請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69481完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊哲人(Jer-Ren Yang) | |
| dc.contributor.author | Ya-Chu Yu | en |
| dc.contributor.author | 虞雅筑 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:16:55Z | - |
| dc.date.available | 2023-07-30 | |
| dc.date.copyright | 2018-07-30 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-03 | |
| dc.identifier.citation | [1] T. Araki, M. Enomoto, K. Shibata, Microstructural aspects of bainitic and bainite-like ferritic structures of continuously cooled low carbon (< 0.1%) HSLA steels, Materials Transactions, JIM 32(8) (1991) 729-736.
[2] W. EA, The γ→ α transformation in low carbon irons, ISIJ international 34(8) (1994) 615-630. [3] J.-m. Lee, K. Shibata, K. Asakura, Y. Masumoto, Observation of γ→ α transformation in ultralow-carbon steel under a high temperature optical microscope, ISIJ international 42(10) (2002) 1135-1143. [4] H. Aaronson, S. Mahajan, G. Purdy, M. Hall, Origins of internal structure in massive transformation products, Metallurgical and Materials Transactions A 33(8) (2002) 2347-2351. [5] P. Cizek, B. Wynne, C. Davies, B. Muddle, P. Hodgson, Effect of composition and austenite deformation on the transformation characteristics of low-carbon and ultralow-carbon microalloyed steels, Metallurgical and Materials Transactions A 33(5) (2002) 1331-1349. [6] T. Massalski, Massive transformations revisited, Metallurgical and Materials Transactions A 33(8) (2002) 2277-2283. [7] K. Iakoubovskii, K. Mitsuishi, Y. Nakayama, K. Furuya, Thickness measurements with electron energy loss spectroscopy, Microscopy research and technique 71(8) (2008) 626-631. [8] H. Meltzman, Y. Kauffmann, P. Thangadurai, M. Drozdov, M. Baram, D. Brandon, W. Kaplan, An experimental method for calibration of the plasmon mean free path, Journal of microscopy 236(3) (2009) 165-173. [9] K. Ohshima, K. Kaneko, T. Fujita, Z. Horita, Determination of absolute thickness and mean free path of thin foil specimen by ζ-factor method, Journal of electron microscopy 53(2) (2004) 137-142. [10] P. Potapov, The experimental electron mean-free-path in Si under typical (S) TEM conditions, Ultramicroscopy 147 (2014) 21-24. [11] B. Wei, N. Yan, J. Gao, D. Li, Z. Shang, K. He, Absolute thickness measurement of pyrolytic graphite spheroids by STEM-EELS, Micron 91 (2016) 41-48. [12] C.W. Lee, Y. Ikematsu, D. Shindo, Measurement of mean free paths for inelastic electron scattering of Si and SiO2, Journal of electron microscopy 51(3) (2002) 143-148. [13] M. Krawczyk, A. Jablonski, S. Tougaard, J. Toth, D. Varga, G. Gergely, The inelastic mean free path and the inelastic scattering cross-section of electrons in GaAs determined from highly resolved electron energy spectra, Surface science 402 (1998) 491-495. [14] H. Bhadeshia, R. Honeycombe, Steels: microstructure and properties, Butterworth-Heinemann2017. [15] G. Krauss, S.W. Thompson, Ferritic microstructures in continuously cooled low-and ultralow-carbon steels, ISIJ international 35(8) (1995) 937-945. [16] K. Shibata, K. Asakura, Transformation behavior and microstructures in ultra-low carbon steels, ISIJ international 35(8) (1995) 982-991. [17] D. Dunne, Ferrite morphology and residual phases in continuously cooled low carbon steels, Materials Forum, 1999, pp. 63-76. [18] A. Phillips, The alpha-beta transformation in brass, TRANS METALL SOC AIME 89 (1930) 194-202. [19] A.B. Greninger, The martensite transformation in beta copper-aluminum alloys, AIME TRANS 133 (1939) 204-227. [20] H. Aaronson, V. Vasudevan, General discussion session of the symposium on “The mechanisms of the massive transformation”, Metallurgical and Materials Transactions A 33(8) (2002) 2445-2470. [21] M. Hillert, Thermodynamics of the massive transformation, Metallurgical Transactions A 15(3) (1984) 411-419. [22] T. Massalski, Distinguishing features of massive transformations, Metallurgical Transactions A 15(3) (1984) 421-425. [23] M. Hillert, Critical limit for massive transformation, Metallurgical and Materials Transactions A 33(8) (2002) 2299-2308. [24] M. Hillert, Diffusion and interface control of reactions in alloys, Metallurgical Transactions A 6(1) (1975) 5-19. [25] W. Leslie, The Physical Metallurgy of Steels, McGrow-Hill, Inc., New York 64 (1981). [26] S. Dey, E. Bouzy, A. Hazotte, EBSD characterisation of massive γ nucleation and growth in a TiAl-based alloy, Intermetallics 14(4) (2006) 444-449. [27] M. Plichta, W. Clark, H. Aaronson, The nucleation kinetics, crystallography, and mechanism of the massive transformation, Metallurgical Transactions A 15(3) (1984) 427-435. [28] J. Caretti, J. Kittl, H. Bertorello, On the crystallography of the β→ ζm massive transformation in cu-23.7 at.% ga alloys, Acta Metallurgica 31(2) (1983) 317-323. [29] M. Hillert, M. Jarl, A thermodynamic analysis of the iron-nitrogen system, Metallurgical Transactions A 6(3) (1975) 553. [30] M. Hillert, Nature of massive transformation, Metallurgical and Materials Transactions A 35(1) (2004) 351-352. [31] K. Lücke, K. Detert, A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities, Acta Metallurgica 5(11) (1957) 628-637. [32] S. Bhattacharyya, J. Perepezko, T. Massalski, Nucleation during continuous cooling—application to massive transformations, Acta Metallurgica 22(7) (1974) 879-886. [33] F. Xiao, B. Liao, D. Ren, Y. Shan, K. Yang, Acicular ferritic microstructure of a low-carbon Mn–Mo–Nb microalloyed pipeline steel, Materials Characterization 54(4-5) (2005) 305-314. [34] J. Kittl, T. Massalski, A cinematographic study of the massive transformation in Cu Ga alloys, Acta Metallurgica 15(2) (1967) 161-180. [35] G. Speich, P. Swann, Yield strength and transformation substructure of quenched iron-nickel alloys, Journal of the iron and steel institute 203 (1965) 480-&. [36] A. Hultgren, B. Herrlander, Hot Deformation Structures, Veining and Red-shortness Cracks in Iron and Steel, TRANSACTIONS OF THE AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS 172 (1947) 493-509. [37] G. Baro, H. Gleiter, J. Perepezko, T. Massalski, Electron Microscope Observations of the Beta to Zeta Phase Transformation in the Ag-Al System, Mater. Sci. Eng. 22(2) (1976) 171-176. [38] Y. Liu, F. Sommer, E. Mittemeijer, Abnormal austenite–ferrite transformation behaviour of pure iron, Philosophical Magazine 84(18) (2004) 1853-1876. [39] Y. Liu, F. Sommer, E. Mittemeijer, The austenite–ferrite transformation of ultralow-carbon Fe–C alloy; transition from diffusion-to interface-controlled growth, Acta materialia 54(12) (2006) 3383-3393. [40] S. Shanmugam, R. Misra, J. Hartmann, S. Jansto, Microstructure of high strength niobium-containing pipeline steel, Materials Science and Engineering: A 441(1-2) (2006) 215-229. [41] M. Roberts, Effect of transformation substructure on the strength and toughness of Fe− Mn alloys, Metallurgical Transactions 1(12) (1970) 3287-3294. [42] D.B. Williams, C.B. Carter, The transmission electron microscope, Transmission electron microscopy, Springer1996, pp. 3-17. [43] A. Nakafuji, Y. Murakami, D. Shindo, Effect of diffraction condition on mean free path determination by EELS, Journal of Electron Microscopy 50(1) (2001) 23-28. [44] R. Egerton, S. Cheng, Measurement of local thickness by electron energy-loss spectroscopy, Ultramicroscopy 21(3) (1987) 231-244. [45] H.-R. Zhang, R.F. Egerton, M. Malac, Local thickness measurement through scattering contrast and electron energy-loss spectroscopy, Micron 43(1) (2012) 8-15. [46] R.F. Egerton, Electron energy-loss spectroscopy in the TEM, Reports on Progress in Physics 72(1) (2008) 016502. [47] R.F. Egerton, Electron energy-loss spectroscopy in the electron microscope, Springer Science & Business Media2011. [48] T. Malis, S. Cheng, R. Egerton, EELS log‐ratio technique for specimen‐thickness measurement in the TEM, Microscopy Research and Technique 8(2) (1988) 193-200. [49] Y.-Y. Yang, R. Egerton, Tests of two alternative methods for measuring specimen thickness in a transmission electron microscope, Micron 26(1) (1995) 1-5. [50] A. Standard, E112: Standard Test Methods for Determining Average Grain Size, West Conshocken (1996). [51] J. Yang, H. Bhadeshia, The dislocation density of acicular ferrite in steel welds, Welding Research Supplement 69(8) (1990) 305-307. [52] D.R. Mitchell, Determination of mean free path for energy loss and surface oxide film thickness using convergent beam electron diffraction and thickness mapping: a case study using Si and P91 steel, Journal of microscopy 224(2) (2006) 187-196. [53] P. Kelly, A. Jostsons, R. Blake, J. Napier, The determination of foil thickness by scanning transmission electron microscopy, Physica status solidi (a) 31(2) (1975) 771-780. [54] C. Mesplont, J.Z. Zhao, S. Vandeputte, B.C. De Cooman, An improved method for determining the continuous cooling transformation diagram of C‐Mn steels, steel research international 72(7) (2001) 263-270. [55] G. Xu, L. Wan, S. Yu, L. Liu, F. Luo, A new method for accurate plotting continuous cooling transformation curves, Materials Letters 62(24) (2008) 3978-3980. [56] H.-S. Yang, H. Bhadeshia, Uncertainties in dilatometric determination of martensite start temperature, Materials Science and Technology 23(5) (2007) 556-560. [57] R. Petrov, L. Kestens, Y. Houbaert, Characterization of the microstructure and transformation behaviour of strained and nonstrained austenite in Nb–V-alloyed C–Mn steel, Materials Characterization 53(1) (2004) 51-61. [58] M. Kehoe, P. Kelly, The role of carbon in the strength of ferrous martensite, Scripta Metallurgica 4(6) (1970) 473-476. [59] S.M. Allen, Foil thickness measurements from convergent-beam diffraction patterns, Philosophical Magazine A 43(2) (1981) 325-335. [60] Q. Jin, Thickness measurements of a TEM foil and its surface layer by electron energy-loss spectroscopy, Microscopy and Microanalysis 10(S02) (2004) 882. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69481 | - |
| dc.description.abstract | 本文探討極低碳無間隙原子鋼(0.001-0.002 wt% C)的連續冷卻相變態產物。設計中空圓柱式樣進行熱膨脹儀量測以獲得到極高冷速,利用熱膨脹曲線進行分析並獲得Massive Ferrite的相變態溫度及臨界冷速。利用光學顯微鏡(optical microscopy, OM),電子背向散射繞射技術(electron backscattered diffraction, EBSD)、穿透式電子顯微鏡技術(transmission electron microscope, TEM)來了解massive ferrite的組織型態。massive ferrite中的次結構隨著冷速上升而增加,且擁有較高的差排密度。
第二部分針對材料的非彈性平均自由徑(inelastic mean free path)量測進行探討。能量散失能譜儀(electron energy-loss spectrometry)為一厚度量測之利器。本實驗利用能量散失能譜儀,在已知厚度的情況下,利用TEM與STEM模式量測非彈性散射平均自由徑之值。探討不同電子顯微鏡操作條件下,平均自由徑與各項參數之間的趨勢關係。平均自由徑在TEM與STEM模式下,皆會隨著收斂半角的上升而下降。而在STEM中匯聚角所產生的影響較為顯著,並隨著匯聚角上升,非彈性平均自由徑會隨之下降。同時,差排密度以及材料內非晶質層對平均自由徑所造成的影響也在研究中被探討。 | zh_TW |
| dc.description.abstract | Ultra-low carbon IF steels (0.001-0.002 wt% C) were studied in the present research. Hollow cylinder specimens were used to obtain rapid cooling by the high resolution dilatometer. The transformation mechanism was analyzed by dilatometric measurement. The transformation temperature of massive ferrite and the critical cooling rate in corresponding steel were obtained. Optical microscopy (OM), electron backscattered diffraction (EBSD), and transmission electron microscope (TEM) were used to realize the effects of cooling rate and characterize grain morphologies of massive ferrite. The fraction of massive ferrite, containing lots amount of substructure, increases with the cooling rate. Dislocation density of massive ferrite was measured and is higher than that in polygonal ferrite.
In the second part, the research focuses on the inelastic mean free path measurement by using electron energy-loss spectrometry (EELS). Log-ratio method is used widely in the thickness measurement. The inelastic mean free path was measured under both TEM and STEM mode. Different experimental conditions were operated. The mean free path decreases with the increasing of semi-collection angle in both TEM and STEM mode. The convergent angle effect is more significant under STEM mode, and the results show that lager convergent angle make the mean free path small. The effects of dislocation and amorphous layer have also been revealed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:16:55Z (GMT). No. of bitstreams: 1 ntu-107-R05527036-1.pdf: 6263400 bytes, checksum: 9d05b97b2787a8aa176512a5eb051779 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iv ABSTRACT v CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xv Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Formation of Ferritic Structure by Continuous Cooling Process in Ultra-low Carbon Steel 3 2.1.1 Phase Transformation 3 2.1.2 The Microstructures Formed in Ultra-low Carbon Steels 5 2.1.3 Massive Transformation 7 2.2 Feature of Massive Transformation 8 2.2.1 Composition Invariant 8 2.2.2 Fast Growing 9 2.2.3 Orientation Free 10 2.2.4 Interface-Controlled Diffusional Transformation 12 2.2.5 High Dislocation Density and Sub-structures 14 2.2.6 Characterization of Massive Ferrite 15 2.3 Thickness Measurement by Electron Energy Loss Spectrum 19 2.3.1 Log-ratio Method 19 2.3.2 Measurement of Absolutely Thickness 22 Chapter 3 Experimental Procedure 27 3.1 Heat Treatment in Dilatometer 27 3.2 Optical Microscopy (OM) 28 3.3 Vickers Hardness Test 28 3.4 Electron Back-Scattered Diffraction (EBSD) 28 3.5 Focus Ion Bean (FIB) 29 3.6 Transmission electron microscope (TEM) Observation 30 3.6.1 Dislocation Observation by (S)TEM 30 3.6.2 Electron Energy Loss Spectrum (EELS) 33 3.6.3 Thickness Determination Using CBED 33 Chapter 4 Microstructure Analysis of Continuous Cooled IF Steel 35 4.1 Experimental 35 4.2 Results and Discussion 37 4.2.1 Morphology of Continuous Cooled IF Steel 37 4.2.2 Dilatometric Measurement 39 4.2.3 Determination of Continuous Cooling Transformation Diagram 40 4.2.4 Hardness Test of Continuous Cooled IF Steel 48 4.2.5 EBSD analysis of Massive Ferrite 49 4.2.6 TEM Observation and Dislocation Density Measurement of Massive Ferrite 56 4.3 Summary 58 Chapter 5 Determination of Inelastic Scattering Plasmon Mean Free Path of IF Steel 59 5.1 Experimental 59 5.1.1 Specimen preparation 59 5.1.2 Determination of Semi-Collection Angle and Convergent Angle 65 5.2 Results and discussion 68 5.2.1 IMFP Observation under TEM mode 68 5.2.2 IMFP Observation under STEM mode 73 5.2.3 Dislocations Effect on IMFP 75 5.2.4 Amorphous layer effects on IMFP 77 5.3 Summary 80 Chapter 6 General Conclusions 82 Chapter 7 Future work 84 REFERENCE 85 | |
| dc.language.iso | en | |
| dc.subject | 極低碳鋼 | zh_TW |
| dc.subject | 塊狀肥粒鐵 | zh_TW |
| dc.subject | 塊狀相變化 | zh_TW |
| dc.subject | 熱膨脹儀 | zh_TW |
| dc.subject | 能量散失能譜儀 | zh_TW |
| dc.subject | 非彈性平均自由徑 | zh_TW |
| dc.subject | 對數比例法 | zh_TW |
| dc.subject | massive ferrite | en |
| dc.subject | inelastic mean free path | en |
| dc.subject | log-ratio method | en |
| dc.subject | massive transformation | en |
| dc.subject | ultra-low carbon steel | en |
| dc.subject | electron energy-loss spectrometry | en |
| dc.subject | dilatometer | en |
| dc.title | 無間隙原子鋼之連續冷卻相變態組織分析及差排密度量測 | zh_TW |
| dc.title | Microstructure of Continuous Cooled Interstitial-Free Steel and the Determination of Dislocation Density | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王星豪,邱傳聖,陳志遠 | |
| dc.subject.keyword | 極低碳鋼,塊狀肥粒鐵,塊狀相變化,熱膨脹儀,能量散失能譜儀,非彈性平均自由徑,對數比例法, | zh_TW |
| dc.subject.keyword | ultra-low carbon steel,massive ferrite,massive transformation,dilatometer,electron energy-loss spectrometry,inelastic mean free path,log-ratio method, | en |
| dc.relation.page | 87 | |
| dc.identifier.doi | 10.6342/NTU201801193 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-03 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 6.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
