請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69554
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳炳宇(Bing-Yu Chen) | |
dc.contributor.author | Jo-Hsi Tang | en |
dc.contributor.author | 唐若曦 | zh_TW |
dc.date.accessioned | 2021-06-17T03:19:08Z | - |
dc.date.available | 2021-07-02 | |
dc.date.copyright | 2018-07-02 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-06-27 | |
dc.identifier.citation | [1] Precision microdrives - 310-117 10mm vibration motor.
[2] H.-Y. Chen, J. Santos, M. Graves, K. Kim, and H. Z. Tan. Tactor localization at the wrist. 5024:209–218, 2008. [3] A. A. Cholewiak, Roger W.and Collins. Vibrotactile localization on the arm: Effects of place, space, and age. Perception & Psychophysics, 65(7):1058–1077, Oct 2003. [4] A. Cosgun, E. A. Sisbot, and H. I. Christensen. Evaluation of rotational and directional vibration patterns on a tactile belt for guiding visually impaired people. In 2014 IEEE Haptics Symposium (HAPTICS), pages 367–370, Feb 2014. [5] A. Frisoli, C. Procopio, C. Chisari, I. Creatini, L. Bonfiglio, M. Bergamasco, B. Rossi, and M. C. Carboncini. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke. J Neuroeng Rehabil, 9:36, 2012. [6] T. Han, Q. Han, M. Annett, F. Anderson, D.-Y. Huang, and X.-D. Yang. Frictio: Passive kinesthetic force feedback for smart ring output. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ’17, pages 131–142, New York, NY, USA, 2017. ACM. [7] C. Ho, H. Z. Tan, and C. Spence. Using spatial vibrotactile cues to direct visual attention in driving scenes. Transportation Research Part F: Traffic Psychology and Behaviour, 8(6):397–412, 2005. [8] J. Hong, L. Stearns, J. Froehlich, D. Ross, and L. Findlater. Evaluating angular accuracy of wrist-based haptic directional guidance for hand movement. In Proceedings of the 42Nd Graphics Interface Conference, GI ’16, pages 195 200, School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, 2016. Canadian Human-Computer Communications Society. [9] S. Horvath, J. Galeotti, B. Wu, R. Klatzky, M. Siegel, and G. Stetten. Fingersight: Fingertip haptic sensing of the visual environment. IEEE J Transl Eng Health Med, 2:2700109, 2014. [10] A. Israr and I. Poupyrev. Tactile brush: Drawing on skin with a tactile grid display. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, pages 2019–2028, New York, NY, USA, 2011. ACM. [11] Y. S. Jin, H. Y. Chun, E. T. Kim, and S. Kang. Vt-ware: A wearable tactile device for upper extremity motion guidance. In The 23rd IEEE International Symposium on Robot and Human Interactive Communication, pages 335–340, Aug 2014. [12] P. Kapur, M. Jensen, L. J. Buxbaum, S. A. Jax, and K. J. Kuchenbecker. Spatially distributed tactile feedback for kinesthetic motion guidance. In 2010 IEEE Haptics Symposium, pages 519–526, March 2010. [13] A. Karime, H. Al-Osman, W. Gueaieb, and A. E. Saddik. E-glove: An electronic glove with vibro-tactile feedback for wrist rehabilitation of post-stroke patients. In 2011 IEEE International Conference on Multimedia and Expo, pages 1–6, July 2011. [14] O. B. Kaul and M. Rohs. Haptichead: A spherical vibrotactile grid around the head for 3d guidance in virtual and augmented reality. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pages 3729–3740, New York, NY, USA, 2017. ACM. [15] J. Lee, J. Han, and G. Lee. Investigating the information transfer efficiency of a 3x3 watch-back tactile display. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, pages 1229 1232, New York, NY, USA, 2015. ACM. [16] S. C. Lee and T. Starner. Buzzwear: Alert perception in wearable tactile displays on the wrist. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, pages 433–442, New York, NY, USA, 2010. ACM. [17] Y.-C. Liao, Y.-L. Chen, J.-Y. Lo, R.-H. Liang, L. Chan, and B.-Y. Chen. Edgevib: Effective alphanumeric character output using a wrist-worn tactile display. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST ’16, pages 595–601, New York, NY, USA, 2016. ACM. [18] J. Lieberman and C. Breazeal. Tikl: Development of a wearable vibrotactile feedback suit for improved human motor learning. IEEE Transactions on Robotics, 23(5):919–926, 2007. [19] I. Oakley, Y. Kim, J. Lee, and J. Ryu. Determining the feasibility of forearm mounted vibrotactile displays. In 2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pages 27–34, March 2006. [20] T. Oron-Gilad, J. L. Downs, R. D. Gilson, and P. A. Hancock. Vibrotactile guidance cues for target acquisition. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 37(5):993–1004, 2007. [21] J. Pasquero, S. J. Stobbe, and N. Stonehouse. A haptic wristwatch for eyes-free interactions. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, pages 3257–3266, New York, NY, USA, 2011. ACM. [22] E. Piateski and L. Jones. Vibrotactile pattern recognition on the arm and torso. In First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference, pages 90–95, March 2005. [23] B. E. Rogowitz, H. Z. Tan, T. N. Pappas, R. Gray, C. Spence, C. M. Jones, and R. Mohd Rosli. The haptic cuing of visual spatial attention: evidence of a spotlight effect. 7240:72400I, 2009. [24] M. F. Rotella, K. Guerin, X. He, and A. M. Okamura. Hapi bands: A haptic augmented posture interface. In 2012 IEEE Haptics Symposium (HAPTICS), pages 163– 170, March 2012. [25] S. Schatzle, T. Hulin, C. Preusche, and G. Hirzinger. Evaluation of vibrotactile feedback to the human arm. In Proc. EuroHaptics 2006, pages 557–560, 2006. [26] C. Schönauer, K. Fukushi, A. Olwal, H. Kaufmann, and R. Raskar. Multimodal motion guidance: Techniques for adaptive and dynamic feedback. In Proceedings of the 14th ACM International Conference on Multimodal Interaction, ICMI ’12, pages 133–140, New York, NY, USA, 2012. ACM. [27] F. Sergi, D. Accoto, D. Campolo, and E. Guglielmelli. Forearm orientation guidance with a vibrotactile feedback bracelet: On the directionality of tactile motor communication. In 2008 2nd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics, pages 433–438, Oct 2008. [28] H. Strasburger, I. Rentschler, and M. Juttner. Peripheral vision and pattern recognition: a review. J Vis, 11(5):13, 2011. [29] A. Toney, L. Dunne, B. H. Thomas, and S. P. Ashdown. A shoulder pad insert vibrotactile display. In Seventh IEEE International Symposium on Wearable Computers, 2003. Proceedings., pages 35–44, Oct 2003. [30] R. Traylor and H. Z. Tan. Development of a wearable haptic display for situation awareness in altered-gravity environment: some initial findings. In Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002, pages 159–164, 2002. [31] J. van der Linden, E. Schoonderwaldt, and J. Bird. Good vibrations: Guiding body movements with vibrotactile feedback. In D. Ramduny-Ellis, A. Dix, J. Hare, and S. Gill, editors, Proceedings of the Third Workshop on Physicality, pages 13–18, Cambridge, UK, Sep 2009. [32] J. van der Linden, E. Schoonderwaldt, J. Bird, and R. Johnson. Musicjacket: Combining motion capture and vibrotactile feedback to teach violin bowing. IEEE Transactions on Instrumentation and Measurement, 60(1):104 113, Jan 2011. [33] B. Weber, S. Schätzle, T. Hulin, C. Preusche, and B. Deml. Evaluation of a vibrotactile feedback device for spatial guidance. In 2011 IEEE World Haptics Conference, pages 349–354, June 2011. [34] B. Wöldecke, T. Vierjahn, M. Flasko, J. Herder, and C. Geiger. Steering actors through a virtual set employing vibro-tactile feedback. In Proceedings of the 3rd International Conference on Tangible and Embedded Interaction, TEI ’09, pages 169–174, New York, NY, USA, 2009. ACM. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69554 | - |
dc.description.abstract | 由於複雜的環境因素,人的視覺或是聽覺通道在接收訊息時,可能會因此超載或是無法傳遞資訊。但是透過觸覺回饋的方式,我們可以在複雜的環境因素下,以不同於視覺和聽覺的方式進行資訊傳遞。使用觸覺回饋的方式進行空間引導時,可以以不顯眼且直觀的方式傳遞方向資訊,將使用者引導至目標位置。在此論文中,我們設計了一個由兩圈震動手環構成的裝置,利用相對稀疏的8顆震動馬達,實現三維空間中26種方向的空間引導,並設計了實驗來探討兩個手環之間的有效距離(4、 6或8公分),以及在傳遞震動圖騰時的震動方式(單點刺激或動態回饋)。實驗中總共有36名參與者參與其中。結果顯示,在4公分及6公分時,兩種震動方式在統計上有顯著差異。在下一階段,我們結合了視覺及震動回饋的方式,來加速整體空間引導的過程。我們使用同步燈光閃爍及震動回饋的方式,使用者可以藉此訊息找到對應的目標位置。在此次實驗中,我們探討了兩次同步的回饋機制之間,使用者可以分辨出目標位置的最小時間差。實驗中我們使用心理學裡最小可覺差的實驗方式,在三種不同的視覺條件下(近距離、遠距離以及認知負荷)進行實驗。此實驗總共有12位受試者參與,實驗結果在論文中探討。 | zh_TW |
dc.description.abstract | Due to the environmental factors, humans' visual or acoustical channels may be overloaded or inaccessible for the conveyance of information. Haptic feedback, however, can convey the information through an alternative to visual and acoustical feedback in the complex environmental situation with an unobtrusive and intuitive way. In this thesis, we design a device of two vibrotactile wristbands, which can achieve high-resolution spatial guidance using sparse vibrators, and report a controlled lab experiment to investigate the effective distance (4, 6, or 8cm) and the direction feedback (point stimulus or motion feedback). Thirty-six participants are involved in the experiment. The results show that there are statistically significant differences between two direction feedbacks in the distance of 4cm and 6cm. According to these results, using motion feedback in 4cm and 6cm may be more suitable when receiving directional vibration patterns on the wrist compared with only point stimulus. In the next step, we design a crossmodal guidance system using visual and tactile perception to facilitate the process of haptic guidance. As the vibration synchronized with the lighting pulse, users can search for the target location according to the crossmodal cues. In this experiment, we investigate the least temporal difference, which users can determine by the concurred wrist vibration, between two lighting pulses. A just-noticeable difference (JND) study is conducted in three different conditions of lighting pulses (Near, Far, and Cognitive load condition). The results of JND study are reported in the thesis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:19:08Z (GMT). No. of bitstreams: 1 ntu-107-R04922073-1.pdf: 15620240 bytes, checksum: d4fa5f23ee2f4450cde86b3edac100a4 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書iii
謝誌v 摘要vii Abstract ix 1 Introduction 1 2 Related Works 5 2.1 Vibrotactile feedback in different parts of body . . . . . . . . . . . . . . 5 2.2 Vibrotactile Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Spatial attentional guidance . . . . . . . . . . . . . . . . . . . . 6 2.2.2 Motion and posture guidance . . . . . . . . . . . . . . . . . . . . 6 2.2.3 Spatial guidance . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Haptic Guidance 9 3.1 Apparatus and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.1 Physical prototype design . . . . . . . . . . . . . . . . . . . . . 10 3.1.2 Directional patterns design . . . . . . . . . . . . . . . . . . . . . 14 3.1.3 Haptic feedback . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Experiment Design and Hypothesis . . . . . . . . . . . . . . . . . . . . . 24 3.5 Data and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.6.1 Recognition Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.6.2 Cross-type error . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.6.3 Angular error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.7 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 Crossmodal Guidance 33 4.1 Apparatus and Environment Design . . . . . . . . . . . . . . . . . . . . 33 4.1.1 Haptic System . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1.2 Lighting System . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.5 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.6 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 50 5 Conclusion and Discussion 51 Bibliography 53 | |
dc.language.iso | zh-TW | |
dc.title | 以多模式觸覺及視覺回饋實現三維空間引導系統 | zh_TW |
dc.title | Design of Spatial Guidance on the Wrist using Vibrotactile Feedback | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 詹力韋(Liwei Chan),黃大源(Da-Yuan Huang),余能豪(Neng-Hao Yu) | |
dc.subject.keyword | 震動觸覺回饋,多模式回饋,空間引導,穿戴式裝置, | zh_TW |
dc.subject.keyword | Vibrotactile,Crossmodal,Spatial Guidance,Wearable devices, | en |
dc.relation.page | 57 | |
dc.identifier.doi | 10.6342/NTU201801104 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-06-27 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 15.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。