Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69591Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 吳哲夫(Jeffrey D. Ward) | |
| dc.contributor.author | Kwan-Ling Wu | en |
| dc.contributor.author | 吳冠霖 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:20:21Z | - |
| dc.date.available | 2021-06-29 | |
| dc.date.copyright | 2018-06-29 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-06-25 | |
| dc.identifier.citation | [1] Tung H.-H. Crystallization of organic compounds: an industrial perspective. Hoboken, N.J., Wiley; 2009.
[2] Charcosset C., R. Kieffer, D. Mangin and F. Puel. Coupling between Membrane Processes and Crystallization Operations (vol 49, pg 5489, 2010). Industrial & Engineering Chemistry Research 2010;49(23): 5489–5495. [3] Mersmann A. Crystallization technology handbook. New York, Marcel Dekker; 2001. [4] Myerson A. S. Handbook of industrial crystallization. Boston, Butterworth-Heinemann; 2002. [5] Azoury R., J. Garside and W. G. Robertson. Crystallization Processes Using Reverse-Osmosis. Journal of Crystal Growth 1986;79(1-3): 654–657. [6] Jančić, S. J. and P. A. M. Grootscholten. Industrial crystallization. Delft, Holland Dordrecht ; Boston Hingham, MA, U.S.A., Delft University Press; Reidel Pub. Co; 1984. Sold and distributed in the U.S.A. and Canada by Kluwer Academic Publishers. [7] N. Jaroslav. Industrial Crystallization from Solutions. London, Butterworth group; 1971. [8] Tavare, N. S. Industrial Crystallization, Process Simulation Analysis and Design. New York, Plenum Press; 1995. [9] Wang, H. Y. and J. D. Ward. Dynamics and control of continuous reactive crystallization processes. Journal of the Taiwan Institute of Chemical Engineers 2016;65: 28-42. [10] Jerauld, G. R., Y. Vasatis and M. F. Doherty. Simple Conditions for the Appearance of Sustained Oscillations in Continuous Crystallizers. Chemical Engineering Science 1983;38(10): 1675-1681. [11] Tseng, Y. T. and J. D. Ward. Critical seed loading from nucleation kinetics. Aiche Journal 2014;60(5): 1645-1653. [12] Wang, H. Y. and J. D. Ward. Seeding and Optimization of Batch Reactive Crystallization. Industrial & Engineering Chemistry Research 2015;54(38): 9360-9368. [13] Wang, Y. Q. and N. Lior. Thermoeconomic analysis of a low-temperature multi-effect thermal desalination system coupled with an absorption heat pump. Energy 2011;36(6): 3878–3887. [14] DesalData. Worldwide Desalination Inventory (MS Excel Format). 2014. [15] Bin Amer, A. O. Development and optimization of ME-TVC desalination system. Desalination 2009;249(3): 1315-1331. [16] El-Dessouky, H. T., H. M. Ettouney and F. Mandani. Performance of parallel feed multiple effect evaporation system for seawater desalination. Applied Thermal Engineering 2000;20(17): 1679-1706. [17] Bonyi, E., Z. Onuk, E. Constance, Z. Boone-Kukoyi, B. Gordon, B. Kioko, O. Daodu and K. Aslan. Metal-assisted and microwave-accelerated evaporative crystallization: an approach to rapid crystallization of biomolecules. Crystengcomm 2016;18(30): 5600-5610. [18] Cui, Z. F. and Muralidhara, H. S. Membrane Technology, A Practical Guide to Membrane Technology and Applications in Food and Bioprocessing. Boston, Butterworth-Heinemann; 2010. [19] Wei, C. C. and K. Li. Preparation and Characterization of a Robust and Hydrophobic Ceramic Membrane via an Improved Surface Grafting Technique. Industrial & Engineering Chemistry Research 2009:48(7): 3446-3452. [20] Koonaphaptleelert, S. and K. Li. Preparation and characterization of hydrophobic ceramic hollow fibre membrane. Journal of Membrane Science 2007;291(1-2): 70-76. [21] Liu, S. M., K. Li and R. Hughes. Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method. Ceramics International 2003;29(8): 875-881. [22] Khayet, M., J. I. Mengual and T. Matsuura. Porous hydrophobic/hydrophilic composite membranes - Application in desalination using direct contact membrane distillation. Journal of Membrane Science 2005;252(1-2): 101-113. [23] Cuellar M. C., S. N. Herreilers, A. J. J. Straathof, J. J. Heijnen and L. A. M. van der Wielen. Limits of Operation for the Integration of Water Removal by Membranes and Crystallization of L-Phenylalanine. Industrial & Engineering Chemistry Research 2009;48(3): 1566–1573. [24] Curcio E., G. Di Profio and E. Drioli. Recovery of fumaric acid by membrane crystallization in the production of L-malic acid. Separation and Purification Technology 2003;33(1): 63–73. [25] Curcio E., G. Di Profio and E. Drioli. A new membrane-based crystallization technique: tests on lysozyme. Journal of Crystal Growth 2003;247(1-2): 166–176. [26] Khayet, M., T. Matsuura and J. I. Mengual. Porous hydrophobic/hydrophilic composite membranes: Estimation of the hydrophobic-layer thickness. Journal of Membrane Science 2005;266(1-2): 68-79. [27] Nagashima, R., S. Yahagi, H. Hirose, Y. Ohmukai, T. Maruyama and H. Matsuyama. Preparation and Characterization of Mieroporous Hollow Fiber Membranes Containing Hydrotalcite as an Inorganic Adsorbent. Solvent Extraction Research and Development-Japan 2010;17: 53-61. [28] Tan, X. Y., S. M. Liu and K. Li. Preparation and characterization of inorganic hollow fiber membranes. Journal of Membrane Science 2001;188(1): 87-95. [29] Wang, Z., Y. M. Wei, Z. L. Xu, Y. Cao, Z. Q. Dong and X. L. Shi. Preparation, characterization and solvent resistance of gamma-Al2O3/alpha-Al2O3 inorganic hollow fiber nanofiltration membrane. Journal of Membrane Science 2016;503: 69-80. [30] Lawson, K. W. and D. R. Lloyd. Membrane distillation .1. Module design and performance evaluation using vacuum membrane distillation. Journal of Membrane Science 1996;120(1): 111-121. [31] Lawson, K. W. and D. R. Lloyd. Membrane distillation .2. Direct contact MD. Journal of Membrane Science 1996;120(1): 123-133. [32] Alkhudhiri, A., N. Darwish and N. Hilal. Membrane distillation: A comprehensive review. Desalination 2012;287: 2-18. [33] Tijing, L. D., J. S. Choi, S. Lee, S. H. Kim and H. K. Shon. Recent progress of membrane distillation using electrospun nanofibrous membrane. Journal of Membrane Science 2014;453: 435-462. [34] Wang, P. and T. S. Chung. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring. Journal of Membrane Science 2015;474: 39-56. [35] Osada, Y. and T. Nakagawa. Membrane science and technology. New York, M. Dekker; 1992. [36] Warsinger, D. M., E. W. Tow, K. G. Nayar, L. A. Maswadeh and J. H. Lienhard. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination. Water Research 2016;106: 272-282. [37] Richard W. Baker. Membrane Technology and Applications. McGraw-Hill;2000. [38] Puretec Industrial Water. Reverse Osmosis: What is Reverse Osmosis. [Online] 2012. https://puretecwater.com/reverse-osmosis/what-is-reverse-osmosis (accessed May 23, 2018). [39] Fountoukidis E., Z. B. Maroulis and D. Marinoskouris. Crystallization of Calcium-Sulfate on Reverse-Osmosis Membranes. Desalination 1990;79(1): 47–63. [40] Lakerveld R., J. Kuhn, H. J. M. Kramer, P. J. Jansens and J. Grievink. Membrane assisted crystallization using reverse osmosis: Influence of solubility characteristics on experimental application and energy saving potential. Chemical Engineering Science 2010;65(9): 2689–2699. [41] Greenlee, L. F., D. F. Lawler, B. D. Freeman, B. Marrot and P. Moulin. Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Research 2009;43(9): 2317-2348. [42] Randall D. G., J. Nathoo and A. E. Lewis. A case study for treating a reverse osmosis brine using Eutectic Freeze Crystallization-Approaching a zero waste process. Desalination 2011;266(1-3): 256–262. [43] Torres M. J. F., Bevia F. R., Rodriguez-Pascual M. A., H. von Blottnitz. Teaching a new technology, eutectic freeze crystallization, by means of a solved problem. Education of chemical engineers 2012;7(4): 163–168. [44] Chang, J., J. Zuo, K. J. Lu and T. S. Chung. Freeze desalination of seawater using LNG cold energy. Water Research 2016;102: 282-293. [45] Xie, C. G., L. P. Zhang, Y. H. Liu, Q. C. Lv, G. L. Ruan and S. S. Hosseini. A direct contact type ice generator for seawater freezing desalination using LNG cold energy. Desalination 2018;435: 293-300. [46] Wang H. Y., K. L. Tung and J. D. Ward. Design and economic analysis of membrane-assisted crystallization processes. Journal of the Taiwan Institute of Chemical Engineers 2017;81: 159–169. [47] Kuhn J., R. Lakerveld, H. J. M. Kramer, J. Grievink and P. J. Jansens. Characterization and Dynamic Optimization of Membrane-Assisted Crystallization of Adipic Acid. Industrial & Engineering Chemistry Research 2009;48(11): 5360–5369. [48] da Silva M. K., A. Ambrosi, G. M. dos Ramos and I. C. Tessaro. Rejuvenating polyamide reverse osmosis membranes by tannic acid treatment. Separation and Purification Technology 2012;100: 1–8. [49] Fernandez-Torres M. J., D. G. Randall, R. Melamu and H. von Blottnitz. A comparative life cycle assessment of eutectic freeze crystallisation and evaporative crystallisation for the treatment of saline wastewater. Desalination 2012;306: 17–23. [50] van der Ham F., M. M. Seckler and G. J. Witkamp. Eutectic freeze crystallization in a new apparatus: the cooled disk column crystallizer. Chemical Engineering and Processing 2004;43(2): 161–167. [51] van der Ham F., G. J. Witkamp, J. de Graauw and G. M. van Rosmalen. Eutectic freeze crystallization: Application to process streams and waste water purification. Chemical Engineering and Processing 1998;37(2): 207–213. [52] van der Ham F., G. J. Witkamp, J. de Graauw and G. M. van Rosmalen. Eutectic freeze crystallization simultaneous formation and separation of two solid phases. Journal of Crystal Growth 1999;198: 744–748. [53] R. Turton, R. C. Bailie, W. B. Whiting and J. A. Shaeiwitz. Analysis, synthesis and design of chemical processes. New Jersey, Prentice Hall PTR; 1998. [54] Gryta M. Direct contact membrane distillation with crystallization applied to NaCl solutions. Chemical Papers-Chemicke Zvesti 2002;56(1): 14–19. [55] Song L. M., B. Li, K. K. Sirkar and J. L. Gilron. Direct contact membrane distillation-based desalination: Novel membranes, devices, larger-scale studies, and a model. Industrial & Engineering Chemistry Research 2007;46(8): 2307–2323. [56] Wang K. Y., T. S. Chung and M. Gryta. Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation. Chemical Engineering Science 2008;63(9): 2587–2594. [57] Teoh M. M. and T. S. Chung. Membrane distillation with hydrophobic macrovoid-free PVDF-PTFE hollow fiber membranes. Separation and Purification Technology 2009;66(2): 229–236. [58] Edwie F. and T. S. Chung. Development of hollow fiber membranes for water and salt recovery from highly concentrated brine via direct contact membrane distillation and crystallization. Journal of Membrane Science 2012;421: 111–123. [59] Drioli E., A. Criscuoli and E. Curcio. Integrated membrane operations for seawater desalination. Desalination 2002;147(1-3): 77–81. [60] Hou D. Y., J. Wang, D. Qu, Z. K. Luan, C. W. Zhao and X. J. Ren. Preparation of hydrophobic PVDF hollow fiber membranes for desalination through membrane distillation. Water Science and Technology 2009;59(6): 1219–1226. [61] Fang H., J. F. Gao, H. T. Wang and C. S. Chen. Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process. Journal of Membrane Science 2012;403: 41–46. [62] Julian H., S. W. Meng, H. Y. Li, Y. Ye and V. Chen. Effect of operation parameters on the mass transfer and fouling in submerged vacuum membrane distillation crystallization (VMDC) for inland brine water treatment. Journal of Membrane Science 2016;520: 679–692. [63] Stover R. L. Development of a fourth generation energy recovery device. A 'CTO's Notebook'. Desalination 2004;165(1-3): 313–321. [64] Energy Recovery, Inc. Desalination products catalog, San Leandro;2016. [65] Mullin J. W. Crystallization. Oxford ; Boston, Butterworth-Heinemann;2001. [66] Apelblat A. Enthalpy of Solution of Oxalic, Succinic, Adipic, Maleic, Malic, Tartaric, and Citric Acids, Oxalic-Acid Dihydrate, and Citric-Acid Monohydrate in Water at 298.15-K. Journal of Chemical Thermodynamics 1986;18(4): 351–357. [67] Chauvel A. Manual of process economic evaluation. Paris, Editions Technip; 2003. [68] W. D. Seider, J. D. Seader, D. R. Lewin and S. Widagdo. Product and process design principles. Asia: John Wiley & Sons Inc.; 2010. [69] Lu Y. Y., Y. D. Hu, D. M. Xu and L. Y. Wu. Optimum design of reverse osmosis seawater desalination system considering membrane cleaning and replacing. Journal of Membrane Science 2006;282(1-2): 7–13. [70] Lu Y. Y., Y. D. Hu, X. L. Zhang, L. Y. Wu and Q. Z. Liu. Optimum design of reverse osmosis system under different feed concentration and product specification. Journal of Membrane Science 2007;287(2): 219–229. [71] Bedecarrats, J. P., F. Strub and C. Peuvrel. Thermal and hydrodynamic considerations of ice slurry in heat exchangers. International Journal of Refrigeration-Revue Internationale Du Froid 2009;32(7): 1791-1800. [72] Niezgoda-Zelasko, B. and W. Zalewski. Momentum transfer of ice slurry flows in tubes, experimental investigations. International Journal of Refrigeration-Revue Internationale Du Froid 2006 ;29(3): 418-428. [73] Abejon A., A. Garea and A. Irabien. Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption. Separation and Purification Technology 2015;144: 46–53. [74] Drioli E., E. Curcio, G. Di Profio, F. Macedonio and A. Criscuoli. Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination - Energy, exergy and costs analysis. Chemical Engineering Research & Design 2006;84(A3): 209–220. [75] Douglas J. M. Conceptual design of chemical processes. New York, McGraw-Hill;1988. [76] Al-Obaidani, S., E. Curcio, F. Macedonio, G. Di Profio, H. Ai-Hinai and E. Drioli. Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation. Journal of Membrane Science 2008;323(1): 85-98. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69591 | - |
| dc.description.abstract | 化學工業程序中,結晶程序乃一歷史久遠且現今仍相當重要的分離技術。除了會消耗大量能量的傳統單效蒸發結晶程序外,程序設計或溶劑分離技術上的替代方案亦陸續被提出。本研究分析了以不同程序從水溶液連續生產數種定量晶體所需成本,其中包含蒸發結晶、以多孔性疏水膜進行的薄膜蒸餾、逆滲透薄膜結晶,以及共熔冷凍結晶。在分析溶質性質、各程序操作條件,以及各單元操作的性質後,結果顯示一般而言,用於移除水的成本影響程序經濟最劇。
在溶質性質中,溶解度因直接決定生產單位晶體所需移除水量而對程序經濟影響最大,其他性質則影響不大;另一方面,為了提供大量蒸發熱,加熱用公共流體的價格對程序經濟有重大影響:若可獲得成本低於產自煤或天然氣之低壓蒸氣的熱源,則其價格亦會大幅影響程序經濟。總的來說,薄膜蒸餾鮮為最經濟之程序,而若系統滲透壓夠小,逆滲透薄膜結晶會最為經濟。對於逆滲透法不適用之化學物質,共熔冷凍結晶會在熱源單價高及溶解度低時最為經濟,其餘狀況下,傳統的蒸發結晶則會成為最經濟的選擇,而最佳效數必須由溶解度、熱源單價、以及熱源溫度決定。基於文中結果推論,依程序參數而定的結晶技術建議也已呈現在本文最後。 | zh_TW |
| dc.description.abstract | Crystallization is an ancient unit operation that remains vital for the chemical process industry. Traditional single-effect evaporation consumes a great deal of energy and various process design or water removing technology alternatives have been proposed. In this work the total cost of producing a fixed quantity of different solid chemicals by crystallization from water is determined for several different technologies: evaporative crystallization (EC), membrane distillation (MD) with porous hydrophobic membranes, reverse osmosis membrane assisted crystallization, and eutectic freeze crystallization (EFC). After considering the physical properties of solute, operating conditions for each process, and characteristic of unit operations, the result shows that for most cases, cost related to water removal plays the most important role in the process economic.
Among the solute properties, solubility has the greatest effect on the cost of the process since it determines the amount of water that must be removed per unit product produced while other properties’ effect on the process economic are limited. As for utility, due to the large amount of heat needed for evaporation, heating energy like low-pressure steam is of great importance. If waste heat is available at a unit price lower than that of low-pressure steam produced using coal or natural gas, then the assumed price of it also has a significant effect on the economics. The results indicate that generally, MD process possesses little advantage over other technology and RO will have the lowest cost when the osmotic pressure is low enough. Otherwise, when solubility is not too high (0.15–0.6 kg/kg solution) and heat source is of high unit price (higher than 2–7 USD/GJ), EFC will be the best choice. On contrary, a traditional EC process will have the lowest cost when producing highly soluble products or very cheap heating energy is available. Moreover, the optimal number of effect depends on three factors: solubility, heating energy unit price, and temperature of heating energy. Finally, heuristic suggestion for crystallization technology depending on process parameters is presented. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:20:21Z (GMT). No. of bitstreams: 1 ntu-107-R05524001-1.pdf: 3365278 bytes, checksum: b7f20f554462cf189ebab1f90b8b9a4b (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Table of contents
摘要.. i Abstract .. ii List of Figures .. vi List of tables .. x 1.Introduction .. 1 1.1.Overview .. 1 1.2. Review of crystallization technology .. 2 1.3. Review of evaporation process.. 4 1.4. Review of membrane technology .. 5 1.4.1. Review of porous hydrophobic membrane .. 6 1.4.2. Review of membrane distillation .. 7 1.4.3. Review of reverse osmosis membrane .. 8 1.5. Review of eutectic freeze crystallization .. 10 1.6. Summary and motivation .. 12 2. Model development .. 13 2.1. Crystallization process design .. 13 2.1.1. Single effect evaporative crystallization process .. 13 2.1.2. Multi effect evaporative crystallization process .. 14 2.1.3. Membrane distillation crystallization process .. 15 2.1.4. RO membrane assisted crystallization process .. 17 2.1.5. Eutectic freeze crystallization process.. 18 2.2. Performance of unit operations .. 21 2.3. Chemical systems .. 24 2.4. Cost equations .. 26 3. Results and discussions .. 36 3.1. Economic characteristics.. 36 3.2. Effect of physical properties of crystal on TAC .. 41 3.3. Cost saving policies .. 43 3.4. Effect of heat source on TAC .. 46 3.5. Effect of membrane price on TAC .... 52 3.6. Technology choice .. 53 3.6.1. Competitiveness analysis of RO process .. 54 3.6.2. Competitiveness analysis of EFC process .. 56 3.6.3. Competitiveness analysis of MD process .. 59 3.6.4. Competitiveness analysis of EC process .. 61 3.6.5. Overall suggestion for crystallization technology choice .. 63 4.Conclusions .. 66 5.Nomenclature .. 69 6.Reference .. 74 | |
| dc.language.iso | en | |
| dc.subject | 共熔冷凍結晶 | zh_TW |
| dc.subject | 經濟分析 | zh_TW |
| dc.subject | 薄膜輔助結晶 | zh_TW |
| dc.subject | 連續式程序 | zh_TW |
| dc.subject | 結晶 | zh_TW |
| dc.subject | eutectic freeze crystallization | en |
| dc.subject | crystallization | en |
| dc.subject | continuous process | en |
| dc.subject | membrane assisted crystallization | en |
| dc.subject | economic analysis | en |
| dc.title | 不同化學產品的結晶技術經濟評估比較 | zh_TW |
| dc.title | Economic comparison of crystallization technologies for different chemical products | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 錢義隆,陳誠亮,蕭立鼎 | |
| dc.subject.keyword | 結晶,連續式程序,薄膜輔助結晶,共熔冷凍結晶,經濟分析, | zh_TW |
| dc.subject.keyword | crystallization,continuous process,membrane assisted crystallization,eutectic freeze crystallization,economic analysis, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU201801100 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-06-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| Appears in Collections: | 化學工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-107-1.pdf Restricted Access | 3.29 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
