杜海燕; 胡文祥 固體發光材料. 化學工業出版社 2003.
(26) Hildebrandt, G. The Discovery of the Diffraction of X‐rays in Crystals—A Historical Review. Cryst. Res. Technol. 1993, 28, 747–766.
(27) Bragg, W. H.; WL Bragg, B. The Reflection of X-rays by Crystals. Proc. R. Soc. Lond. A 1913, 88, 428–438.
(28) 許火順 粉末X光繞射之原理與應用講義. 2017.
(29) Young, R. A. The rietveld method. International union of crystallography. 1993.
(30) Kern, A.; Coelho, A.; Cheary, R. Convolution Based Profile Fitting. Springer. 2004.
(31) Dibner, B. Wilhelm Conrad Röntgen and the Discovery of X Rays. F. Watts. 1968.
(32) 詹丁山 同步輻射EXAFS講義. 2017.
(33) Penner Hahn, J. E. X‐ray Absorption Spectroscopy. eLS 2005.
(34) NSRRC BL17C1 操作說明. 2015.
(35) 陳振中 固態核磁共振光譜學簡介. 2016.
(36) Levine, R. D. Molecular reaction dynamics. Cambridge University Press. 2009.
(37) Zhang, X. J.; Tsai, Y. T.; Wu, S. M.; Lin, Y. C.; Lee, J. F.; Sheu, H. S.; Cheng, B. M.; Liu, R. S. Facile Atmospheric Pressure Synthesis of High Thermal Stability and Narrow-band Red-emitting SrLiAl3N4: Eu2+ Phosphor for High Color Rendering Index White Light-emitting Diodes. ACS Appl. Mater. Interfaces 2016, 8, 19612–19617.
(38) Tsai, Y. T.; Nguyen, H. D.; Lazarowska, A.; Mahlik, S.; Grinberg, M.; Liu, R. S. Improvement of the Water Resistance of a Narrow‐Band Red‐Emitting SrLiAl3N4: Eu2+ Phosphor Synthesized under High Isostatic Pressure through Coating with an Organosilica Layer. Angew. Chem. Int. Ed. 2016, 55, 9652–9656.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69634-
dc.description.abstractSrLiAl3N4:Eu2+(SLA)紅色窄光譜氮化物螢光粉,因其優異之結構與光譜性質,被視為最具潛力之紅色螢光粉以應用於白光發光二極體(white light-emitting diodes; WLEDs)裝置中。白光發光二極體之品質與螢光粉之放光效率與光視效能相關,而光視效能與螢光粉之放光位置與半高寬相關。然而,文獻中SLA氮化物螢光粉放光效率尚未達商用標準。此外,以紅色螢光粉而言,獲得較佳光視效能之理想放光位置為620至630 nm間。SLA紅色氮化物螢光粉放光位置位於655 nm,然於此放光位置人眼之感受度較低。為得較佳品質之螢光粉以應用於白光因此,本研究使用助熔劑配合化學取代對SLA螢光粉粉體進行優化與改質。第一部分利用添加助熔劑使SLA螢光粉粉體之結晶性提升,以優化螢光粉之光譜特性,並使其於高溫裝置所產生之色偏移下降。第二部分使用化學取代以Ga3+取代Al3+之方式,藉改變SLA螢光粉主體晶格環境,以嘗試調控其放光位置由655 nm藍移至630 nm,進一步提升其於裝置中之光視效能,提升為SLA之1.25倍,並應用於白光發光二極體。
藉獨特之高壓固態反應法,合成SLA紅色氮化物螢光粉。藉由粉末X光繞射(XRD)對粉體晶格結構進行鑑定,並使用軟體TOPAS對粉體進行結構精修,以探討晶體之晶胞參數變化。使用光激光譜儀量測樣品之光學特性,並藉分析變溫放射光譜以觀測螢光粉於不同溫度環境之光學性質。經分析時間解析光譜與螢光壽命,更深入探討螢光材料之放光中心之配位環境變化。最終,使用紫外-可見-近紅外光譜分析系統以了解其應用於白光發光二極體裝置之可行性。
zh_TW
dc.description.abstractThe narrowband red-emitting phosphor SrLiAl3N4:Eu2+(SLA) with extraordinary structure and excellent luminous properties is regarded as a prospective red phosphor for white light-emitting diodes(WLEDs). The quality of the white-LED depends on the emission intensity and luminous efficacy of radiation (LER) of the component phosphor, which is, in turn, is related to the emission wavelength, and the bandwidth of the phosphor. As it is now, the emission efficiency of SLA is still not sufficient for the commercial application. Besides, to obtain the optimum luminous efficiency, the emission wavelength of the phosphor should be between 620-630 nm, while the emission wavelength of SLA phosphor is at 655 nm, where the human eyes’ sensitivity is low, and will lead to a decrease in LER. Thus, to obtain the high quality of WLED, improving the emission intensity and blue-shifting the emission wavelength of this phosphor are necessary.
The properties of SLA was optimized by chemical substitution with using Ba3N2 as flux. By the addition of flux, the Morphology of the SLA phosphor was improved by smoother surfaces and larger particle sizes that reflected enhanced luminescence properties and stability in the high-temperature devices. By tuning the environment of the luminescence centers via chemical substitution, where the SLA host was modified by substitution of Ga in the Al site, the emission peak at 655 nm was successfully shifted to 630 nm, and enhanced its LER and efficiency up to 1.25 compared to SLA.
The narrowband red-emitting SLA was prepared by using solid-state reaction under high pressure. The crystal structure information was investigated by X-ray diffractometer and refined by TOPAS. To describe the relationship between the crystal structure and its luminous properties, the photoluminescence and the temperature-dependent photoluminescence properties were analyzed. To investigate the environments of the luminescence centers, time-resolved emission spectra and decay times at low temperature were measured, and the ultra violet-visible-Near Infrared device was used to evaluate the feasibility of the fabrication into WLED device.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:21:51Z (GMT). No. of bitstreams: 1
ntu-107-R05223179-1.pdf: 6284774 bytes, checksum: 0b8f733b2cf2f420a69ddfc08a71f7cd (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書
....................................................................................................
..I
誌謝..................................................................................................
.............................II
摘要..................................................................................................
........................... III
Abstract............................................................................................
.......................... IV
圖目錄.................................................................................................
..........................X
表目錄.................................................................................................
....................... XV
第一章 緒論
....................................................................................................
.............1
1.1
光之定義................................................................................................
..............1
1.2
視覺與顏色...............................................................................................
...........2
1.2.1
人眼..................................................................................................
.................2
1.2.2 光視效能(luminous efficacy of radiation; LER) .............................................3
1.2.3
演色性.................................................................................................
.............4
1.2.4 CIE(Commission internationale de l'éclairage)色度座標 ................................6
1.2.5
色溫..................................................................................................
.................8
1.3
照明史.................................................................................................
.................9
1.4 白光發光二極體(white light-emitting diodes; WLEDs) ..................................10
1.4.1 發光二極體歷史與原理.................................................................................10
1.4.2
發光二極體之分類.........................................................................................12
1.4.3 LED
市場發展................................................................................................
13
1.5
無機固態螢光材料............................................................................................
14
1.5.1
螢光粉放光機制.............................................................................................
14
1.5.2 無機固態螢光材料之組成.............................................................................15
1.6 影響螢光粉放光原理與定則............................................................................18
1.6.1 法蘭克-康頓原理與配位元座標圖(Franck-Condon principle and coordinate diagram)
....................................................................................................
...............19
1.6.2 零聲子線與斯托克位移(zero-phonon line and Stokes shift) ........................19
1.6.3 電子躍遷選擇率定則(selection rule) ............................................................20
1.6.4 電子雲散效應(nephelauxetic effect)..............................................................22
1.6.5 主體晶體場效應(crystal field effect).............................................................22
1.6.6 熱穩定性(thermal
stability)............................................................................24
1.6.7 濃度淬息機制(concentration quenching process) ........................................26
1.7
目的與動機...............................................................................................
.........27
1.7.1 紅色窄光譜氮化物螢光粉............................................................................27
1.7.2 SrLiAl3N4:Eu2+窄光譜氮化物螢光粉 ...........................................................28
1.7.3 SrLiAl3N4:Eu2+窄光譜氮化物螢光粉之優化 ...............................................29
1.7.4 SrLiAl3N4:Eu2+窄光譜氮化物螢光粉之光譜調控 .......................................30
第二章 合成與儀器分析原理 ...................................................................................32
2.1
化學藥品................................................................................................
............32
2.2 氮化物螢光粉之合成方法................................................................................33
2.2.1
固態反應合成法.........................................................................................33
2.2.2
實驗流程................................................................................................
.....34
2.2.3 氮化物螢光粉之封裝測試.........................................................................35
2.3
儀器分析................................................................................................
...........36
2.3.1
結構鑑定................................................................................................
........36
2.3.1.1 粉末X光繞射........................................................................................37
2.3.1.2 同步輻射粉末X光繞射........................................................................38
2.3.1.3結構精修(Refinement) ............................................................................39
2.3.2.1掃描式電子顯微鏡(scanning electron microscope; SEM) .....................41
2.3.2.2能量分散式X光光譜儀(Energy dispersive X-Ray spectrometer; EDS)..............................................................................................................................42
2.3.3 X光吸收近邊緣結構(X-Ray Absorption Near-Edge Structure; XANES) ...43
2.3.5 光譜分析........................................................................................................45
2.3.5.1 光激光譜儀(Photoluminescence spectrometer; PL) ............................45
2.3.5.2 光致發光絕對量子效率測量儀(Absolute PL Quantum Yield Measurement spectrometer; QE) .........................................................................46
2.3.5.3 變溫放射光譜(Temperature-dependent photoluminescence spectra; TDPL) ..................................................................................................................48
2.3.5.4 螢光壽命週期儀(Lifetime measurement)..............................................49
2.3.5.5 拉曼光譜儀(Raman spectrometer).........................................................50
2.3.6 紫外-可見-近紅外光譜分析系統(UV-vis near IR spectrometer) ................51
第三章結果與討論...................................................................................................53
3.1 SrLiAl3N4:Eu2+窄光譜氮化物螢光粉之優化..................................................53
3.1.2 使用助熔劑對SrLiAl3N4:Eu2+之影響.....................................................54
3.1.3 x mol% Ba-SLA之結構分析.....................................................................54 3.1.4 x mol% Ba-SLA之形貌分析.....................................................................57 3.1.5 x mol% Ba-SLA之放光光譜分析.............................................................58
3.1.6 x mol% Ba-SLA之絕對量子效率.............................................................60
3.1.7 x mol% Ba-SLA 之變溫光譜量測.............................................................61
3.1.8 x mol% Ba-SLA 之 CIE 色度座標 ............................................................62
3.2 SrLiAl3N4:Eu2+窄光譜氮化物螢光粉之光譜調控 ..........................................64
3.2.1 SrLi(GaxAl1-x)3N4:Eu2+之晶體結構分析 ...................................................65
3.2.2 SrLi(GaxAl1-x)3N4:Eu2+之光譜分析 ...........................................................69
3.2.3 SrLi(GaxAl1-x)3N4:Eu2+之穩定性 ...............................................................77
3.2.4 SrLi(GaxAl1-x)3N4:Eu2+之 X 光吸收近邊緣結構 ......................................78
3.2.5 SrLi(GaxAl1-x)3N4:Eu2+之光視效能 ...........................................................79
3.2.6 SrLi(GaxAl1-x)3N4:Eu2+之封裝應用 ...........................................................80
第四章 結論
....................................................................................................
...........83
參考資料................................................................................................
......................85
dc.language.isozh-TW
dc.subject氮化物螢光粉zh_TW
dc.subjectNitride Phosphoren
dc.title以化學取代調控紅色窄光譜氮化物螢光粉發光強度與波長zh_TW
dc.titleChemical Control of Intensity and Wavelength of Red-emitting Narrowband Nitride Phosphorsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊吉水,張合,葉耀宗,楊雅晴
dc.subject.keyword氮化物螢光粉,zh_TW
dc.subject.keywordNitride Phosphor,en
dc.relation.page88
dc.identifier.doi10.6342/NTU201800996
dc.rights.note有償授權
dc.date.accepted2018-06-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
6.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved