請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69550完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬(Chii-Wann Lin) | |
| dc.contributor.author | TAN JOY EE | en |
| dc.contributor.author | 陳梅英 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:19:00Z | - |
| dc.date.available | 2020-08-21 | |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | 1. Chamberlain, D., et al. Application of semi-supervised deep learning to lung sound analysis. in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2016. 2. Li, L., et al. Classification between normal and adventitious lung sounds using deep neural network. in 2016 10th International Symposium on Chinese Spoken Language Processing (ISCSLP). 2016. 3. Sovijärvi, A., J. Vanderschoot, and J. Earis, Standardization of computerized respiratory sound analysis. Eur Respir Rev, 2000. 10. 4. Epler, G.R., et al., Normal Chest Roentgenograms in Chronic Diffuse Infiltrative Lung Disease. New England Journal of Medicine, 1978. 298(17): p. 934-939. 5. Piirila, P. and A. Sovijärvi, Crackles: recording, analysis and clinical significance. European Respiratory Journal, 1995. 8. 6. Mendes, L., et al. Detection of crackle events using a multi-feature approach. in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2016. 7. Nath, A.R. and L.H. Capel, Inspiratory crackles—early and late. Thorax, 1974. 29(2): p. 223. 8. Marini, J.J., D.J. Pierson, and L.D. Hudson, Acute lobar atelectasis: a prospective comparison of fiberoptic bronchoscopy and respiratory therapy. Am Rev Respir Dis, 1979. 119(6): p. 971-8. 9. Jácome, C., et al., Convolutional Neural Network for Breathing Phase Detection in Lung Sounds. Sensors (Basel, Switzerland), 2019. 19(8): p. 1798. 10. Grønnesby, M., et al., Feature Extraction for Machine Learning Based Crackle Detection in Lung Sounds from a Health Survey. arXiv e-prints, 2017: p. arXiv:1706.00005. 11. Bardou, D., K. Zhang, and S.M. Ahmad, Lung sounds classification using convolutional neural networks. Artificial Intelligence in Medicine, 2018. 88: p. 58-69. 12. Meng, F., et al., A kind of integrated serial algorithms for noise reduction and characteristics expanding in respiratory sound. International journal of biological sciences, 2019. 15(9): p. 1921-1932. 13. Moussavi, Z.K., M.T. Leopando, and G.R. Rempel. Automated detection of respiratory phases by acoustical means. in Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286). 1998. 14. Huq, S. and Z. Moussavi, Acoustic breath-phase detection using tracheal breath sounds. Med Biol Eng Comput, 2012. 50(3): p. 297-308. 15. Yahya, O. and M. Faezipour. Automatic detection and classification of acoustic breathing cycles. in Proceedings of the 2014 Zone 1 Conference of the American Society for Engineering Education. 2014. 16. Forkheim, K.E., D. Scuse, and H. Pasterkamp. A comparison of neural network models for wheeze detection. in IEEE WESCANEX 95. Communications, Power, and Computing. Conference Proceedings. 1995. 17. Waitman, L.R., et al., Representation and Classification of Breath Sounds Recorded in an Intensive Care Setting Using Neural Networks. Journal of Clinical Monitoring and Computing, 2000. 16(2): p. 95-105. 18. Chen, H., et al., Triple-Classification of Respiratory Sounds Using Optimized S-Transform and Deep Residual Networks. IEEE Access, 2019. 7: p. 32845-32852. 19. Chen, Q., et al. Automatic heart and lung sounds classification using convolutional neural networks. in 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). 2016. 20. Salamon, J., C. Jacoby, and J.P. Bello, A Dataset and Taxonomy for Urban Sound Research. Mm ’14, 2014: p. 1041–1044. 21. Piczak, K.J. Environmental sound classification with convolutional neural networks. in 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP). 2015. 22. Narayanan, A. and D. Wang. Ideal ratio mask estimation using deep neural networks for robust speech recognition. in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. 2013. 23. Yu, C., et al., Time-Domain Multi-modal Bone/air Conducted Speech Enhancement. arXiv e-prints, 2019: p. arXiv:1911.09847. 24. LeCun, Y., K. Kavukcuoglu, and C. Farabet. Convolutional networks and applications in vision. in Proceedings of 2010 IEEE International Symposium on Circuits and Systems. 2010. 25. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature, 2015. 521(7553): p. 436-444. 26. Deng, L.L. Three Classes of Deep Learning Architectures and Their Applications: A Tutorial Survey. 2012. 27. Xia, T., et al., An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation. Computers in Industry, 2020. 115: p. 103182. 28. He, K., et al., Deep Residual Learning for Image Recognition. arXiv e-prints, 2015: p. arXiv:1512.03385. 29. Vaityshyn, V., H. Porieva, and A. Makarenkova. Pre-trained Convolutional Neural Networks for the Lung Sounds Classification. in 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO). 2019. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69550 | - |
| dc.description.abstract | 本研究旨在研究「應用類神經網路於自動化呼吸週期及異常肺音的偵測」及分析多聲道聽診器對於異常音分類的影響。肺部疾病是世界上第三大死因,因此,肺部疾病的早期介入及治療一直都是醫療領域著重的一環,當中聽診扮演了重要的角色。醫療人員藉由聽診器進行聽診,進行於肺部疾病的診斷。相較於傳統聽診器,電子聽診器解決了傳統聽診器無法收集、判斷只能仰賴資深醫療人員的問題。因此,如何利用電子聽診器收集的肺音及建構高精確度的自動化肺音分類系統成為重要的指標。 本研究使用的肺音資料是藉由多聲道聽診器於實際醫院收集,收集的部位為左右上胸,左右側胸,及左右下胸,資料包含環境噪音,人聲等其他噪音。因此,如何在高噪音資料中擷取肺音特徵成為自動化肺音分類重要的一環。本研究建立呼吸週期偵測系統及異常音偵測系統以達到建立自動化肺音系統的目的,其中異常音偵測系統採用兩階段判斷,第一階段為判斷音檔是否含有異常音,第二階段為幀的判斷。本研究採用短時距傅立葉轉換(STFT) 作為資料的特徵擷取,並以卷積神經網絡(CNN)、深度殘差網絡(Deep Residual Network,ResNet)及CNN-BLSTM作為分類器。結果顯示,呼吸週期偵測系統準確率達87%、異常音第一階段準確率達95%,及第二階段準確率達90%。儘管如此,為了確保在真正的工作環境裡可有效的被應用,後期實驗加入了外部麥克風,希望藉由同步的環境噪音可達到除噪的效果,以提升深度學習網絡的準確率。本實驗提出了早期融合和晚期融合兩大策略。以CNN-BLSTM作為分類器,晚期融合策略將準確率提高了8%,證明了此策略可有效地提高分類的性能。 | zh_TW |
| dc.description.abstract | Treatment of lung diseases, which are the third most common cause of death in the world, is one of great importance in the medical field. Many studies using lung sounds recorded with stethoscope have been conducted in the literature in order to diagnose the lung diseases with artificial intelligence-compatible devices and to assist the experts in their diagnosis. In this paper, a database which includes noise and background sounds were collected by using a novel multi-channel data acquisition system from six different positions over the anterior chest, then was used for the classification of lung sounds. The purpose is to build an automated lung sound detection system which consist of breathing phase detection system and adventitious lung sound detection system. The adventitious lung sound detection system is a two-stage classifier which includes adventitious respiratory sound detection and frame-based adventitious respiratory detection. Short-time Fourier transform (STFT) was adopted as statistical feature extraction for further analysis. Network model such as CNN, ResNet, and CNN-BLSTM. The results of the breathing phase detection system achieved 87% of accuracy. Besides, the first stage of adventitious respiratory sound system reached an accuracy of 95% while the second stage which adopted only sound file from lateral chest obtained an accuracy of 90%. However, to apply in real working environment more efficiently, this research used the simultaneous environmental noise for noise reduction which collected by an external microphone during the subsequent stage of this research. The environmental noise spectrograms and noisy lung sound spectrograms are adopted to estimate the corresponding Ideal Ratio Mask (IRM) for further classification. The early-fusion strategy (EF) and late-fusion strategy (LF) are proposed. The evaluated performance of CNN-BLSTM, CNN-BLSTM+EF, and CNN-BLSTM+LF, which showed the precision of 65%, 72%, and 73%, respectively, demonstrating the proposed method could effectively improve classification performance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:19:00Z (GMT). No. of bitstreams: 1 U0001-1808202011492000.pdf: 2108298 bytes, checksum: 196806cc3503499d46ce5a4a63d78eed (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 I 摘 要 II ABSTRACT IV CONTENTS VI LIST OF FIGURES VIII LIST OF TABLES IX Chapter 1 Introduction 1 1.1 Background 1 1.2 Importance of Auscultation 1 1.3 The Need for Automated Identification 1 1.4 Type of Respiratory Sound 2 1.5 Challenges of Crackles Detection in Lung Sound Auscultation 4 1.6 Challenges of Automated Lung Sound Identification and Purpose 5 1.7 Motivation and Objective 5 Chapter 2 Literature Review 7 2.1 Related Work for Breathing Phase Detection 7 2.2 Related Work for Adventitious Respiratory Sound Detection 8 Chapter 3 Methods 10 3.1 Feature Extraction 10 3.1.1 Short-Time Fourier Transform (STFT) 10 3.2 Lung Sound Enhancement 13 3.3 Network Model 16 3.3.1 Convolutional Neural Network (CNN) 16 3.3.2 Long Short-Term Memory(LSTM) 17 3.3.3 Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BLSTM) 19 3.3.4 Residual Networks (ResNets) 21 Chapter 4 Experiments 23 4.1 Data Creation 23 4.1.1 Data Collection 23 4.1.2 Data Labeling 24 4.2 Evaluation Metrics 24 Chapter 5 Results and Discussion 26 5.1 Breathing Phase Detection System 26 5.2 Adventitious Respiratory Sound Detection System 27 5.2.1 1st stage-Adventitious Respiratory Sound Detection 27 5.2.2 2nd stage-Frame-based Adventitious Respiratory Sound Detection 30 5.3 Sound Enhancement 36 Chapter 6 Conclusion 39 Reference 40 | |
| dc.language.iso | en | |
| dc.subject | 雙向長短期遞歸神經網絡 | zh_TW |
| dc.subject | 呼吸音 | zh_TW |
| dc.subject | 肺音分類 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 卷積神經網絡 | zh_TW |
| dc.subject | Respiratory Sound Classification | en |
| dc.subject | Deep Learning | en |
| dc.subject | Convolutional Neural Network | en |
| dc.subject | Recurrent Neural Network | en |
| dc.subject | Lung Sound | en |
| dc.title | 基於類神經網絡之異常音與呼吸週期偵測系統 | zh_TW |
| dc.title | Deep Neural Network for Breathing Phase and Adventitious Respiratory Sound Detection
| en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林致廷(Chih-Ting Lin),黃念祖(Nien-Tsu Huang) | |
| dc.subject.keyword | 呼吸音,肺音分類,深度學習,卷積神經網絡,雙向長短期遞歸神經網絡, | zh_TW |
| dc.subject.keyword | Lung Sound,Respiratory Sound Classification,Deep Learning,Convolutional Neural Network,Recurrent Neural Network, | en |
| dc.relation.page | 41 | |
| dc.identifier.doi | 10.6342/NTU202003942 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1808202011492000.pdf 未授權公開取用 | 2.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
