Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69511
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許輔
dc.contributor.authorKuan-Yin Linen
dc.contributor.author林冠吟zh_TW
dc.date.accessioned2021-06-17T03:17:48Z-
dc.date.available2023-07-06
dc.date.copyright2018-07-06
dc.date.issued2018
dc.date.submitted2018-07-02
dc.identifier.citationAbdel-Aal, E.S.M. 2008. Effects of baking on protein digestibility of organic spelt products determined by two in vitro digestion methods. LWT-Food Science and Technology 41:1282-1288.
Adler, S.H., E. Chiffoleau, L. Xu, N.M. Dalton, J.M. Burg, A.D. Wells, M.S. Wolfe, L.A. Turka, and W.S. Pear. 2003. Notch signaling augments T cell responsiveness by enhancing CD25 expression. The Journal of immunology 171:2896-2903.
Appiah, T., Y.D. Boakye, and C. Agyare. 2017. Antimicrobial activities and time-kill kinetics of extracts of selected ghanaian mushrooms. Evidence-Based Complementary and Alternative Medicine 2017.
Astwood, J.D., J.N. Leach, and R.L. Fuchs. 1996. Stability of food allergens to digestion in vitro. Nature biotechnology 14:1269.
Bekeredjian‐Ding, I. and G. Jego. 2009. Toll‐like receptors–sentries in the B‐cell response. Immunology 128:311-323.
Bona, C.A. and F.A. Bonilla. 1996. Textbook of immunology. CRC Press.
Breene, W.M. 1990. Nutritional and medicinal value of specialty mushrooms. Journal of Food Protection 53:883-894.
Cantor, H. and E.A. Boyse. 1975. Functional subclasses of T-lymphocytes bearing different ly antigens. I. The generation of functionally distinct T-cell subclasses is a differentiative process independent of antigen. Journal of Experimental Medicine 141:1376-1389.
Chang, S.T. and C.K. Yau. 1971. Volvariella volvacea and its life history. American Journal of Botany 58:552-561.
Chen, W.C. 2015. Establishment of quality control indicator and bioaccessibility evaluation for fungal immunomodulatory protein fip-fve. Department of Horticulture and Landscape Architecture College of Bio-Resources and Agriculture National Taiwan University Master Thesis.
Cheung, P.C. 1996. The hypocholesterolemic effect of extracellular polysaccharide from the submerged fermentation of mushroom. Nutrition Research 16:1953-1957.
Clatza, A., L.C. Bonifaz, D.A. Vignali, and J. Moreno. 2003. CD40-induced aggregation of MHC class II and CD80 on the cell surface leads to an early enhancement in antigen presentation. The Journal of immunology 171:6478-6487.
Cui, B., L. Li, Q. Zeng, F. Lin, L. Yin, L. Liao, M. Huang, and J. Wang. 2017. A novel lectin from artocarpus lingnanensis induces proliferation and Th1/Th2 cytokine secretion through CD45 signaling pathway in human T lymphocytes. Journal of natural medicines 71:409-421.
Fairfax, K.A., A. Kallies, S.L. Nutt, and D.M. Tarlinton. 2008. Plasma cell development: From B-cell subsets to long-term survival niches. Seminars in immunology 20:49-58.
Falk, M., S. Ussat, N. Reiling, D. Wesch, D. Kabelitz, and S. Adam-Klages. 2004. Caspase inhibition blocks human T cell proliferation by suppressing appropriate regulation of IL-2, CD25, and cell cycle-associated proteins. The Journal of immunology 173:5077-5085.
Foss, D.L., M.J. Zilliox, and M.P. Murtaugh. 1999. Differential regulation of macrophage interleukin-1 (IL-1), IL-12, and CD80/CD86 by two bacterial toxins. Infection and immunity 67:5275-5281.
Fu, T.-J., U.R. Abbott, and C. Hatzos. 2002. Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid a comparative study. Journal of agricultural and food chemistry 50:7154-7160.
Fu, Y.-X., G. Huang, Y. Wang, and D.D. Chaplin. 1998. B lymphocytes induce the formation of follicular dendritic cell clusters in a lymphotoxin α–dependent fashion. Journal of Experimental Medicine 187:1009-1018.
Gonzalez, M., F. Mackay, J.L. Browning, M.H. Kosco-Vilbois, and R.J. Noelle. 1998. The sequential role of lymphotoxin and B cells in the development of splenic follicles. Journal of Experimental Medicine 187:997-1007.
Gordon, S. 2003. Alternative activation of macrophages. Nature Reviews Immunology 3:23.
Harris, D.P., L. Haynes, P.C. Sayles, D.K. Duso, S.M. Eaton, N.M. Lepak, L.L. Johnson, S.L. Swain, and F.E. Lund. 2000. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nature immunology 1:475.
Hsieh, K.Y., C.I. Hsu, J.Y. Lin, C.C. Tsai, and R.H. Lin. 2003. Oral administration of an edible‐mushroom‐derived protein inhibits the development of food‐allergic reactions in mice. Clinical & Experimental Allergy 33:1595-1602.
Hsu, H.C., C.I. Hsu, R.H. Lin, C.L. Kao, and J.Y. Lin. 1997. Fip-vvo, a new fungal immunomodulatory protein isolated from volvariella volvacea. Biochemical Journal 323:557-565.
Hur, S.J., B.O. Lim, E.A. Decker, and D.J. Mcclements. 2011. In vitro human digestion models for food applications. Food Chemistry 125:1-12.
Hutchinson, P., L.A. Divola, and S.R. Holdsworth. 1999. Mitogen‐induced T‐cell CD69 expression is a less sensitive measure of T‐cell function than [3H]‐thymidine uptake. Cytometry: The Journal of the International Society for Analytical Cytology 38:244-249.
Infante-Duarte, C., H.F. Horton, M.C. Byrne, and T. Kamradt. 2000. Microbial lipopeptides induce the production of IL-17 in th cells. The Journal of immunology 165:6107-6115.
Janeway Jr, C.A. and R. Medzhitov. 2002. Innate immune recognition. Annual review of immunology 20:197-216.
Justo, A., A. Vizzini, A.M. Minnis, N. Menolli, M. Capelari, O. Rodríguez, E. Malysheva, M. Contu, S. Ghignone, and D.S. Hibbett. 2011. Phylogeny of the pluteaceae (agaricales, basidiomycota): Taxonomy and character evolution. Fungal Biology 115:1-20.
Kino, K., A. Yamashita, K. Yamaoka, J. Watanabe, S. Tanaka, K. Ko, K. Shimizu, and H. Tsunoo. 1989. Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from ganoderma lucidium. Journal of Biological Chemistry 264:472-478.
Kishida, E., C. Kinoshita, Y. Sone, and A. Misaki. 1992. Structures and antitumor activities of polysaccharides isolated from mycelium of volvariella volvacea. Bioscience, biotechnology, and biochemistry 56:1308-1309.
Kishida, E., Y. Sone, and A. Misaki. 1989. Purification of an antitumor-active, branched (1→ 3)-β-D-glucan from volvariella volvacea, and elucidation of its fine structure. Carbohydrate research 193:227-239.
Ko, J.L., C.I. Hsu, R.H. Lin, C.L. Kao, and J.Y. Lin. 1995. A new fungal immunomodulatory protein, fip‐fve isolated from the edible mushroom, flammulina velutipes and its complete amino acid sequence. The FEBS Journal 228:244-249.
Kol, A., G.K. Sukhova, A.H. Lichtman, and P. Libby. 1998. Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-α and matrix metalloproteinase expression. Circulation 98:300-307.
Lagoo, A., C.K. Tseng, and S. Sell. 1990. Interleukin 2 produced by activated B lymphocytes acts as an autocrine proliferation-inducing lymphokine. Cytokine 2:272-279.
Lanzavecchia, A. 1985. Antigen-specific interaction between T and B cells. Nature 314:537.
Lebien, T.W. and T.F. Tedder. 2008. B lymphocytes: How they develop and function. Blood 112:1570-1580.
Lee, H.J., N. Takemoto, H. Kurata, Y. Kamogawa, S. Miyatake, A. O'garra, and N. Arai. 2000. Gata-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. Journal of Experimental Medicine 192:105-116.
Lee, T.F. and S.T. Chang. 1975. Nutritional analysis of volvariella volvacea. Journal of the Chinese Society for Horticultural Science 21:13-20.
Lenschow, D.J., T.L. Walunas, and J.A. Bluestone. 1996. CD28/B7 system of T cell costimulation. Annual review of immunology 14:233-258.
Li, Q.Z., X.F. Wang, and X.W. Zhou. 2011. Recent status and prospects of the fungal immunomodulatory protein family. Critical Reviews in Biotechnology 31:365-375.
Li, Y.M. 2005. Function components and health function of edible fungi. Food Science 8:174.
Liao, C.-H., Y.-M. Hsiao, C.-H. Lin, C.-S. Yeh, J.C.-H. Wang, C.-H. Ni, C.-P. Hsu, and J.-L. Ko. 2008. Induction of premature senescence in human lung cancer by fungal immunomodulatory protein from ganoderma tsugae. Food and chemical toxicology 46:1851-1859.
Liao, W., J.-X. Lin, and W.J. Leonard. 2011. IL-2 family cytokines: New insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Current opinion in immunology 23:598-604.
Liew, F.Y. 2002. Th1 and Th2 cells: A historical perspective. Nature Reviews Immunology 2:55-60.
Lin, J.-W., L.-X. Hao, G.-X. Xu, F. Sun, F. Gao, R. Zhang, and L.-X. Liu. 2009. Molecular cloning and recombinant expression of a gene encoding a fungal immunomodulatory protein from ganoderma lucidum in pichia pastoris. World Journal of Microbiology and Biotechnology 25:383-390.
Lin, W.H., C.H. Hung, C.I. Hsu, and J.Y. Lin. 1997. Dimerization of the N-terminal amphipathic α-helix domain of the fungal immunomodulatory protein from ganoderma tsugae (fip-gts) defined by a yeast two-hybrid system and site-directed mutagenesis. Journal of Biological Chemistry 272:20044-20048.
Liua, W.K., J.C. Ho, and T.B. Ng. 2001. Suppression of cell cycle progression by a fungal lectin: Activation of cyclin-dependent kinase inhibitors. Biochemical pharmacology 61:33-37.
Lund, F.E. 2008. Cytokine-producing B lymphocytes—key regulators of immunity. Current opinion in immunology 20:332-338.
Ma, J., T. Chen, J. Mandelin, A. Ceponis, N. Miller, M. Hukkanen, G. Ma, and Y. Konttinen. 2003. Regulation of macrophage activation. Cellular and Molecular Life Sciences CMLS 60:2334-2346.
Menard, L.C., L.A. Minns, S. Darche, D.W. Mielcarz, D.M. Foureau, D. Roos, F. Dzierszinski, L.H. Kasper, and D. Buzoni-Gatel. 2007. B cells amplify IFN-γ production by T cells via a TNF-α-mediated mechanism. The Journal of immunology 179:4857-4866.
Mosmann, T.R., H. Cherwinski, M.W. Bond, M.A. Giedlin, and R.L. Coffman. 1986. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. The Journal of immunology 136:2348-2357.
Mosmann, T.R. and R. Coffman. 1989. Th1 and Th2 cells: Different patterns of lymphokine secretion lead to different functional properties. Annual review of immunology 7:145-173.
Murphy, K. and C. Weaver. 2016. Janeway's immunobiology. Garland Science.
Noma, T. 2010. Helper T cell paradigm: Th17 and regulatory T cells involved in autoimmune inflammatory disorders, pathogen defense and allergic diseases. Japanese journal of clinical immunology 33:262-271.
Ohsawa, K., H. Satsu, K. Ohki, M. Enjoh, T. Takano, and M. Shimizu. 2008. Producibility and digestibility of antihypertensive β-casein tripeptides, val-pro-pro and ile-pro-pro, in the gastrointestinal tract: Analyses using an in vitro model of mammalian gastrointestinal digestion. Journal of agricultural and food chemistry 56:854-858.
Ou, C.-C., Y.-M. Hsiao, W.-H. Wang, J.-L. Ko, and M.-Y. Lin. 2009. Stability of fungal immunomodulatory protein, fip-gts and fip-fve, in IFN-γ production. Food and agricultural immunology 20:319-332.
Paaventhan, P., J.S. Joseph, S.V. Seow, S. Vaday, H. Robinson, K.Y. Chua, and P.R. Kolatkar. 2003. A 1.7 å structure of fve, a member of the new fungal immunomodulatory protein family. Journal of molecular biology 332:461-470.
Palm, N.W. and R. Medzhitov. 2009. Pattern recognition receptors and control of adaptive immunity. Immunological reviews 227:221-233.
Paul, W.E. and B. Benacerraf. 1977. Functional specificity of thymus-dependent lymphocytes. Science 195:1293-1300.
Pharmacopoeia, U. 1995. The national formulary. Simulated gastric fluid and simulated intestinal fluid. The United States Pharmacopeia 23:2053.
Pujari, R., S.M. Eligar, N. Kumar, N.N. Nagre, S.R. Inamdar, B.M. Swamy, and P. Shastry. 2012. CD45-mediated signaling pathway is involved in rhizoctonia bataticola lectin (rbl)-induced proliferation and Th1/Th2 cytokine secretion in human PBMC. Biochemical and Biophysical Research Communications 419:708-714.
Rathee, S., D. Rathee, D. Rathee, V. Kumar, and P. Rathee. 2012. Mushrooms as therapeutic agents. Revista Brasileira De Farmacognosia-Brazilian Journal of Pharmacognosy 22:459-474.
Sancho, D., M. Gómez, and F. Sánchez-Madrid. 2005. CD69 is an immunoregulatory molecule induced following activation. Trends in immunology 26:136-140.
She, Q.B., T.B. Ng, and W.K. Liu. 1998. A novel lectin with potent immunomodulatory activity isolated from both fruiting bodies and cultured mycelia of the edible mushroom volvariella volvacea. Biochemical and Biophysical Research Communications 247:106-111.
Shevchenko, A., H. Tomas, J. Havli, J.V. Olsen, and M. Mann. 2006. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature protocols 1:2856.
Silva, M.C., L.A. Santana, R. Mentele, R.S. Ferreira, A. De Miranda, R.A. Silva-Lucca, M.U. Sampaio, M.T. Correia, and M.L. Oliva. 2012. Purification, primary structure and potential functions of a novel lectin from bauhinia forficata seeds. Process biochemistry 47:1049-1059.
Singh, R.S., R. Bhari, and H.P. Kaur. 2010. Mushroom lectins: Current status and future perspectives. Critical Reviews in Biotechnology 30:99-126.
Singh, R.S. and A.K. Walia. 2014. Microbial lectins and their prospective mitogenic potential. Critical Reviews in Microbiology 40:329-347.
Song, J.X., F.T. Lei, X. Xiong, and R. Haquel. 2008. Intracellular signals of T cell costimulation. Cellular & Molecular Immunology 5:239-247.
Szabo, S.J., S.T. Kim, G.L. Costa, X. Zhang, C.G. Fathman, and L.H. Glimcher. 2000. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655-669.
Szabo, S.J., B.M. Sullivan, S.L. Peng, and L.H. Glimcher. 2003. Molecular mechanisms regulating Th1 immune responses. Annual review of immunology 21:713-758.
Sze, S., J. Ho, and W. Liu. 2004. Volvariella volvacea lectin activates mouse T lymphocytes by a calcium dependent pathway. Journal of cellular biochemistry 92:1193-1202.
Tamma, S.M.L., V. Kalyanaraman, S. Pahwa, P. Dominguez, and R.R. Modesto. 2003. The lectin jacalin induces phosphorylation of ERK and jnk in CD4+ T cells. Journal of leukocyte biology 73:682-688.
Tanaka, S., K. Ko, K. Kino, K. Tsuchiya, A. Yamashita, A. Murasugi, S. Sakuma, and H. Tsunoo. 1989. Complete amino acid sequence of an immunomodulatory protein, ling zhi-8 (LZ-8). An immunomodulator from a fungus, ganoderma lucidium, having similarity to immunoglobulin variable regions. Journal of Biological Chemistry 264:16372-16377.
Thomas, R.M., L. Gao, and A.D. Wells. 2005. Signals from CD28 induce stable epigenetic modification of the IL-2 promoter. The Journal of immunology 174:4639-4646.
Vazquez, M.I., J. Catalan-Dibene, and A. Zlotnik. 2015. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine 74:318-326.
Verstovsek, S., D. Maccubbin, M.J. Ehrke, and E. Mihich. 1992. Tumoricidal activation of murine resident peritoneal macrophages by interleukin 2 and tumor necrosis factor α. Cancer research 52:3880-3885.
Wang, P.-H., C.-I. Hsu, S.-C. Tang, Y.-L. Huang, J.-Y. Lin, and J.-L. Ko. 2004. Fungal immunomodulatory protein from flammulina velutipes induces interferon-γ production through p38 mitogen-activated protein kinase signaling pathway. Journal of agricultural and food chemistry 52:2721-2725.
Weber, K. and M. Osborn. 1969. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. Journal of Biological Chemistry 244:4406-4412.
Weiss, A. and D.R. Littman. 1994. Signal transduction by lymphocyte antigen receptors. Cell 76:263-274.
Wickham, M., R. Faulks, and C. Mills. 2009. In vitro digestion methods for assessing the effect of food structure on allergen breakdown. Molecular nutrition & food research 53:952-958.
Wu, J.Y., C.H. Chen, W.H. Chang, K.T. Chung, Y.W. Liu, F.J. Lu, and C.H. Chen. 2011. Anti-cancer effects of protein extracts from calvatia lilacina, pleurotus ostreatus and volvariella volvacea. Evidence-Based Complementary and Alternative Medicine 2011.
Wu, M., M. Hsu, C. Huang, H. Fu, C. Huang, and C. Yang. 2007. A 2.0 å structure of gmi, a member of the fungal immunomodulatory protein family from ganoderma microsporum. Protein crystallogr 2:132.
Wynn, T.A., A. Chawla, and J.W. Pollard. 2013. Macrophage biology in development, homeostasis and disease. Nature 496:445.
Xu, X.F., H.D. Yan, J. Chen, and X.W. Zhang. 2011. Bioactive proteins from mushrooms. Biotechnology Advances 29:667-674.
Yeh, C.M., C.K. Yeh, X.Y. Hsu, Q.M. Luo, and M.Y. Lin. 2008. Extracellular expression of a functional recombinant ganoderma lucidium immunomodulatory protein by bacillus subtilis and lactococcus lactis. Applied and environmental microbiology 74:1039-1049.
Zhou, X., M. Xie, F. Hong, and Q.-Z. Li. 2009. Genomic cloning and characterization of a fip-gsi gene encoding a fungal immunomodulatory protein from ganoderma sinense. International journal of medicinal mushrooms 11:77-86.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69511-
dc.description.abstract草菇 (Volvariella volvacea) 為光炳菇科 (Pluteaceae) 小包腳菇屬 (Volvariella) 真菌,文獻指出新鮮草菇子實體中分離出的草菇免疫調節蛋白 (Fungal immunomodulatory protein—Volvariella volvacea, FIP-vvo) ,其分子量為12.7 kDa,由112個胺基酸所組成,並對小鼠脾細胞具有免疫調節活性。本研究以新方法純化 FIP-vvo,並研究其生物可及性與對小鼠免疫細胞的調控活性。第一部分探討熱、酸鹼與胃腸環境對FIP-vvo的影響,結果發現FIP-vvo在 20-90°C與pH 2-11中依然具有凝血活性 (hemagglutination activity),為熱與酸鹼穩定的蛋白質。在個別模擬胃及腸道消化模式中,FIP-vvo僅部分被胃蛋白酶消化,而不會被胰酶消化;於模擬連續式胃腸道模式中,經由胃及腸道各消化兩小時後,FIP-vvo並不會降解。第二部分探討FIP-vvo對小鼠免疫細胞的調節活性,結果顯示FIP-vvo與小鼠腹腔巨噬細胞及脾細胞中子細胞群 CD3+、CD4+、CD8+ 和CD45R/B220+ 的細胞表面有顯著結合能力。FIP-vvo與小鼠腹腔巨噬細胞共培養,並不會有促細胞增生作用,且對細胞表面CD80、CD86和MHC class II的表現沒有顯著影響,僅在高濃度FIP-vvo的刺激下,小鼠巨噬細胞會產生IL-10和TNF-α。然而,FIP-vvo與小鼠CD90.2+ T 細胞共培養,會促進T細胞增生比例高達50%,也會增強T細胞表面分子標記CD25、CD28和CD69的表現,分別上升95.9%、47.3% 與96%,且經由FIP-vvo刺激的小鼠CD90.2+ T細胞會產生細胞激素IFN-γ、IL-2、IL-4、IL-10、IL-13和TNF-α。FIP-vvo 也能直接促進T細胞子群中的輔助CD4+ T細胞與毒殺CD8+ T細胞的增生與IFN-γ 的產生,且會增強CD4+ T細胞中T-bet、GATA-3和Foxp3的mRNA的表現,分別增加18、5.5與2倍,但不會對RORγt的基因表現有影響,表示FIP-vvo對小鼠T細胞的活化作用包含Th1、Th2與Treg細胞。最後,測定FIP-vvo於小鼠CD19+ B細胞的影響,結果顯示FIP-vvo能夠促進小鼠CD19+ B細胞增生,並且增強細胞表面CD25、CD28、CD40、CD69、CD80、CD86和MHC class II的表現。而受FIP-vvo刺激的小鼠CD19+ B細胞會產生IL-2和TNF-α 這兩種細胞激素。以上結果顯示FIP-vvo 對T細胞與B細胞均具有活化作用,可作為未來研究FIP-vvo對此兩種細胞的活化機制的基礎。zh_TW
dc.description.abstractVolvariella volvacea is an edible paddy straw mushroom, belonging to the family of Pluteaceae and the genus of Volvariella. FIP-vvo has been reported as an immunomodulatory protein isolated from V. volvacea and been proved that it could induce cytokine gene expression and proliferation of murine splenocytes. The aim of this study was to find a new way to purify FIP-vvo, and to investigate its bioaccessibility and immunomodulatory functions toward different murine immune cells, such as macrophages, T cells and B cells.
First, we tested the bioaccessibility of FIP-vvo. The results indicated that FIP-vvo was not a glycoprotein and showed hemagglutination activity (HA) against red blood cells of BALB/c mice. The HA of FIP-vvo was stable between 20 and 90°C and also maintained between pH 2 to 11. Moreover, FIP-vvo was partially digested by pepsin in simulated gastric fluid (SGF), but not digested by pancreatin in simulated intestinal fluid (SIF). After two-step stimulated gastrointestinal digestion, FIP-vvo still remained un-digested within 120 minutes. Second, the immunomodulatory function on the immune cells was examined. FIP-vvo exhibited significant binding to peritoneal macrophages and also showed strong binding capability to CD3, CD4, CD8 and CD45R/B220 subpopulations of the splenocytes. These results demonstrated that FIP-vvo might have the ability to activate macrophages, T cells and B cells. Therefore, the mitogenic potential of FIP-vvo on these immune cells was examined, and the cytokines production and the expression of surface markers of these cells were further observed. It was found that FIP-vvo could not induce the proliferation of peritoneal macrophages and did not enhance the CD80, CD86 and MHC class II expression. FIP-vvo could not stimulate NO and IL-10 production by murine peritoneal macrophages, but showed significant TNF-α production when the concentration of FIP-vvo was higher than 2.5 μg/mL. Moreover, the results of influence on T cells indicated that 0.63 μg/mL FIP-vvo induced 50% CD90.2+ T cell proliferation and stimulated IFN-γ, IL-2, IL-4, IL-10, IL-13 and TNF-α production. FIP-vvo also up-regulated CD25, CD28 and CD69 expression, which increased by 95.9%, 47.3% and 96.0%, respectively. T cells were subdivided into CD4+ and CD8+ T cell subsets and FIP-vvo could induce both CD4+ and CD8+ T cells proliferation and IFN-γ production. CD4+ T cells were also subdivided to Th1, Th2, Th17 and Treg cells; FIP-vvo could enhance the mRNA level of T-bet by 18-fold, GATA-3 by 5.5-fold, Foxp3 by 2-fold but not influence on RORγt gene expression. Finally, the effect of FIP-vvo on B cells proliferation and activation was explored. FIP-vvo could directly induce approximately 80% of murine CD19+ B cells proliferation and CD19+ B cells stimulated by FIP-vvo produced IL-2 and TNF-α but could not produce IFN-γ, IL-4 and IL-10. FIP-vvo up-regulated the expressions of CD25 and CD69, increasing by 24.82% and 60.9%, respectively, and expression level of CD40, CD80, CD86 and MHC II also increased by 60.9%, 41.9%, 10.0% and 19.3%, respectively. These results built up a basis for further research regarding activation mechanism on macrophages, T cells and B cells by FIP-vvo.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:17:48Z (GMT). No. of bitstreams: 1
ntu-107-R05628206-1.pdf: 3866411 bytes, checksum: f5ec4362dbcf8d8b3627483fbaa73083 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書-----------------------------------------i
致謝--------------------------------------------------ii
摘要--------------------------------------------------iv
Abstract----------------------------------------------vi
Content-----------------------------------------------viii
List of figures---------------------------------------xii
Chapter 1. Introduction--------------------------1
1.1. Volvariella volvacea and its bioactivities----1
1.1.1. Overview of Volvariella volvacea--------------1
1.1.2. Bioactive functions of V. volvacea------------2
1.2. Fungal immunomodulatory proteins--------------4
1.2.1. Overview of FIPs------------------------------4
1.2.2. Immunomodulatory function of FIP-vvo----------5
1.3. Activation of innate and adaptive immune responses -----6
1.3.1. Activation of innate immune response----------6
1.3.2. Activation of adaptive immune response--------8
1.3.2.1. T cell immunology---------------------8
1.3.2.2. B cell immunology---------------------10
1.4. Objective of this study-----------------------11
Chapter 2. Methods-------------------------------12
2.1. Purification and biochemical characteristics of FIP-vvo-----12
2.1.1. Purification of FIP-vvo-----------------------12
2.1.2. Molecular weight determination----------------13
2.1.3. Schiff’s staining of FIP-vvo------------------14
2.1.4. Hemagglutination activity assay---------------14
2.2. Bioaccessibility evaluation assay-------------15
2.2.1. Simulated gastric fluid (SGF) digestion of partially purified FIP-vvo----------------------------15
2.2.2. Simulated intestinal fluid (SIF) digestion of partially purified FIP-vvo----------------------------15
2.2.3. Simulated gastrointestinal digestion on partially purified FIP-vvo--------------------------------------16
2.3. Animals---------------------------------------16
2.4. Preparation and stimulation of murine splenocytes -----17
2.5. BrdU incorporation assay----------------------17
2.6. Determination of cytokine production in splenocytes-------------------------------------------18
2.7. Macrophages and lymphocytes binding study-----19
2.8. Effect of FIP-vvo on macrophages activation and proliferation-----------------------------------------19
2.8.1. Peritoneal macrophages purification and CFSE staining----------------------------------------------19
2.8.2. Determination of surface marker expression in peritoneal macrophages--------------------------------21
2.8.3. Determination of cytokine production in peritoneal macrophages-------------------------------------------21
2.9. T cells proliferation and activation induced by FIP-vvo-----------------------------------------------22
2.9.1. Splenic T lymphocytes purification and CFSE staining----------------------------------------------22
2.9.2. Determination of surface marker expression in T cells-------------------------------------------------23
2.9.3. Determination of cytokine production in T cells-----24
2.9.4. RNA isolation and quantitative real-time PCR--24
2.10. B cells proliferation and activation induced by FIP-vvo-----------------------------------------------26
2.10.1. Splenic B lymphocytes purification and CFSE staining----------------------------------------------26
2.10.2. Determination of surface marker expression in B cells--------------------------------------------------26
2.10.3. Determination of cytokine production in B cells-----27
2.11. Statistical analysis---------------------------27
Chapter 3. Results--------------------------------29
3.1. Purification of FIP-vvo 29
3.2. Induction of murine splenocytes activation and proliferation by FIP-vvo-------------------------------29
3.3. Characterization of FIP-vvo--------------------30
3.4. Bioaccessibility of FIP-vvo--------------------31
3.4.1. Stability of FIP-vvo against SGF digestion----31
3.4.2. Stability of FIP-vvo against SIF digestion----32
3.4.3. Stability of FIP-vvo against simulated gastrointestinal digestion-----------------------------32
3.5. The binding affinity between FIP-vvo and peritoneal macrophages or subpopulations of splenocytes-----33
3.6. The effect of FIP-vvo on peritoneal macrophages activation---------------------------------------------33
3.6.1. The effect of FIP-vvo on surface marker expression in peritoneal macrophages------------------------------34
3.6.2. The effect of FIP-vvo on cytokine production in peritoneal macrophages---------------------------------34
3.7. Induction of CD90.2+ T cells proliferation and activation by FIP-vvo----------------------------------35
3.7.1. Induction of CD90.2+ T cells proliferation by FIP-vvo----------------------------------------------------35
3.7.2. Activation of surface marker expression in CD90.2+ T cells by FIP-vvo-------------------------------------35
3.7.3. Induction of cytokine production of CD90.2+ T cells by FIP-vvo---------------------------------------36
3.7.4. Induction of proliferation and IFN-γ production in CD4+ and CD8+ T cells by FIP-vvo-----------------------37
3.7.5. The effect of FIP-vvo on transcription factor expression in CD4+ T cells-----------------------------38
3.8. Induction of CD19+ B cells proliferation and activation by FIP-vvo----------------------------------38
3.8.1. Induction of CD19+ B cells proliferation by FIP-vvo----------------------------------------------------38
3.8.2. Activation of surface marker expression in CD19+ B cells by FIP-vvo---------------------------------------39
3.8.3. Induction of IgM antibody and cytokine production of CD19+ B cells by FIP-vvo----------------------------39
Chapter 4. Discussion-----------------------------41
4.1. Characterization and bioaccessibility of FIP-vvo -----41
4.2. The binding affinity of FIP-vvo on peritoneal macrophages and subpopulations of splenocytes----------44
4.3. Incapableness of FIP-vvo in activating peritoneal macrophages--------------------------------------------46
4.4. Induction of T cells proliferation and activation by FIP-vvo---------------------------------------------47
4.5. Induction of B cells proliferation and activation FIP-vvo-----52
Chapter 5. Conclusion-----------------------------55
References---------------------------------------------56
Figures------------------------------------------------67
Supplementary figure-----------------------------------94
dc.language.isoen
dc.subject草菇zh_TW
dc.subject免疫調節蛋白zh_TW
dc.subject生物可及性zh_TW
dc.subject免疫調節功能zh_TW
dc.subjectT細胞zh_TW
dc.subjectB細胞zh_TW
dc.subjectB cellen
dc.subjectVolvariella volvaceaen
dc.subjectfungal immunomodulatory proteinen
dc.subjectbioaccessibilityen
dc.subjectimmunomodulatory functionen
dc.subjectT cellen
dc.title草菇免疫調節蛋白之生物可及性與其對小鼠免疫細胞的影響zh_TW
dc.titleBioaccessibility and Immune Function of Fungal Immunomodulatory Protein FIP-vvoen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周志輝,繆希椿,蘇南維
dc.subject.keyword草菇,免疫調節蛋白,生物可及性,免疫調節功能,T細胞,B細胞,zh_TW
dc.subject.keywordVolvariella volvacea,fungal immunomodulatory protein,bioaccessibility,immunomodulatory function,T cell,B cell,en
dc.relation.page94
dc.identifier.doi10.6342/NTU201801230
dc.rights.note有償授權
dc.date.accepted2018-07-02
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved