Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69610
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳嘉文(Chia-Wen(Kevin)
dc.contributor.authorYing-Hui Chenen
dc.contributor.author陳瀅惠zh_TW
dc.date.accessioned2021-06-17T03:21:00Z-
dc.date.available2023-06-26
dc.date.copyright2018-06-26
dc.date.issued2018
dc.date.submitted2018-06-22
dc.identifier.citation1. H. Li, M. Eddaoudi, M. O'Keeffe and O. M. Yaghi, Design and synthesis of an
exceptionally stable and highly porous metal-organic framework, Nature,1999, 402, 276–279.
2. O. M. Yaghi and H. Li, Hydrothermal Synthesis of a Metal-Organic Framework
Containing Large Rectangular Channels, J. Am. Chem. Soc., 1995, 117, 10401–10402.
3. J. L. Rowsell, E. C. Spencer, J. Eckert, J. A. Howard and O. M. Yaghi, Gas
adsorption sites in a large-pore metal-organic framework., Science, 2005, 309, 1350-1354.
4. S. Ma and H.-C. Zhou, A Metal−Organic Framework with Entatic Metal Centers Exhibiting High Gas Adsorption Affinity, J. Am. Chem. Soc., 2006, 128, 11734–11735.
5. J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyena and J. T. Hupp, Metal–organic framework materials as catalysts, Chem. Soc. Rev., 2009, 38, 1450-1459 .
6. C. Y. Sun, S. X. Liu, D. D. Liang, K. Z. Shao, Y. H. Ren and Z. M. Su, Highly Stable Crystalline Catalysts Based on a Microporous Metal−Organic Framework and Polyoxometalates, J. Am. Chem. Soc., 2009, 131, 1883–1888.
7. Y. S. Li, F. Y. Liang, H. Bux, A. Feldhoff, W. S. Yang and J. Caro, Molecular Sieve Membrane: Supported Metal–Organic Framework with High Hydrogen Selectivity, Angew. Chem. Int. Ed. Engl., 2010, 122, 548-561.
8. J. R. Li, Y. Ma, M. C. McCarthy, J. Sculleya, J. Yub, H. K. Jeong, P. B. Balbuena
and H. C. Zhoua, Carbon dioxide capture-related gas adsorption and separation in
metal-organic frameworks, Coordination Chemistry Reviews, 2011, 255, 1791–
1823.
9. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne and J. T. Hupp, Metal–Organic Framework Materials as Chemical Sensors, Chem. Rev., 2012, 112, 1105–1125.
10. A. Morozana and F. Jaouen, Metal organic frameworks for electrochemical applications, Energy Environ. Sci., 2012, 5, 9269-9290.
11. J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti,S. Bordiga and K. P. Lillerud, A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability, J. Am. Chem. Soc., 2008, 130, 13850–13851
12. M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino and K. P. Lillerud, Synthesis and Stability of Tagged UiO-66 Zr-MOFs, Chem. Mater., 2010, 22 , 6632–6640.
13. M. R. DeStefano, T. Islamoglu, S. J. Garibay, J. T. Hupp and O. K. Farha, Room Temperature Synthesis of UiO-66 and the Thermal Modulation of Densities of Defect Sites, Chem. Mater., 2017, 29, 1357–1361.
14. Z. Hu and D. Zhao, De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal–organic frameworks and membrane materials, Dalton Trans., 2015, 44, 19018-19040.
15. Y. Zhang and S. N. Riduan, Functional porous organic polymers for heterogeneous catalysis, Chem. Soc. Rev., 2012, 41, 2083–2094.
16. W. M. H. Sachtler and Z. Zhang, Zeolite-Supported Transit ion Metal Catalysts,
Adv. Catal., 1993, 39, 129-220.
17. M. C. Capel-Sanchez, J. M. Campos-Martin, J. L. G. Fierro, M. P. de Frutosb and A. Padilla Polo, Effective alkene epoxidation with dilute hydrogen peroxide on amorphous silica-supported titanium catalysts, Chem. Commun., 2000, 855–856.
18. C.-D. Wu and M. Zhao, Incorporation of Molecular Catalysts in Metal–Organic Frameworks for Highly Efficient Heterogeneous Catalysis, Adv. Mater., 2017, 29, 1605446.
19. G. Lu, S. Z. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Y. Qi, Y. Wang, X. Wang, S. Y. Han, X. G. Liu, J. S. DuChene, H. Zhang, Q. C. Zhang, X. D. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. H. Yang, J. T. Hupp and F. W. Huo, Nat. Chem., 2012, 4, 310–316.
20. Q. L. Zhu, W. Xia, T. Akita, R. Zou and Q. Xu, Metal‐Organic Framework‐Derived Honeycomb‐Like Open Porous Nanostructures as Precious‐Metal‐Free Catalysts for Highly Efficient Oxygen Electroreduction, Adv. Mater., 2016, 28, 6391-6398.
21. R. Das, P. Pachfule, R. Banerjee and P. Poddar, Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides, Nanoscale, 2012, 4, 591-599.
22. W. Cho, S. Park and M. Oh, Coordination polymer nanorods of Fe-MIL-88B and their utilization for selective preparation of hematite and magnetite nanorods, Chem. Commun., 2011, 47, 4138-4140.
23. J. Wei, Y. Liang, Y. Hu, B. Kong, J. Zhang, Q. Gu, Y. Tong, X. Wang, S. P. Jiang and H. Wang, Hydrothermal Synthesis of Metal–Polyphenol Coordination Crystals and Their Derived Metal/N‐doped Carbon Composites for Oxygen Electrocatalysis, Angew. Chem. Int. Ed., 2016, 55, 12470-12474.
24. J. Tang, R. R. Salunkhe, J. Liu, N. L. Torad, M. Imura, S. Furukawa and Y. Yamauchi, Thermal conversion of core–shell metal–organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon, J. Am. Chem. Soc., 2015, 137, 1572-1580.
25. W. Xia, R. Q. Zou, L. An, D. G. Xia and S. J. Guo, A metal–organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction, Energy Environ. Sci., 2015, 8, 568–576.
26. Y. Wang, C. Wang, Y. Wang, H. Liu and Z. Huang, Superior sodium-ion storage performance of Co3O4@nitrogen-doped carbon: derived from a metal–organic framework, J. Mater. Chem. A, 2016, 4, 5428-5435.
27. Y. B. Huang, J. Liang, X. S. Wang and R. Cao, Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions, Chem. Soc. Rev., 2017, 46, 126-157.
28. U. P. N. Tran, K. K. A. Le and N. T. S. Phan, Expanding Applications of Metal−Organic Frameworks: Zeolite Imidazolate Framework ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction, ACS Catal., 2011, 1, 120–127.
29. F. Vermoortele, R. Ameloot, A. Vimont, C. Serrec and D. De Vos, An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation, Chem. Commun., 2011, 47, 1521–1523.
30. F. Song, C. Wang, J. M. Falkowski, L. Ma and W. Lin, Isoreticular Chiral Metal−Organic Frameworks for Asymmetric Alkene Epoxidation: Tuning Catalytic Activity by Controlling Framework Catenation and Varying Open Channel Sizes, J. Am. Chem. Soc., 2010, 132, 15390–15398.
31. A. Dhakshinamoorthy, M. A. Asiri and H. Garcia, Metal-organic frameworks as heterogeneous catalysts in liquid phase reactions: Why are they so exceptional?, Chim. Oggi, 2015, 33, 40−45.
32. W. Zhang, G. Lu, C. Cui, Y. Liu, S. Li, W. Yan, C. Xing, Y. R. Chi, Y. Yang and F. Huo, A Family of Metal-Organic Frameworks Exhibiting Size-Selective Catalysis with Encapsulated Noble-Metal Nanoparticles, Adv. Mater., 2014, 26, 4056-4060.
33. J. Long, S. Wang, Z. Ding, S. Wang, Y. Zhou, L. Huang and X. Wang, Amine-functionalized zirconium metal-organic framework as efficient visible-light photocatalyst for aerobic organic transformations, Chem. Commun., 2012, 48, 11656-11658.
34. J.-D. Xiao, Q. Shang, Y. Xiong, Q. Zhang, Y. Luo, S.-H. Yu and H.-L. Jiang, Boosting Photocatalytic Hydrogen Production of a Metal–Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters, Angew. Chem., Int. Ed., 2016, 55, 9389–9393.
35. J. Yang , D.Wang, H. Han and C. Li, Roles of cocatalysts in photocatalysis and photoelectrocatalysis, Acc. Chem. Res., 2013, 46, 1900-1909.
36. M. Meilikhov, K. Yusenko, D. Esken, S. Turner, G. Van Tendeloo and R. A. Fischer, Metals@MOFs-Loading MOFs with Metal Nanoparticles for Hybrid Functions, Eur. J. Inorg. Chem., 2010, 3701−3714.
37. M. Sabo, A. Henschel, H. Fröde, E. Klemmb and S. Kaskel, Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties, J. Mater. Chem., 2007, 17, 3827-3832.
38. H. L. Jiang, B. Liu, T. Akita, M. Haruta, H. Sakurai and Q. Xu, Au@ZIF-8: CO Oxidation over Gold Nanoparticles Deposited to Metal-Organic Framework, J. Am. Chem. Soc., 2009, 131, 11302–11303.
39. L. Chen, X. Chen, H. Liu and Y. Li, Encapsulation of Mono- or Bimetal Nanoparticles Inside Metal–Organic Frameworks via In situ Incorporation of Metal Precursors, Small, 2015, 11, 2642–2648.
40. K.‐B. Lee, S.‐M. Lee and J. Cheon, Size‐Controlled Synthesis of Pd Nanowires Using a Mesoporous Silica Template via Chemical Vapor Infiltration, Adv. Mater., 2001, 13, 517-510.
41. M. Mueller, S. Hermes, K. Kähler, M. W. E. van den Berg, M. Muhler and R. A. Fischer, Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors: Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis, Chem. Mater., 2008, 20, 4576-4587.
42. D. Esken, X. Zhang, O. I. Lebedev, F. Schröder and R. A. Fischer, Pd@MOF-5: limitations of gas-phase infiltration and solution impregnation of [Zn4O(bdc)3] (MOF-5) with metal–organic palladium precursors for loading with Pd nanoparticles, J. Mater. Chem., 2009, 19, 1314-1319.
43. T. Ishida, M. Nagaoka, T. Akita and M. Haruta, Deposition of Gold Clusters on Porous Coordination Polymers by SolidGrinding and Their Catalytic Activity in Aerobic Oxidation of Alcohols, Chem. Eur. J., 2008, 14, 8456-8460.
44. T. Ishida, N. Kinoshita, H. Okatsu, T. Akita, T. Takei and M. Haruta, Influence of the Support and the Size of Gold Clusters on Catalytic Activity for Glucose Oxidation, Angew. Chem. Int. Ed., 2008, 47, 9265-9268.
45. T. Ishida, N. Kawakita, T. Akita and M. Haruka, One-pot N-alkylation of primary amines to secondary amines by gold clusters supported on porous coordination polymers, Gold Bull, 2009, 42, 267-274.
46. M. Sabo, A. Henschel, H. Fro ̈de, E. Klemm and S. Kaskel, Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties, J. Mater. Chem., 2007, 17, 3827–3832.
47. A. Henschel, K. Gedrich, R. Kraehnert and S. Kaskel, Catalytic properties of MIL-101, Chem. Commun., 2008, 4192–4194.
48. C. Zlotea, R. Campesi, F. Cuevas, E. Leroy, P. Dibandjo, C. Volkringer , T. Loiseau, G. Férey and M. Latroche, Pd Nanoparticles Embedded into a Metal-Organic Framework: Synthesis, Structural Characteristics, and Hydrogen Sorption Properties, J. Am. Chem. Soc., 2010, 132, 2991–2997.
49. X. Gu, Z.-H. Lu, H.-L. Jian, T. Akita and Q. Xu, Synergistic Catalysis of MetalOrganic Framework-Immobilized Au-Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage, J. Am. Chem. Soc., 2011, 133, 11822–11825.
50. Y. Wei, S. Han, D. A. Walker, P. E. Fuller and B. A. Grzybowski, Nanoparticle Core/Shell Architectures within MOF Crystals Synthesized by Reaction Diffusion, Angew. Chem. Int. Ed., 2012, 51, 7435 –7439.
51. G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp and F. Huo, Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation, Nat. Chem., 2012, 4, 310–316.
52. P. Wang, J. Zhao, X. Li , Y. Yang, Q. Yang and C. Li, Assembly of ZIF nanostructures around free Pt nanoparticles: efficient size-selective catalysts for hydrogenation of alkenes under mild conditions, Chem. Commun., 2013, 49, 3330-3332.
53. M. Zhao, K. Deng, L. He, Y. Liu, G. Li, H. Zhao and Z. Tang, Core−Shell Palladium Nanoparticle@Metal−Organic Frameworks as Multifunctional Catalysts for Cascade Reactions, J. Am. Chem. Soc., 2014, 136, 1738−1741.
54. L. Y. Chen, Y. Peng, H. Wang, Z. Z. Gua and C. Y. Duan, Synthesis of Au@ZIF-8 single- or multi-core–shell structures for photocatalysis, Chem. Commun., 2014, 50, 8651-8654.
55. P. S. Bárcia, D. Guimarães, P. A. P. Mendes, J. A. C. Silva, V. Guillerm, H. Chevreau, C. Serre and A. E. Rodrigues, Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66, Micropor. Mesopor. Mater., 2011, 139, 67-73.
56. J. Juan-Alcaniz, E. V. Ramos-Fernandez, U. Lafont, J. Gascon and F. Kapteijn, Building MOF bottles around phosphotungstic acid ships: One-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts, J. Catal., 2010, 269, 229-241.
57. F. K. Shieh, S. C. Wang, C. Yen, C. C. Wu, S. Dutta,. L. Y. Chou, J. V. Morabito, P. Hu, M. H. Hsu, K. C. W. Wu and C. K. Tsung, Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal−Organic Framework Microcrystals, J. Am. Chem. Soc., 2015, 137, 4276–4279.
58. H. Liu, L. Chang, L. Chen and Y. Li, In situ one-step synthesis of metal–organic framework encapsulated naked Pt nanoparticles without additional reductants, J. Mater. Chem. A, 2015, 3, 8028–8033.
59. L. Y. Chen, X. D. Chen, H. L. Liu, C. H. Bai and Y. W. Li, One-step encapsulation of Pd nanoparticles in MOFs via a temperature control program, J. Mater. Chem. A, 2015, 3, 15259–15264.
60. Y.-T. Liao, J. E. Chen, Y. Isida, T. Yonezawa, W. -C. Chang, S. M. Alshehri, Y. Yamauchi and K. C-. W. Wu, De Novo Synthesis of Gold‐Nanoparticle‐Embedded, Nitrogen‐Doped Nanoporous Carbon Nanoparticles (Au@NC) with Enhanced Reduction Ability, ChemCatChem, 2016, 8, 502-509.
61. G. W. Peterson, J. J. Mahle, J. B. DeCoste, W. O. Gordon and J. A. Rossin, Extraordinary NO2 Removal by the Metal–Organic Framework UiO‐66‐NH2, Angew. Chem., Int. Ed., 2016, 55, 6235−6238.
62. C. Wang, H. Daimon, T. Onodera, T. Koda and S. Sun, A General Approach to the Size‐and Shape‐Controlled Synthesis of Platinum Nanoparticles and Their Catalytic Reduction of Oxygen, Angew. Chem., Int. Ed., 2008, 47, 3588–3591.
63. S. Friebe, B. Geppert, F. Steinbach and J. Caro, Novel MOF UiO-66 layer: A Highly oriented membrane with good selectivity and hydrogen permeance, ACS Appl. Mater. Interf., 2017, 9, 12878–12885.
64. L. F. Dumée, J. W. Maina, A. Merenda, R. Reis, L. He and L. Kong, Hybrid thin film nano-composite membrane reactors for simultaneous separation and degradation of pesticides, J. Membr. Sci., 2017, 528, 217–224.
65. M. Maicu, D. Glöß, P. Frach, D. Hecker, G. Gerlac and J.M. Córdoba, Photocatalytic Properties of TiO2 Thin Films Modified with Ag and Pt Nanoparticles Deposited by Gas Flow Sputtering, J. Nanosci. Nanotechnol., 2015, 15, 6478-6486.
66. N. Charchi Aghdam, M. Ejtemaei, A. A. Babaluo, A. Tavakoli, B. Bayati and Y. Bayat, Chem. Eng. J., 2016, 305, 2– 11.
67. A. Schaate, P. Roy, T. Preuße, S. J. Lohmeier, A. Godt and P. Behrens, Modulated Synthesis of Zr-Based Metal–Organic Frameworks: From Nano to Single Crystals, Chem.–Eur. J., 2011, 17, 9320–9325.
68. C. Atzori, G. C. Shearer, L. Maschio, B. Civalleri, F. Bonino, C. Lamberti, S. Svelle, K. P. Lillerud and S. Bordiga, Effect of Benzoic Acid as a Modulator in the Structure of UiO-66: An Experimental and Computational Study, J. Phys. Chem. C, 2017, 121, 9312– 9324.
69. H. Fei, S. Pullen, A. Wagner, S. Ott and S. M. Cohen, Functionalization of robust Zr(IV)-based metal–organic framework films via a postsynthetic ligand exchange, Chem. Commun., 2015, 51, 66-69.
70. M. Miyamoto, S. Kohmura, H. Iwatsuka, Y. Oumic and S. Uemiya, In situ solvothermal growth of highly oriented Zrbased metal organic framework UiO-66 film with monocrystalline layer, CrystEngComm, 2015, 17, 3422–3425.
71. A. Umemura, S. Diring, S. Furukawa, H. Uehara, T. Tsuruoka and S. Kitagawa, Morphology Design of Porous Coordination Polymer Crystals by Coordination Modulation, J. Am. Chem. Soc., 2011, 133, 15506–15513.
72. G. D Barmparis, Z. Lodziana, N. Lopez and I. N Remediakis, Nanoparticle shapes by using Wulff constructions and first-principles calculations, Beilstein J. Nanotechnol., 2015, 6, 361–368.
73. H. F. Greer, Y. Liu, A. Greenaway, P. A. Wright and W. Zhou, Synthesis and Formation Mechanism of Textured MOF-5, Cryst. Growth Des., 2016, 16, 2104–2111.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69610-
dc.description.abstract傳統上在製備以金屬有機骨架為基材的擔體型觸媒時,通常是加入金屬粒子或金屬前驅物到已生成的金屬有機骨架中,因此現今在材料合成上,仍存在搭載量低以及金屬粒子聚集的限制。在本研究中,我們以原位合成法( de novo synthesis),透過在最初同時加入觸媒金屬和金屬有機骨架之前驅物達到更充分地混合,並對後續金屬骨架生成和搭載觸媒金屬還原進行階段溫控,以更有效地藉由金屬有機骨架的形成來限制觸媒金屬粒子的生長。我們成功的合成了具有高度分散性的白金粒子於UiO-66-NH2骨架的粉粒及薄膜,藉由XRD, TEM, BET, ICP/MS等分析確認我們成功合成此材料。隨後,藉調控搭載白金量、生長時間以及苯甲酸加入量,找出此觸媒最佳化生長條件為: 白金與鋯加入莫耳比0.5,反應兩天,以及加入苯甲酸量41.4微莫耳。此產物的白金含量為16.5 wt.%,產物最終白金/鋯莫耳比為0.335,較大部分傳統手法合成的金屬有機骨架觸媒都高。在研究的最後,我們將原位合成法成功地拓展到具催化性薄膜的合成上,將其製備於氧化鋁圓片及氟化氧化錫玻璃板。此薄膜的厚度可達到1微米以下,並依需求製備出不同白金含量的薄膜,可望於未來有更廣泛地應用。zh_TW
dc.description.abstractAlthough MOF-derived heterogeneous catalysts have been widely prepared by adding metal nanoparticles into pre-synthesized MOF or its precursors, there are still some problems such as the loading amount and uniformity of the metal. In this study, we load metal nanoparticles (i.e. Pt) into MOF (i.e. UiO-66-NH2) with controllable loading amount and uniformity through a de novo synthesis where metal and MOF precursors were added together in the very beginning. After careful optimization of temperature program of MOF structuring and metal reduction, we successfully prepare Pt-loaded UiO-66-NH2 (i.e. Pt@UiO-66-NH2) in the morphology of particles and films. The synthesized Pt@UiO-66-NH2 samples are characterized with XRD, TEM, BET, ICP/MS measurements. We optimize the Pt loading ratio, growth time, and amount of benzoic acid to be Pt/Zr=0.5, 48 h, and 41.1 mmol, respectively. The highest loading amount of Pt is 16.5 wt.% (i.e. Pt/Zr ratio is 0.335), which is much higher compared to previous studies. Finally, we expend this de novo synthesis for preparing Pt@UiO-66-NH2 on α-Al2O3 and FTO substrates, and Pt@UiO-66-NH2 with different Pt loadings and film thickness (less than 1 μm) can be prepared. We envision the prepared Pt@UiO-66-NH2 particles and films would have great potential in the catalytic applications.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:21:00Z (GMT). No. of bitstreams: 1
ntu-107-R05524049-1.pdf: 10533517 bytes, checksum: a9cd3f0dfd70099023e46f7301bfc53b (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents1. Introduction 1
1.1. Metal-Organic Frameworks (MOFs) 1
1.2. Heterogeneous MOF-derived catalysts 4
2. Literature review 12
2.1. Chemical vapor infiltration 14
2.2. Solid grinding 16
2.3. Incipient wetness impregnation 17
2.4. Impregnation 18
2.5. In situ synthesis 20
2.6. De novo synthesis 24
3. Objectives 33
4. Experimental 36
4.1. Chemicals and Materials 36
4.2. Equipment 37
4.3. Preparation of MOF and MOF-derived Heterogeneous Particles 38
4.3.1. Synthesis of UiO-66-NH2 Particles 38
4.3.2. De Novo Synthesis of Pt@ UiO-66-NH2 Particles 38
4.4. Fabrication of Pt@UiO-66-NH2 thin film on α-Al2O3 41
4.5. Fabrication of Pt@UiO-66-NH2 thin film on FTO 42
4.6. Characterizations 43
4.6.1. X-Ray Diffractometer (XRD) 43
4.6.2. Field-Emission Scanning Electron Microscope (FE-SEM) 43
4.6.3. SEM-Energy Dispersive Spectroscopy (EDS) 44
4.6.4. Transmission Electron Microscope (TEM) 44
4.6.5. TEM-Energy Dispersive Spectroscopy (EDS) 45
4.6.6. ICP/MS 45
4.6.7. X-ray Photoelectron Spectroscopy (XPS) 45
4.6.8. Specific Surface Area & Pore Size Distribution Analyzer by Gas Adsorption Method 46
5. Results and Discussion 47
5.1. Characterization of UiO-66-NH2 and Pt@UiO-66-NH2 particles 47
5.2. Effect of embedded platinum amount 52
5.3. Effect of Different Growth Time of Pt@UiO-66-NH2 Particles 63
5.4. Effect of amount of Benzoic Acid 71
5.5. Summary of Pt@UiO-66-NH2 Particle Preparation 79
5.6. Characterization of Pt@UiO-66-NH2 Thin Film on substrates 80
5.6.1. Thin Film Growth on α-Al2O3 substrate 80
5.6.2. Thin Film Growth on FTO 87
6. Conclusion 93
7. Future Prospects 94
8. Reference 95
Appendix 102
A.1 ICP calibration curve of zirconium and platinum 102
A.2 Characterization of α-Al2O3 substrate 103
A.3 Characterization of FTO substrate 104
A.4 XRD Pattern of Simulated UiO-66-NH2 and Pt 105
dc.language.isoen
dc.title以原位合成法(De Novo Synthesis)製備胺官能化UiO-66金屬有機骨架孔洞材料搭載鉑奈米粒子之粉粒及薄膜zh_TW
dc.titleDe Novo Synthesis of Pt-embedded Metal-Organic Frameworks (UiO-66-NH2) Particles and Filmsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝發坤(Fa-Kuen Shieh),林嘉和(Chia-Her Lin),童國倫(Kuo-Lun Tung),蔡德豪(De-Hao Tsai)
dc.subject.keyword金屬有機骨架,原位合成法,金屬有機骨架衍生異相觸媒,UiO-66,金屬有機骨架薄膜,zh_TW
dc.subject.keywordMetal-organic frameworks,de novo synthesis,MOF-derived heterogeneous catalysts,UiO-66,MOF thin film,en
dc.relation.page105
dc.identifier.doi10.6342/NTU201801062
dc.rights.note有償授權
dc.date.accepted2018-06-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
10.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved