請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69615完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李定國 | |
| dc.contributor.author | Wei-Lin Tu | en |
| dc.contributor.author | 杜韋霖 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:21:10Z | - |
| dc.date.available | 2019-06-29 | |
| dc.date.copyright | 2018-06-29 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-06-22 | |
| dc.identifier.citation | [1] M. H. Hamidian, S. D. Edkins, C. K. Kim, J. C. Davis, A. P. Mackenzie, H. Eisaki, S. Uchida, M. J. Lawler, E. A. Kim, S. Sachdev, and K. Fujita. Atomic-scale electronic structure of the cuprate d-symmetry form factor density wave state. Nature Phys., 12:150–156, 2016.
[2] J. W. Alldredge, J. Lee, K. McElroy, M. Wang, K. Fujita, Y. Kohsaka, C. Taylor, H. Eisaki, S. Uchida, P. J. Hirschfeld, and J. C. Davis. Evolution of the electronic excitation spectrum with strongly diminishing hole density in superconducting Bi2Sr2CaCu2O8+x. Nature Phys., 4:319–326, 2008. [3] S. Kawasaki, C. Lin, P. L. Kuhns, A. P. Reyes, and G. Zheng. Carrierconcentration dependence of the pseudogap ground state of superconducting Bi2Sr2-xLaxCuO6+x revealed by 63;65Cu-nuclear magnetic resonance in very high magnetic fields. Phys. Rev. Lett., 105:137002, 2010. [4] Gap values near the two antinodes my differ by 10% for different nPDW states. This is probably the accuracy of the mean-filed theory. [5] J. G. Bednorz and K. A. Müller. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B, 64:189–193, 1986. [6] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett., 58:908, 1987. [7] H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano. A new high-Tc oxide superconductor without a rare earth element. Jpn. J. Appl. Phys., 27:L209–L210, 1988. [8] Z. Z. Sheng and A. M. Hermann. Bulk superconductivity at 120 K in the Tl-Ca/Ba-Cu-O system. Nature, 332:138–139, 1988. [9] A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott. Superconductivity above 130K in the Hg-Ba-Ca-Cu-O system. Nature, 363:56–58, 1993. [10] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity. Phys. Rev., 108:1175–1204, 1957. [11] N. F. Mott. The basis of the electron theory of metals, with special reference to the transition metals. Proceedings of the Physicl Society. Series A, 62:416, 1949. [12] P. W. Anderson. The resonating valence bond state in La2CuO4 and superconductivity. Science, 235:1196–1198, 1987. [13] K. Yamada, C. H. Lee, K. Kurahashi, J. Wada, S. Wakimoto, S. Ueki, H. Kimura, Y. Endoh, S. Hosoya, G. Shirane, R. J. Birgeneau, M. Greven, M. A. Kastner, and Y. J. Kim. Doping dependence of the spatially modulated dynamical spin correlations and the superconducting transition temperature in La2-xSrxCuO4. Phys. Rev. B, 57:6165, 1998. [14] P. Abbamonte, A. Rusydi, S. Smadici, G. D. Gu, G. A. Sawatzky, and D. L. Feng. Spatially modulated ‘Mottness’ in La2-xBaxCuO4. Nature Phys., 1:155–158, 2005. [15] Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis. An intrinsic bondcentered electronic glass with unidirectional domains in underdoped cuprates. Science, 315:1380–1385, 2007. [16] C. V. Parker, P. Aynajian, E. H. da Silva Neto, A. Pushp, S. Ono, J. Wen, Z. Xu, G. Gu, and A. Yazdani. Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor Bi2Sr2CaCu2O8+x. Nature, 486:677-680, 2010. [17] T. Wu, H. Mayaffre, S. Krämer, M. Horvatic, C. Berthier, W. N. Hardy, R. Liang, D. A. Bonn, and M. H. Julien. Magnetic-field-induced charge-stripe order in the high-temperature superconductor Y Ba2Cu3Oy. Nature, 477:191–194, 2011. [18] G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa, C. Mazzoli, N. B. Brookes, G. M. De Luca, A. Frano, D. G. Hawthorn, F. He, T. Loew, M. Moretti Sala, D. C. Peets, M. Salluzzo, E. Schierle, R. Sutarto, G. A. Sawatzky, E. Weschke, B. Keimer, and L. Braicovich. Long-range incommensurate charge fluctuations in (Y;Nd)Ba2Cu3O(6+x). Science, 337:821–825, 2012. [19] R. Comin, A. Frano, M. M. Yee, Y. Yoshida, H. Eisaki, E. Schierle, E. Weschke, R. Sutarto, F. He, A. Soumyanarayanan, Y. He, M. Le Tacon, I. S. Elfimov, J. E. Hoffman, G. A. Sawatzky, B. Keimer, and A. Damascelli. Charge order driven by Fermi-arc instability in Bi2Sr2−xLaxCuO6+x. Science, 343:390–392, 2014. [20] E. H. da Silva Neto, P. Aynajian, A. Frano, R. Comin, E. Schierle, E. Weschke, A. Gyenis, J. Wen, J. Schneeloch, Z. Xu, S. Ono, G. Gu, M. Tacon, and A. Yazdani. Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science, 343:393–396, 2014. [21] M. Hashimoto, G. Ghiringhelli, W. S. Lee, G. Dellea, A. Amorese, C. Mazzoli, K. Kummer, N. B. Brookes, B. Moritz, Y. Yoshida, H. Eisaki, Z. Hussain, T. P. Devereaux, Z. X. Shen, and L. Braicovich. Direct observation of bulk charge modulations in optimally doped Bi1.5Pb0.6Sr1.54CaCu2O8+x. Phys. Rev. B, 89:220511(R), 2014. [22] S. Blanco-Canosa, A. Frano, E. Schierle, J. Porras, T. Loew, M. Minola, M. Bluschke, E. Weschke, B. Keimer, and M. Le Tacon. Resonant X-ray scattering study of charge-density wave correlations in Y Ba2Cu3O6+x. Phys. Rev. B, 90:054513, 2014. [23] E. H. da Silva Neto, R. Comin, F. He, R. Sutarto, Y. Jiang, R. L. Greene, G. A. Sawatzky, and A. Damascelli. Charge ordering in the electron-doped superconductor Nd2-xCexCuO4. Science, 347:282–285, 2015. [24] W. D. Wise, M. C. Boyer, K. Chatterjee, , T. Kondo, T. Takeuchi, H. Ikuta, Yayu Wang, and E. W. Hudson. Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy. Nature Phys., 4:696–699, 2008. [25] T. Hanaguri, Y. Kohsaka, J. C. Davis, C. Lupien, I. Yamada, M. Azuma, M. Takano, K. Ohishi, M. Ono, and H. Takagi. Quasiparticle interference and superconducting gap in Ca2−xNaxCuO2Cl2. Nature Phys., 3:865–871, 2007. [26] R. Comin, R. Sutarto, F. He, E. H. da Silva Neto, L. Chauviere, A. Frano, R. Liang, W. N. Hardy, D. A. Bonn, Y. Yoshida, H. Eisaki, A. J. Achkar, D. G. Hawthorn, B. Keimer, G. A. Sawatzky, and A. Damascelli. Symmetry of charge order in cuprates. Nature Materials, 14:796–800, 2015. [27] A. J. Achkar, F. He, R. Sutarto, C. McMahon, M. Zwiebler, M. Hücher, G. D. Gu, R. Liang, D. A. Bonn, W. N. Hardy, J. Geck, and D. G. Hawthorn. Orbital symmetry of charge-density-wave order in La1:875Ba0:125CuO4 and YBa2Cu3O6:67. Nature Materials, 15:616–620, 2016. [28] K. Fujita, M. H. Hamidian, S. D. Edkins, C. K. Kim, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, H. Eisaki, S. Uchida, A. Allais, M. J. Lawler, E. A. Kim, S. Sachdev, and J. C. Davis. Direct phase-sensitive identification of a d-form factor density wave in underdoped cuprates. PNAS, 111:E3026–E3032, 2014. [29] K. Fujita, C. K. Kim, I. Lee, J. Lee, M. H. Hamidian, I. A. Firmo, S. Mukhopadhyay, H. Eisaki, S. Uchida, M. J. Lawler, E. A. Kim, and J. C. Davis. Simultaneous transitions in cuprate momentum-space topology and electronic symmetry breaking. Science, 344:612–616, 2014. [30] M. Hashimoto, I. Vishik, R. He, T. Devereaux, and Z. Shen. Energy gaps in hightransition-temperature cuprate superconductors. Nature Phys., 10:483–495, 2014. [31] F. C. Zhang and T.M. Rice. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B, 37:3759-3761, 1988. [32] A. Allais, J. Bauer, and S. Sachdev. Bond order instabilities in a correlated twodimensional metal. Phys. Rev. B, 90:155114, 2014. [33] M. Metlitski and S. Sachdev. Instabilities near the onset of spin density wave order in metals. New J. Phys., 12:105007, 2010. [34] M. Metlitski and S. Sachdev. Quantum phase transitions of metals in two spatial dimensions: II. Spin density wave order. Phys. Rev. B, 82:075128, 2010. [35] R. B. Laughlin. Hartree-Fock computation of the high-Tc cuprate phase diagram. Phys. Rev. B, 89:035134, 2014. [36] E. Fradkin, S. Kivelson, and J. Tranquada. Colloquium: Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys., 87:457–482, 2015. [37] E. Berg, E. Fradkin, S. Kivelson, and J. Tranquada. Striped superconductors: how spin, charge and superconducting orders intertwine in the cuprates. New J. Phys., 11:115004, 2009. [38] F. Loder, S. Graser, A. Kampf, and T. Kopp. Mean field pairing theory for the charge-stripe phase of high temperature cuprate superconductors. Phys. Rev. Lett., 107:187001, 2011. [39] P. A. Lee. Amperean pairing and the pseudogap phase of cuprate superconductors. Phys. Rev. X, 4:031017, 2014. [40] K. Yang, W. Chen, T. M. Rice, M. Sigrist, and F. C. Zhang. Nature of stripes in the generalized t-J model applied to the cuprate superconductors. New J. Phys., 11:055053, 2009. [41] A. Himeda, T. Kato, and M. Ogata. Stripe states with spatially oscillating d-wave superconductivity in the two-dimensional t-t′-J model. Phys. Rev Lett., 88:117001, 2002. [42] C. P. Chou and T. K. Lee. Mechanism of formation of half-doped stripes in underdoped cuprates. Phys. Rev. B, 81:060503, 2010. [43] C. P. Chou, N. Fukushima, and T. K. Lee. Cluster-glass wave function in the two dimensional extended t-J model. Phys. Rev. B, 78:134530, 2008. [44] A. Himeda and M. Ogata. Coexistence of dx2−y2 superconductivity and antiferromagnetism in the two- dimensional t-J model and numerical estimation of Gutzwiller factors. Phys. Rev B, 60:R9935–R9938, 1999. [45] M. Ogata and A. Himeda. Superconductivity and antiferromagnetism in an extended Gutzwiller approximation for t-J model: effect of double-occupancy exclusion. J. Phys. Soc. Japan, 72:374–391, 2003. [46] R. B. Christensen, P. J. Hirschfeld, and B. M. Anderson. Two routes to magnetic order by disorder in underdoped cuprates. Phys. Rev. B, 84:184511, 2011. [47] C. P. Chou and T. K. Lee. Inhomogeneous state of the extended t-J model on a square lattice: A variational Monte Carlo and Gutzwiller approximation study. Phys. Rev. B, 85:104511, 2012. [48] D. Poilblanc. Stability of inhomogeneous superstructures from renormalized meanfield theory of the t-J model. Phys. Rev. B, 72:060508, 2005. [49] S. White and D. J. Scalapino. Density matrix renormalization group study of the striped phase in the 2d t-J model. Phys. Rev. Lett., 80:1272–1275, 1998. [50] S. White and D. J. Scalapino. Pairing on striped t-t′-J lattices. Phys. Rev. B, 79:220504, 2009. [51] S. Sachdev and R. La Placa. Bond order in two-dimensional metals with antiferromagnetic exchange interactions. Phys. Rev. Lett., 111:027202, 2013. [52] J. C. Davis and D. H. Lee. Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity. PNAS, 110:17623-17630, 2013. [53] Y. Wang and A. Chubukov. Charge-density-wave order with momentum (2q; 0) and (0; 2q) within the spin-fermion model: Continuous and discrete symmetry breaking, preemptive composite order, and relation to pseudogap in hole-doped cuprates. Phys. Rev. B, 90:035149, 2014. [54] P. Corboz, T. M. Rice, and M. Troyer. Competing states in the t-J model: uniform d-wave state versus stripe state. Phys. Rev. Lett., 113:046402, 2014. [55] B. X. Zheng, C. M. Chung, P. Corboz, G. Ehlers, M. P. Qin, R. M. Noark, H .Shi, S. R. White, S. Zhang, and G. K. Lin. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science, 358:1155, 2017. [56] M. Gutzwiller. Effect of correlation on the ferromagnetism of transition metals. Phys. Rev. Lett., 10:159–162, 1963. [57] F. C. Zhang, C. Gros, T. M. Rice, and H. Shiba. A renormalized Hamiltonian approach to a resonant valence bond wavefunction. Supercond. Sci. Technol., 1:36–46, 1988. [58] M. Capello, M. Raczkowski, and D. Poilblanc. Stability of RVB hole stripes in high-temperature superconductors. Phys. Rev. B, 77:224502, 2008. [59] M. H. Hamidian, S. D. Edkins, S. H. Joo, A. Kostin, H. Eisaki, S. Uchida, M. J. Lawler, E. A. Kim, A. P. Mackenzie, K. Fujita nad J. Lee, and J. C. Davis. Detection of a Cooper-pair density wave in Ba2Sr2CaCu2O8+x. Nature, 532:343, 2016. [60] M. Vojta. Lattice symmetry breaking in cuprate superconductors: Stripes, nematics, and superconductivity. Adv. Phys., 58:699–820, 2009. [61] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen. From quantum matter to superconductivity in copper oxides. Nature, 518:179–186, 2015. [62] A. Shekhter, B. J. Ramshaw, R. Liang, W. N. Hardy, D. A. Bonn, F. F. Balakirev, R. D. McDonald, J. B. Betts, S. C. Riggs, and A. Migliori. Bounding the pseudogap with a line of phase transitions in Y Ba2Cu3O6+ . Nature, 498:75–77, 2013. [63] L. Zhao, C. A. Belvin, R. Liang anf D. A. Bonn, W. N. Hardy, N. P. Armitage, and D. Hsieh. A global inversion-symmetry-broken phase inside the pseudogap region of Y Ba2Cu3Oy. Nature Phys., 13:250–254, 2017. [64] P. Bourges and Y. Sidis. Novel magnetic order in the pseudogap state of high-Tc copper oxides superconductors. Comptes Rendus Physique, 12:461–479, 2011. [65] Y. Sato, S. Kasahara, H. Murayama, Y. Kasahara, E. G. Moon, T. Nishizaki, T. Loew, J. Porras, B. Keimer, T. Shibauchi, and Y. Matsuda. Thermodynamic evidence for a nematic phase transition at the onset of the pseudogap in YBa2Cu3Oy. Nature Phys., 13:1074–1078, 2017. [66] R. Comin, R. Sutarto, E. H. da Silva Neto, L. Chauviere, R. Liang, Hardy W, N, D. A. Bonn, F. He, G. A. Sawatzky, and A. Damascelli. Broken translational and rotational symmetry via charge stripe order in underdoped YBa2Cu3O6+y. Science, 347:1335–1339, 2015. [67] J. Wu, A. T. Bollinger, X. He, and I. Bo zovi c. Spontaneous breaking of rotational symmetry in copper oxide superconductors. Nature, 547:432–435, 2017. [68] R. Comin and A. Damascelli. Resonant X-ray scattering studies of charge order in cuprates. Ann. Rev. Condensed Matter Phys., 7:369–405, 2016. [69] A. Yazdani, E. H. da Silva Neto, and P. Aynajian. Spectroscopic imaging of strongly correlated electronic states. Ann. Rev. Condensed Matter Phys., 7:11–33, 2016. [70] D. H. Torchinsky, F. Mahmood, A. T. Bollinger, I. Bozovic, and N. Gedik. Fluctuating charge-density waves in a cuprate superconductor. Nature Materials, 12:387–391, 2013. [71] J. R. Kirtley, C. C. Tsuei, A. Ariando, C. J. M. Verwijs, S. Harkema, and J. W. M. Hilgenkamp. Angle-resolved phase-sensitive determination of the in-plane gap symmetry in YBa2Cu3O7-x. Nature Phys., 2:190–194, 2006. [72] C. C. Tsuei, J. R. Kirtley, G. Hammerl, J. Mannhart, and H. Raffy abd Z. Z. Li. Robust dx2-y2 pairing symmetry in hole-doped cuprate superconductors. Phys. Rev. Lett., 93:187004, 2004. [73] W. W. Warren Jr., R. E. Walstedt, G. F. Brennert, R. J. Cava, R. Tycko, R. F. Bell, and G. Dabbagh. Cu spin dynamics and superconducting precursor effects in planes above Tc in Y Ba2Cu3O6:7. Phys. Rev. Lett., 62:1193–1196, 1989. [74] T. Timusk and B. Statt. The pseudogap in high-temperature superconductors: An experimental survey. Rep. Prog. Phys., 62:61–122, 1999. [75] D. S. Marshall, D. S. Dessau, A. G. Loeser, C. H. Park, A. Y. Matsuura, J. N. Eckstein, I. Bozovic, P. Fournier, A. Kapitulnik, W. E. Spicer, and Z. X. Shen. Unconventional electronic structure evolution with hole doping in Bi2Sr2CaCu2O8+x: Angle-resolved photoemmision results. Phys. Rev. Lett., 76:4841–4844, 1996. [76] A. G. Loeser, Z. X. Shen, D. S. Dessau, D. S. Marshall, C. H. Park, P. Fournier, and A. Kapitulnik. Excitation gap in the normal state of underdoped Bi2Sr2CaCu2O8+x. Science, 273:325–329, 1996. [77] H. Ding, T. Yokoya, J. C. Campuzano, T. Takahashi, M. Randeria, M. R. Norman, T. Mochiku, K. Kadowaki, and J. Giapintzakis. Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors. Nature, 382:51–54, 1996. [78] A. Kanigel, M. R. Norman, M. Randeria, U. Chatterjee, S. Souma, A. Kaminski, H. M. Fretwell, S. Rosenkranz, M. Shi, T. Sato, T. Takahashi, Z. Z. Li, H. Raffy, K. Kadowaki, D. Hinks, L. Ozyuzer, and J. C. Campuzano. Evolution of the pseudogap from Fermi arcs to the nodal liquid. Nature Phys., 2:447–451, 2006. [79] K. Nakayama, T. Sato, Y. Sekiba, K. Terashima, P. Richard, T. Takahashi, K. Kudo, N. Okumura, T. Sasaki, and N. Kobayashi. Evolution of a pairing-induced pseudogap from the superconducting gap of (Bi;Pb)2Sr2CuO6. Phys. Rev. Lett., 102:227006, 2009. [80] N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J. B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature, 447:565–568, 2007. [81] A. F. Bangura, J. D. Fletcher, A. Carrington, J. Levallois, M. Nardone, B. Vignolle, P. J. Heard, N. Doiron-Leyraud, D. LeBoeuf, L. Taillefer, S. Adachi, C. Proust, and N. E. Hussey. Small fermi surface pockets in underdoped high temperature superconductors: Observation of Shubnikov-de Haas oscillations in YBa2Cu4O8. Phys. Rev. Lett., 100:047004, 2008. [82] R. H. He, M. Hashimoto, H. Karapetyan, J. D. Koralek, J. P. Hinton, J. P. Testaud, V. Nathan, Y. Yoshida, H. Yao, K. Tanaka, W. Meevasana, R. G. Moore, D. H. Lu, S. K. Mo, M. Ishikado, H. Eisaki, Z. Hussain, T. P. Devereaux, S. A. Kivelson, J. Orenstein, A. Kapitulnik, and Z. X. Shen. From a single-band metal to a hightemperature superconductor via two thermal phase transitions. Science, 331:1579–1583, 2011. [83] S. Huefner, M. A. Hossain, A. Damascelli, and G. A. Sawatzky. Two gaps make a high-temperature superconductor? Rep. Prog. Phys., 71:062501, 2008. [84] P. A. Lee, N. Nagaosa, and X. G. Wen. Doping a Mott insulator: Physics of hightemperature superconductivity. Rev. Mod. Phys., 78:17, 2006. [85] A. I. Larkin and Y. N. Ovchinnikov. Nonuniform state of superconductors. Sov. Phys.-JETP, 20:762, 1965. [86] P. Fulde and R. A. Ferrell. Superconductivity in a strong spin-exchange field. Phys. Rev., 135:A550, 1964. [87] E. Berg, E. Fradkin, and S. A. Kivelson. Theory of the striped superconductor. Phys. Rev. B, 79:064515, 2009. [88] E. Berg, E. Fradkin, and S. A. Kivelson. Charge-4e superconductivity from pair density-wave order in certain high-temperature superconductors. Nature Phys., 5:830–833, 2009. [89] D. Podolsky, E. Demler, K. Damle, and B. I. Halperin. Translational symmetry breaking in the superconducting state of the cuprates: Analysis of the quasiparticle density of states. Phys. Rev. B, 67:094514, 2003. [90] H. D. Chen, O. Vafek, A. Yazdani, and S. C. Zhang. Pair density wave in the pseudogap state of high temperature superconductors. Phys. Rev. Lett., 93:187002, 2004. [91] K. B. Efetov and C. Pépin. Pseudogap state near a quantum critical point. Nature Phys., 9:442–446, 2013. [92] Y. Wang, D. F. Agterberg, and A. Chubukov. Coexistence of charge-density-wave and pair-density-wave orders in underdoped cuprates. Phys. Rev. Lett., 114:197001, 2015. [93] E. Berg, E. Fradkin, E. A. Kim, S. A. Kivelson, V. Oganesyan, J. M. Tranquada, and S. C. Zhang. Dynamical layer decoupling in a stripe-ordered high-Tc superconductor. Phys. Rev. Lett., 99:127003, 2007. [94] D. Agterberg and H. Tsunetsugu. Dislocations and vortices in pair-density-wave superconductors. Nature Phys., 4:639–642, 2008. [95] S. Baruch and D. Orgad. Spectral signatures of modulated d-wave superconducting phases. Phys. Rev. B, 77:174502, 2008. [96] D. R. Hofstadter. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B, 14:2239, 1976. [97] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett., 111:185301, 2013. [98] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett., 111:185302, 2013. [99] C. J. Kennedy, W. C. Burton, W. C. Chung, and W. Ketterle. Observation of Bose-Einstein condensation in a strong synthetic magnetic field. Nature Phys., 11:859-864, 2015. [100] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N. Goldman. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nature Phys., 11:162–166, 2015. [101] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, and L. Fallani. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science, 349:1510–1513, 2015. [102] B. K. Stuhl, H. I. Lu, L. M. Aycock, D. Genkina, and I. B. Spielman. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science, 349:1514–1518, 2015. [103] N. R. Cooper and J. Dalibard. Reaching fractional quantum Hall states with optical flux lattices. Phys. Rev. Lett., 110:185301, 2013. [104] N. Goldman, J. C. Budich, and P. Zoller. Topological quantum matter with ultracold gases in optical lattices. Nature Physics, 12:639–645, 2016. [105] M. Lacki, H. Pichler, A. Sterdyniak, A. Lyras, V. E. Lembessis, O. Al-Dossary, J. C. Budich, and P. Zoller. Quantum Hall physics with cold atoms in cylindrical optical lattices. Phys. Rev. A, 93:013604, 2016. [106] T. H. Hansson, M. Hermanns, S. H. Simon, and S. F. Viefers. Quantum Hall physics: Hierarchies and conformal field theory techniques. Rev. Mod. Phys., 89:025005, 2017. [107] A. S. Sørensen, E. Demler, and M. D. Lukin. Fractional quantum Hall states of atoms in optical lattices. Phys. Rev. Lett., 94:086803, 2005. [108] M. Hafezi, A. S. Sørensen, E. Demler, and M. D. Lukin. Fractional quantum Hall effect in optical lattices. Phys. Rev. A, 76:023613, 2007. [109] G. Möller and N. R. Cooper. Composite fermion theory for bosonic quantum Hall states on lattices. Phys. Rev. Lett., 103:105303, 2009. [110] A. Sterdyniak, N. Regnault, and G. Möller. Particle entanglement spectra for quantum Hall states on lattices. Phys. Rev. B, 86:165314, 2012. [111] I. Affleck and J. B. Marston. Large-n limit of the Heisenberg-Hubbard model: Implications for high-Tc superconductors. Phys. Rev. B, 37:R3774, 1988. [112] J. B. Marston and I. Affleck. Large-n limit of the Hubbard-Heisenberg model. Phys. Rev. B, 39:11538, 1989. [113] G. Kotliar. Resonating valence bonds and d-wave superconductivity. Phys. Rev. B, 37:3664, 1988. [114] P. Lederer, D. Poilblanc, and T. M. Rice. Superconductivity from commensurate flux phases. Phys. Rev. Lett., 63:1519, 1989. [115] F. Nori, E. Abrahams, and G. T. Zimanyi. Generalized flux states of the t-J model. Phys. Rev. B, 41:R7277, 1990. [116] M. Gerster, M. Rizzi, P. Silvi, M. Dalmonte, and S. Montangero. Fractional quantum Hall effect in the interacting Hofstadter model via tensor networks. Phys. Rev. B, 96:195123, 2017. [117] D. Poilblanc, Y. Hasegawa, and T. M. Rice. Numerical study of flux phases in the t-J model. Phys. Rev. B, 41:1949, 1990. [118] E. Ercolessi, P. Pieri, and M. Roncaglia. Phase separation and three-site hopping in the 2-dimensional t-J model. Phys. Lett. A, 233:451, 1997. [119] P. Choubey, T. Berlijn, A. Kreisel, C. Cao, and P. J. Hirschfeld. Visualization of atomic-scale phenomena in superconductors: Application to FeSe. Phys. Rev. B, 90:134520, 2014. [120] A. A. Mostofi, J. R. Yates, G. Pizzi, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari. An updated version of wannier90: A tool for obtaining maximallylocalised Wannier functions. Comput. Phys. Commun., 185:2309–2310, 2014. [121] A. Kreisel, P. Choubey, T. Berlijn, W. Ku, B. M. Anderson, and P. J. Hirschfeld. Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates. Phys. Rev. Lett., 114:217002, 2015. [122] M. Schmid, B. M. Anderson, A. P. Kampf, and P. J. Hirschfeld. d-wave superconductor as a catalyst for antiferromagnetism in underdoped cuprates. New J. Phys., 12:053043, 2010. [123] D. Green, L. Santos, and C. Chamon. Isolated flat bands and spin-1 conical bands in two-dimensional lattices. Phys. Rev. B, 82:075104, 2010. [124] W. L.. McMillan. Theory of discommensurations and the commensurateincommensurate charge-density-wave phase transition. Phys. Rev. B, 14:1469–1502, 1976. [125] A. Mesaros. Commensurate 4a0-period charge density modulations throughout the Bi2Sr2CaCu2O8+x pseudogap regime. PNAS, 113:12661, 2016. [126] S. A. Kivelson, I. P. Bindloss, E. Fradkin, V. Oganesyan, J. M. Tranquada, A. Kapitulnik, and C. Howald. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys., 75:1201, 2003. [127] H. Jang, W. S. Lee, H. Nojiri, S. Matsuzawa, H. Yasumura, L. Nie, A. V. Maharaj, S. Gerber, Y. J. Liu, A. Mehta, D. A. Bonn, R. Liang, W. N. Hardy, C. A. Burns, Z. Islam, S. Song, J. Hastings, T. P. Devereaux, Z. X. Shen, S. A. Kivelson, C. C. Kao, D. Zhu, and J. S. Lee. Three-dimensional charge density wave order in YBa2Cu3O6.67 at high magnetic fields. Science, 350:949–952, 2015. [128] H. Jang, W. S. Lee, H. Nojiri, S. Matsuzawa, H. Yasumura, L. Nie, A. V. Maharaj, S. Gerber, Y. J. Liu, A. Mehta, D. A. Bonn, R. Liang, W. N. Hardy, C. A. Burns, Z. Islam, S. Song, J. Hastings, T. P. Devereaux, Z. X. Shen, S. A. Kivelson, C. C. Kao, D. Zhu, and J. S. Lee. Ideal charge-density-wave order in the high-field state of superconducting ybco. PNAS, 113:14645–14650, 2016. [129] E. M. Forgan, E. Blackburn, A. T. Holmes, A. K. R. Briffa, J. Chang, L. Bouchenoire, S. D. Brown, R. Liang, D. Bonn, W. N. Hardy, N. B. Christensen, M. V. Zimmermann, M. Hucker, and S. M. Hayden. The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by X-ray diffraction. Nature Comm., 6:10064, 2015. [130] I. M. Vishik, M. Hashimoto, R. H. He, W. S. Lee, F. Schmitt, D. Lu, R. G. Moore, C. Zhang, W. Meevasana, T. Sasagawa, S. Uchida, K. Fujita, S. Ishida, M. Ishikado, Y. Yoshida, H. Eisaki, Z. Hussain, T. P. Devereaux, and Z. X. Shen. Phase competition in trisected superconducting dome. PNAS, 109:18332–18337, 2012. [131] K. Y. Yang, C. T. Shih, C. P. Chou, S. M. Huang, T. K. Lee, and F. C. Zhang. Low energy physical properties of high-Tc superconducting Cu oxides: A comparison between the resonating valence bond and experiments. Phys. Rev. B, 73:224513, 2006. [132] E. W. Huang, C. B. Mendl, S. Liu, S. Johnson, H. C. Jiang, B. Moritz, and T. P. Devereaux. Numerical evidence of fluctuating stripes in the normal state of high-Tc cuprate superconductors. Science, 358:1161–1164, 2017. [133] Z. A. Xu, N. P. Ong, Y. Wang, and T. Kakeshita nad S. Uchida. Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2-xSrxCuO4. Nature, 406:486–488, 2000. [134] P. W. Anderson. Last words on the cuprates. arXiv, 1612:03919, 2016. [135] J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensne, J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. V. Zimmermann, E. M. Forgen, and S. M. Hayden. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nature Phys., 8:871–876, 2012. [136] T. Wu, H. Mayaffre, S. Kramer, M. Horvatic, C. Berthier, P. L. Kuhns, A. P. Reyes, R. Liang, W. N. Hardy, D. A. Bonn, and M. H. Julien. Emergence of charge order from the vortex state of a high-temperature superconductor. Nature Comm., 4:2113, 2013. [137] S. Blanco-Canosa nad A. Frano, T. Loew, Y. Lu, J. Porras, G. Ghiringhelli, M. Minola, C. Mazzoli, L. Braicovich, E. Schierle, E. Weschke, M. Le Tacon, and B. Keimer. Momentum-dependent charge correlations in YBa2Cu3O6+x superconductors probed by resonant X-ray scattering: Evidence for three competing phases. Phys. Rev. Lett., 110:187001, 2013. [138] S. D. Edkins, A. Kostin, K. Fujita, A. P. Mackenzie, H. Eisaki, S. Uchida and S. Sachdev, M. J. Lawler, E. A. Kim, J. C. Davis, and M. H. Hamidian. Magnetic field induced pair density wave state in the cuprate vortex halo. arXiv, 1802:04673, 2018. [139] S. Kawasaki, Z. Li, M. Kitahashi, C. T. Lin, P. L. Kuhns, A. P. Reyes, and G. Zheng. Charge-density-wave order takes over antiferromagnetism in Bi2Sr2-xLaxCuO6 superconductors. Nature Comm., 8:1267, 2017. [140] P. W. Anderson, B. S. Shastry, and D. Hristopulos. Class of variational singlet wave functions for the hubbard model away from half filling. Phys. Rev. B, 40:8939, 1989. [141] X. G. Wen, F. Wilczek, and A. Zee. Chiral spin states and superconductivity. Phys. Rev. B, 39:11413–11423, 1989. [142] A. Wietek, A. Sterdyniak, and A. M. Läuchli. Nature of chiral spin liquids on the kagome lattice. Phys. Rev. B, 92:125122, 2015. [143] A. Wietek and A. M. Läuchli. Chiral spin liquid and quantum criticality in extended s = 1/2 Heisenberg models on the triangular lattice. Phys. Rev. B, 95:035141, 2017. [144] X. G. Wen and Q Niu. Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces. Phys. Rev. B, 41:9377, 1990. [145] M. Claassen, C. H. Lee, R. Thomale, X. L. Qi, and T. P. Devereaux. Position momentum duality and fractional quantum hall effect in Chern insulators. Phys. Rev. Lett., 114:236802, 2015. [146] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. denNijs. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49:405, 1982. [147] Q. Niu, D. J. Thouless, and Y.-S. Wu. Quantized hall conductance as a topological invariant. Phys. Rev. B, 31:3372, 1985. [148] Didier Poilblanc. Twisted boundary conditions in cluster calculations of the optical conductivity in two-dimensional lattice models. Phys. Rev. B, 44:9562–9581, Nov 1991. [149] T. Fukui, Y. Hatsugai, and H. Suzuki. Chern numbers in discretized brillouin zone: Efficient method of computing (spin) hall conductances. J. Phys. Soc. Jpn., 74:1674, 2005. [150] S. Badoux, W. Tabis, F. Laliberté, G. Grissonnanche, B. Vignolle, D. Vignolles, J. Beard, D. A. Bonn, W. N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust. Change of carrier density at the pseudogap critical point of a cuprate superconductor. Nature, 531:210, 2016. [151] T. Esslinger. Fermi-hubbard physics with atoms in an optical lattice. Ann. Rev. of Condens. Matter Phys., 1:129, 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69615 | - |
| dc.description.abstract | 本篇論文致力於使用強關聯電子模型之t-J漢密頓量來了解物質之微觀行為,關於解釋強關聯之哈伯模型與其之極限對應的t-J模型有一長久以為無法解決的問題為,我們無法用解析解完美詮釋此量子模型;因此,在探討此模型時數值解便變得極為重要,在此篇論文中,我們利用重整化平均場論近似(RMFT)之數值理論來探討t-J模型的可能詮釋,歸功於Gutzwiller的發現,我們將可以把此模型中最困難之部分:電子的強關聯性重整化為係數置於模型前,在得到這些相關係數後,我們將可以利用平均場論的方法來對角化此一模型以便取得其本徵函數,此一方法為此一論文之標準方法。
接下來,我們關心的物理情境分為兩大類,第一類為高溫超導體之研究;在其最初發現於1987年以來已經過了30年,但科學家們仍無法為其定調,但隨著實驗器具的精準度上升,我們越來越能清楚得知其在微觀下的表現,這有助於幫助理論學家針對其建立一完整模型,但同時也增加其困難因為要預想一合理之模型能夠完整解釋所有實驗驗結果並非易事;我們的計算結果取得了許多數據,一一與實驗對比的結果發現兩者之契合度非常之高,這也是我們對此模型抱有高度信心之原因,詳細的比較結果將會在文中一一詳列。 第二類我們感興趣之系統為電子在強磁場作用之下的運動,霍夫斯塔德蝴蝶與哈伯 -霍夫斯塔德模型在自由電子於強磁場下在晶格內之運動給了一完整描述,因此,探討同樣之運動唯電子具有關聯性便成為一有趣課題,而我們的t-J模型在動能項增加一相位後,便成為一個用來探討此物理情境的可靠模型;在此一研究之中,為了能更好得比較計算結果,我們的合作者採用了另一數值方法:完整對角化,我們將會比較這兩種方法所計算出之結果並強調其可驗證性於未來之冷原子實驗中。 | zh_TW |
| dc.description.abstract | This thesis is aiming in utilizing the strongly correlated t-J Hamiltonian for better understanding the microscopic pictures of certain condensed matter scenario. One of the long existing issues in the Hubbard model and its extreme version, t-J model, lies in the fact that there is not an analytical way of solving them. Therefore, when dealing with these models, numerical approaches become very crucial. In this thesis, we will present one of the methods called renormalized mean-field theory(RMFT) and exploit it upon the t-J model. Thanks to the concept proposed by Gutzwiller, all we have to do is to try to include the correlation of electrons, which is mainly the most difficult part, with several renormalization factors. After obtaining the correct form of these factors, we can apply the routine mean-field theory in solving for the Hamiltonian, which is the principle methodology throughout this thesis.
Next, the physical systems that we are interested in consist of two parts. The mystery of High-Tc superconductivity comes first. After 30 years of its discovery, people still cannot settle down a complete microscopic theory in describing this exotic phenomenon. However, with more and more experimental equipment with higher accuracy nowadays, lots of behavior of copper oxide superconductor(also known as cuprate) have been revealed. Those discoveries can definitely help us better understand its microscopic mechanism. Therefore, from the theoretical side, to compare the calculated data with experiments leads us to know whether our theory is on the right track or not. We have produced tons of data and made a decent comparison which will be shown in the main text. The second system we are curious about is the mechanism of electrons under magnetic field. The Hofstadter butterfly along with its Hamiltonian, the Harper-Hofstadter model has achieved great success in describing free electrons’ movement with lattice present. Thus, it will be also interesting to ask the question: what will happen if the electrons are correlated. Our RMFT for t-J Hamiltonian, by adding an additional phase in the hopping term, happens to serve as a great preliminary model for answering this question. We will compare the results of ours with our collaborators, who solved this model by a different approach, the exact diagonalization(ED). Together with our calculations, we proposed several discoveries which might be realized by the cold atom experiments in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:21:10Z (GMT). No. of bitstreams: 1 ntu-107-F01222026-1.pdf: 10126360 bytes, checksum: 2f2708787db3c082bb7b119f67e4aa0a (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書iii
Acknowledgements v Abstract ix 摘要xi Résumé xiii List of Abbreviations xv 1 Introduction 1 1.1 High-Tc copper oxide superconductivity . . . . . . . . . . . . . . . . . . 1 1.1.1 The density waves . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 The pseudo-gap phase . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Correlated electrons under strong magnetic field . . . . . . . . . . . . . 11 2 Renormalized Mean Field Theory 15 2.1 BdG equation of mean-field Hamiltonian . . . . . . . . . . . . . . . . . 15 2.2 Green’s function and LDOS . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Spectra weight and many-body Chern number . . . . . . . . . . . . . . 24 3 Results I – High Tc Cuprate 27 3.1 Real space properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.1 Charge-ordered patterns . . . . . . . . . . . . . . . . . . . . . . 27 3.1.2 Continuum LDOS . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.3 Bias and doping dependence . . . . . . . . . . . . . . . . . . . . 37 3.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Momentum space properties . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.1 Particle-hole asymmetry . . . . . . . . . . . . . . . . . . . . . . 43 3.2.2 Two-gap in the SC phase . . . . . . . . . . . . . . . . . . . . . 46 3.2.3 Finite temperature IPDW states . . . . . . . . . . . . . . . . . . 47 3.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3 Some details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.1 Method to determine kG . . . . . . . . . . . . . . . . . . . . . . 56 3.3.2 Two-gap plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.3 Choices of Gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.4 Fermi arcs and LDOS . . . . . . . . . . . . . . . . . . . . . . . 58 4 Results II – Correlated Electrons Under Magnetic Field 61 4.1 Uniform and modulated singlet flux phase . . . . . . . . . . . . . . . . . 62 4.2 Fully polarized electron systems . . . . . . . . . . . . . . . . . . . . . . 68 4.3 Topological properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5 Conclusions and Outlooks 73 Bibliography 77 A Exact Diagonalization 97 A.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 A.2 Many-body Chern number . . . . . . . . . . . . . . . . . . . . . . . . . 97 A.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 B Induced Topological-Trivial Transition 101 | |
| dc.language.iso | en | |
| dc.subject | t-J 模型 | zh_TW |
| dc.subject | 高溫超導體 | zh_TW |
| dc.subject | 拓譜相 | zh_TW |
| dc.subject | RMFT | zh_TW |
| dc.subject | 強關聯系統 | zh_TW |
| dc.subject | RMFT | en |
| dc.subject | t-J model | en |
| dc.subject | Strongly correlated systems | en |
| dc.subject | Topological phase | en |
| dc.subject | High-Tc superconductivity | en |
| dc.title | 重整化平均場論在新穎量子材料上之應用 | zh_TW |
| dc.title | Utilization of Renormalized Mean-Field Theory upon
Novel Quantum Materials | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 牟中瑜,高英哲,仲崇厚,Titus Neupert | |
| dc.subject.keyword | 強關聯系統,t-J 模型,RMFT,高溫超導體,拓譜相, | zh_TW |
| dc.subject.keyword | Strongly correlated systems,t-J model,RMFT,High-Tc superconductivity,Topological phase, | en |
| dc.relation.page | 104 | |
| dc.identifier.doi | 10.6342/NTU201801046 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-06-25 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 9.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
