Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69545
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳素雲
dc.contributor.authorChih-Han Shihen
dc.contributor.author施智涵zh_TW
dc.date.accessioned2021-06-17T03:18:50Z-
dc.date.available2018-07-02
dc.date.copyright2018-07-02
dc.date.issued2017
dc.date.submitted2018-06-27
dc.identifier.citation[1] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):711–720, 1997.
[2] L.-F. Chen, H.-Y. M. Liao, M.-T. Ko, J.-C. Lin, and G.-J. Yu. A new lda-based face recognition system which can solve the small sample size problem. Pattern Recogni- tion, 33(10):1713–1726, 2000.
[3] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic press, 2013.
[4] L. Li, R. D. Cook, and C.-L. Tsai. Partial inverse regression. Biometrika, pages 615–625, 2007.
[5] J. Ye and T. Xiong. Computational and theoretical analysis of null space and orthogo- nal linear discriminant analysis. Journal of Machine Learning Research, 7(Jul):1183– 1204, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69545-
dc.description.abstractFisher線性判別分析常用於處理分類問題,然而在高維度低樣本數的框架下,類別內的樣本共變異矩陣常常是非滿秩矩陣,導致傳統的Fisher線性判別分析無法實行。在過去文獻中有許多方法處理這個難題,像是主成份分析-線性判別分析、零空間-線性判別分析、特徵值稀疏性-線性判別分析、脊-線性判別分析。在這篇論文中,我們針對不同的方法所求出的分類方向的估計進行穩定性分析。zh_TW
dc.description.abstractFisher linear discriminant analysis (LDA) is commonly used in classification problems. However, in high dimension low sample size (HDLSS) scenarios, the within-class sample covariance matrix is often singular, which leads to the failure of LDA. Several discriminant methods were developed in literature to deal with this difficulty, such as PCA-LDA, Null-space LDA, Eigen-sparsity based LDA and Ridge LDA. In this thesis, we analyze the stability for various regularized estimators of discriminant direction derived from different methods.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:18:50Z (GMT). No. of bitstreams: 1
ntu-106-R04246007-1.pdf: 646431 bytes, checksum: 148da9e493ab5bf5c243dda6d8e11e05 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 iii
誌謝 v
摘要 vii
Abstract ix
1 Introduction 1
2 Literature review 3
2.1 PCA-LDA.................................. 4
2.2 Null-spaceLDA............................... 5
2.3 Ridge LDA ................................. 5
2.4 Eigen-sparsity based LDA ......................... 6
3 Main results: stability analysis 7
4 Discussion 17
4.1 Unbiasedness condition of discriminant direction . . . . . . . . . . . . . 17
4.2 Stability analysis .............................. 18
4.3 Stability analysis under spike model assumption . . . . . . . . . . . . . . 21
4.4 Futurework................................. 24
5 appendix 25
5.1 Derivatives of eigenvalues and eigenvectors . . . . . . . . . . . . . . . . 25
5.2 Asymptotic normality of sample covariance matrix . . . . . . . . . . . . 25
5.3 Kronecker product and commutation matrix . . . . . . . . . . . . . . . . 25
Bibliography . . . . . . . . . . . . . . . . 27
dc.language.isoen
dc.subject線性判別分析zh_TW
dc.subject非滿秩zh_TW
dc.subject特徵值稀疏性zh_TW
dc.subject穩定性分析zh_TW
dc.subject主成份分析zh_TW
dc.subjectRidge LDAen
dc.subjectLinear discriminant analysisen
dc.subjectEigen-sparsityen
dc.subjectPCAen
dc.subjectHDLSSen
dc.title正規化線性判別分析之穩定性分析zh_TW
dc.titleStability Analysis of Regularized Linear Discriminant Analysisen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor陳宏
dc.contributor.oralexamcommittee陳定立,洪弘
dc.subject.keyword線性判別分析,非滿秩,主成份分析,特徵值稀疏性,穩定性分析,zh_TW
dc.subject.keywordLinear discriminant analysis,HDLSS,PCA,Eigen-sparsity,Ridge LDA,en
dc.relation.page27
dc.identifier.doi10.6342/NTU201801133
dc.rights.note有償授權
dc.date.accepted2018-06-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用數學科學研究所zh_TW
顯示於系所單位:應用數學科學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
631.28 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved