Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69601
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃義侑(Yi-You Huang)
dc.contributor.authorChia-Ying Liaoen
dc.contributor.author廖家瑩zh_TW
dc.date.accessioned2021-06-17T03:20:41Z-
dc.date.available2020-07-23
dc.date.copyright2018-07-23
dc.date.issued2018
dc.date.submitted2018-06-25
dc.identifier.citationREFERENCE
1. Smiler, D., M. Soltan, and J.W. Lee, A histomorphogenic analysis of bone grafts augmented with adult stem cells. Implant Dentistry, 2007. 16(1): p. 42-53.
2. Van Geel, N.A.C., et al., Autologous transplantation techniques for vitiligo: How to evaluate treatment outcome. European Journal of Dermatology, 2004. 14(1): p. 46-51.
3. Langer, R. and J.P. Vacanti, Tissue engineering. Science, 1993. 260(5110): p. 920-6.
4. O'Halloran, D.M. and A.S. Pandit, Tissue-engineering approach to regenerating the intervertebral disc. Tissue Engineering, 2007. 13(8): p. 1927-1954.
5. Airdrie Family Eye Doctors, EYE HEALTH: ANATOMY, in http://www.augenlaserzentrum-wien.at/en/the-eye/function/.
6. The Discovery Eye Foundation, Understanding and Treating Corneal Scratches and Abrasions, in http://www.medifocus.be/hoe-ziet-u-0.
7. Wilson, S.L., A.J. El Haj, and Y. Yang, Control of scar tissue formation in the cornea: strategies in clinical and corneal tissue engineering. Journal of functional biomaterials, 2012. 3(3): p. 642-687.
8. Niederkorn, J.Y., The immune privilege of corneal grafts. J Leukoc Biol, 2003. 74(2): p. 167-71.
9. Tan, D.T.H., et al., Corneal transplantation. The Lancet. 379(9827): p. 1749-1761.
10. Chirila, T.V. and C.R. Hicks, The origins of the artificial cornea: Pellier de Quengsy and his contribution to the modern concept of keratoprosthesis. Gesnerus, 1999. 56(1-2): p. 96-106.
11. Gomaa, A., O. Comyn, and C. Liu, Keratoprostheses in clinical practice - a review. Clinical and Experimental Ophthalmology, 2010. 38(2): p. 211-224.
12. Hicks, C.R., et al., Corneal replacement using a synthetic hydrogel cornea, AlphaCor™: Device, preliminary outcomes and complications. Eye, 2003. 17(3): p. 385-392.
13. Bleckmann, H. and S. Holak, Preliminary results after implantation of four AlphaCor artificial corneas. Graefe's Archive for Clinical and Experimental Ophthalmology, 2006. 244(4): p. 502-506.
14. Chow, C.C., et al., Clinicopathologic correlation of explanted AlphaCor artificial cornea after exposure of implant. Cornea, 2007. 26(8): p. 1004-1007.
15. Minami, Y., H. Sugihara, and S. Oono, Reconstruction of cornea in three-dimensional collagen gel matrix culture. Investigative Ophthalmology and Visual Science, 1993. 34(7): p. 2316-2324.
16. Orwin, E.J. and A. Hubel, In vitro culture characteristics of corneal epithelial, endothelial, and keratocyte cells in a native collagen matrix. Tissue Engineering, 2000. 6(4): p. 307-319.
17. Liu, W., et al., Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials, 2008. 29(9): p. 1147-1158.
18. Chen, J., et al., Study on biocompatibility of complexes of collagen-chitosan-sodium hyaluronate and cornea. Artificial Organs, 2005. 29(2): p. 104-113.
19. Builles, N., et al., Development of a hemicornea from human primary cell cultures for pharmacotoxicology testing. Cell Biology and Toxicology, 2007. 23(4): p. 279-292.
20. Vrana, N.E., et al., Development of a reconstructed cornea from collagen-chondroitin sulfate foams and human cell cultures. Investigative Ophthalmology and Visual Science, 2008. 49(12): p. 5325-5331.
21. Liu, Y., L. Ren, and Y. Wang, Crosslinked collagen-gelatin-hyaluronic acid biomimetic film for cornea tissue engineering applications. Materials Science and Engineering C, 2013. 33(1): p. 196-201.
22. Tonsomboon, K. and M.L. Oyen, Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea. Journal of the Mechanical Behavior of Biomedical Materials, 2013. 21: p. 185-194.
23. Lawrence, B.D., et al., Silk film biomaterials for cornea tissue engineering. Biomaterials, 2009. 30(7): p. 1299-1308.
24. Garagorri, N., et al., Keratocyte behavior in three-dimensional photopolymerizable poly(ethylene glycol) hydrogels. Acta Biomaterialia, 2008. 4(5): p. 1139-1147.
25. Xiao, X., et al., In vivo study of the biocompatibility of a novel compressed collagen hydrogel scaffold for artificial corneas. Journal of Biomedical Materials Research - Part A, 2014. 102(6): p. 1782-1787.
26. Liu, L., et al., Immunological responses in mice to full-thickness corneal grafts engineered from porcine collagen. Biomaterials, 2007. 28(26): p. 3807-3814.
27. Rafat, M., et al., Surface modification of collagen-based artificial cornea for reduced endothelialization. Journal of Biomedical Materials Research - Part A, 2009. 88(3): p. 755-768.
28. Duan, X. and H. Sheardown, Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: Mechanical properties and corneal epithelial cell interactions. Biomaterials, 2006. 27(26): p. 4608-4617.
29. Cooper, D.K.C., Is xenotransplantation a realistic clinical option? Transplantation Proceedings, 1992. 24(6): p. 2393-2396.
30. Badylak, S.F., Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transplant Immunology, 2004. 12(3-4): p. 367-377.
31. Gilbert, T.W., T.L. Sellaro, and S.F. Badylak, Decellularization of tissues and organs. Biomaterials, 2006. 27(19): p. 3675-3683.
32. Gawlitta, D., et al., Decellularized cartilage-derived matrix as substrate for endochondral bone regeneration. Tissue Engineering - Part A, 2015. 21(3-4): p. 694-703.
33. Cheng, C.W., L.D. Solorio, and E. Alsberg, Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnology Advances, 2014. 32(2): p. 462-484.
34. Xiao, J., et al., Construction of the recellularized corneal stroma using porous acellular corneal scaffold. Biomaterials, 2011. 32(29): p. 6962-6971.
35. Crapo, P.M., T.W. Gilbert, and S.F. Badylak, An overview of tissue and whole organ decellularization processes. Biomaterials, 2011. 32(12): p. 3233-3243.
36. Eyre, D.R., Collagen: Molecular diversity in the body's protein scaffold. Science, 1980. 207(4437): p. 1315-1322.
37. Luo, X.-l., et al., Effect of heterogenic corneal stroma transplantation on peripheral T cells of rats. Chinese Journal of Pathophysiology, 2004. 20: p. 613-15.
38. Zeng, Y., et al., A comparison of biomechanical properties between human and porcine cornea. Journal of biomechanics, 2001. 34(4): p. 533-537.
39. Lee, H.I., et al., The characteristics of porcine cornea as a xenograft. Journal of the Korean Ophthalmological Society, 2006. 47(12): p. 2020-2029.
40. Hara, H. and D.K. Cooper, Xenotransplantation–the future of corneal transplantation? Cornea, 2011. 30(4): p. 371.
41. Shafiq, M.A., et al., Decellularized human cornea for reconstructing the corneal epithelium and anterior stroma. Tissue Engineering Part C: Methods, 2011. 18(5): p. 340-348.
42. Pang, K., et al., Three-Dimensional Construction of a Rabbit Anterior Corneal Replacement for Lamellar Keratoplasty. PloS one, 2016. 11(12): p. e0168084.
43. Ma, X.Y., et al., Corneal Stroma Regeneration with Acellular Corneal Stroma Sheets and Keratocytes in a Rabbit Model. PLOS ONE, 2015. 10(7): p. e0132705.
44. Hashimoto, Y., et al., Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials, 2010. 31(14): p. 3941-3948.
45. Kheir, E., et al., Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering. Journal of biomedical materials research Part A, 2011. 99(2): p. 283-294.
46. Vassilev, V.S., et al., Loss of N-Cadherin from the Endothelium Causes Stromal Edema and Epithelial Dysgenesis in the Mouse CorneaN-Cadherin Loss from the Endothelium. Investigative ophthalmology & visual science, 2012. 53(11): p. 7183-7193.
47. Maurice, D.M., The structure and transparency of the cornea. The Journal of physiology, 1957. 136(2): p. 263-286.
48. Zhang, C., et al., Survival and integration of tissue-engineered corneal stroma in a model of corneal ulcer. Cell and tissue research, 2007. 329(2): p. 249-257.
49. Du, Y., et al., Multipotent stem cells in human corneal stroma. Stem cells, 2005. 23(9): p. 1266-1275.
50. Daus, W., et al., Vital staining of the corneal endothelium--increased possibilities of diagnosis. Fortschritte der Ophthalmologie: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft, 1988. 86(4): p. 259-264.
51. Amann, J., et al., Increased endothelial cell density in the paracentral and peripheral regionsof the human cornea. American journal of ophthalmology, 2003. 135(5): p. 584-590.
52. Paull, A.C. and D.R. Whikehart, Expression of the p53 family of proteins in central and peripheral human corneal endothelial cells. Mol Vis, 2005. 11(6): p. 328-334.
53. Pang, K., L. Du, and X. Wu, A rabbit anterior cornea replacement derived from acellular porcine cornea matrix, epithelial cells and keratocytes. Biomaterials, 2010. 31(28): p. 7257-7265.
54. Fu, Y., et al., Reconstruction of a tissue-engineered cornea with porcine corneal acellular matrix as the scaffold. Cells Tissues Organs, 2010. 191(3): p. 193-202.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69601-
dc.description.abstract根據世界衛生組織(WHO)統計,1990年全球失明人口為3800萬,於1996年達4500萬,推估到了2020年時,將有多達7600萬人。角膜疾病或傷害造成眼睛失明影響全世界約千萬人口,且未來人口年齡結構老化趨勢,需要眼角膜的病患增加,在捐贈角膜來源有限、而受捐贈者的病情日益複雜的情況下,尋找取代角膜移植的方法也愈形急迫,於是利用組織工程技術來開發人類眼角膜顯得相當重要。有研究顯示出豬的眼角膜於生理功能與解剖構造皆與人的相似,相當適合作為人類眼角膜的替代基質,並運用在層狀角膜移植手術或是基質層替代物。
本實驗目的在於利用去細胞之豬角膜(acellular porcine corneal matrix, APCM)作為載體,培養兔子角膜細胞於上,建構完整的全層角膜替代物。研究中嘗試利用化學性與酵素法來去除豬角膜內之細胞,結果顯示我們能再在完全除去原本之細胞外,還留有大部分的基質與適當的孔洞,製造適合讓細胞生長於內的為環境。接著,本實驗設計簡單模型,利用環形塑膠物製造出隔間,使得細胞能在獨立的環境下生長,目前使用兔子的角膜緣幹細胞培養於角膜上層,分化成上皮細胞,藉由螢光顯微鏡可以看到完整排列整齊的佈滿上層;中間培養基質細胞;內皮層培養兔子的內皮細胞,發現細胞也能佈滿下層,因此本實驗建構之方法能有效讓三種不同的細胞長於角膜替代物上。期望未來能用此新興材料解決捐贈角膜不敷使用的窘境。
zh_TW
dc.description.abstractAccording to the World Health Organization (WHO) statistics, the population of the blind approached 55 million in 1990, up to 45 million in 1996. Estimated that by 2020, there will be as many as 76 million people. Corneal disease or injury affects, even resulted in blindness, the world's population about 10 million people and the need of donated cornea for patients increases rapidly due to the aging society of population. However, the number of donated cornea is limited, along with the donor's increasingly complex circumstances, looking for a method of replacing corneal transplantation is increasingly urgent. Thus, developing human corneal substitutes with tissue engineering technology is more and more important.
The aim of this study is to develop a full-thickness substitute of human cornea. First, acellular porcine corneal matrix (APCM) was chose to be an appropriate natural basal material. Next, the limbal stem cells were reseeded in the decellularized corneal epithelium, differentiating into epithelial cells; keratocytes were cultured in the corneal stromal layer; endothelial cells were cultured in the bottom layer of the decellularized porcine corneal matrix. Experimental result demonstrates that different types of corneal cells have been successfully reseeded and cultured on APCM, building a complete full-thickness corneal replacement. It is promising and this novel corneal substitute may be able to solve the dilemma of donated cornea.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:20:41Z (GMT). No. of bitstreams: 1
ntu-107-R04548039-1.pdf: 6180568 bytes, checksum: 760805e71462b802c3ea9c50ca73bb96 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
CONTENTS vii
圖目錄 x
第一章 緒論 1
1.1 眼睛與再生醫學 1
1.2 組織工程 2
1.3 眼睛構造與功能 3
1.4 眼角膜構造與功能 5
1.5 眼角膜之移植手術 8
1.6 角膜替代物 11
1.7 角膜之去細胞技術 12
1.8 角膜之去細胞方法 15
1.9 建構細胞於人工角膜之進程 16
1.10 培養全層人工角膜面臨之困難 18
第二章 研究動機與目的 22
第三章實驗材料與方法 23
3.1 實驗藥品 23
3.2 實驗儀器 24
3.3 實驗架構圖 25
3.4 去細胞眼角膜之製備 26
3.5 冷凍乾燥法 26
3.6 葡萄糖胺聚糖濃度定量分析 27
3.7 DNA含量測定 28
3.8 掃描式電子顯微鏡(SEM) 29
3.9 體外動物細胞培養試驗 30
3.10 培養之模型建立 30
3.11 兔子初代細胞之培養 31
3.11.1 兔子角膜上皮細胞培養 31
3.11.2 兔子角膜基質細胞培養 31
3.11.3 兔子角膜內皮細胞培養 32
3.12 組織石蠟切片與蘇木紫-伊紅染色(H&E Staining) 32
3.13 PKH26染色 33
3.14 PKH67染色 34
3.15 角膜細胞之染色標定 35
第四章 實驗結果 37
4.1 去細胞豬角膜(APCM)的製備與觀察 37
4.2 去細胞豬角膜之分析 39
4.3 去細胞程度與基質保留程度 41
4.4 培養3T3細胞於去細胞豬角膜上 43
4.5 培養3T3細胞與HacaT細胞於去細胞豬角膜 44
4.6 角膜細胞之培養 45
4.7角膜細胞之染色標定 47
4.8 培養角膜上皮幹細胞於角膜上 48
4.9 培養角膜上皮細胞、基質層細胞及內皮細胞於角膜上 49
4.10共培養細胞角膜之觀察 50
4.11多層角膜上皮細胞培養 52
第五章 結論 55
REFERENCE 56
dc.language.isozh-TW
dc.subject角膜細胞培養zh_TW
dc.subject豬眼角膜zh_TW
dc.subject去細胞化zh_TW
dc.subject角膜替代物zh_TW
dc.subjectCorneal substituteen
dc.subjectdecellularized methoden
dc.subjectacellular porcine corneal matrixen
dc.subjectcorneal cells cultureen
dc.title利用去細胞豬角膜為載體並培養兔子上皮與內皮細胞重建全層角膜之角膜再生研究zh_TW
dc.titleUsing Acellular Porcine Cornea Matrix as a Substitute for the Construction of Rabbit Corneal Epithelium Cell and Endothelium Cell Systemen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃意真(Yi-Cheng Huang),許馨云(Hsin-Yun Hsu)
dc.subject.keyword角膜替代物,去細胞化,豬眼角膜,角膜細胞培養,zh_TW
dc.subject.keywordCorneal substitute,decellularized method,acellular porcine corneal matrix,corneal cells culture,en
dc.relation.page58
dc.identifier.doi10.6342/NTU201801068
dc.rights.note有償授權
dc.date.accepted2018-06-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
6.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved