Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69454
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許輔(Fuu Sheu)
dc.contributor.author"Chieh-Lun, Ho"en
dc.contributor.author何潔倫zh_TW
dc.date.accessioned2021-06-17T03:16:08Z-
dc.date.available2021-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-04
dc.identifier.citation吳承蒲。2000。Bacillus kaustophilus thermostable leucine amiopeptidase基因的選殖、表現及酵素特性分析。國立中興大學分子生物學研究所碩士論文。
陳俊彰。2002。Aspergillus oryzae與Aspergillus sojae leucine aminopeptidase 基因的調控,特性與表現。國立中興大學分子生物學研究所碩士論文。
粘立慈。2008。利用豬後腿肉酵素水解物作為基質供中式調味料之研究。國立台灣大學動物科學技術學研究所碩士論文。
郭興峰、魏芳、周祥山、田守生、劉海峰、張建嶺、郭曉飛。2017。苦味肽的形成機理及脫苦技術研究進展。食品研究與開發。38(21): 207-211。
葉采青。2018。改善米蛋白水解物的水溶性與苦味減量之研究。國立台灣大學園藝暨景觀學系研究所碩士論文。
Adler-Nissen, J. (1976). Enzymic hydrolysis of proteins for increased solubility. Journal of Agricultural and Food Chemistry, 24(6), 1090-1093.
Arai, S., Noguchi, M., Kurosawa, S., Kato, H., & Fujimaki, M. (1970). Applying Proteolytic Enzymes on Soybean. VI. Deodorization Effect of Aspergillopeptidase A and Debittering Effect of Aspergillus Acid Carboxypeptidase. Agricultural and Biological Chemistry, 35(4), 392-395.
Arima, J., Uesugi, Y., Uraji, M., Yatsushiro, S., Tsuboi, S., Iwabuchi, M., & Hatanaka, T. (2006). Modulation of Streptomyces leucine aminopeptidase by calcium - Identification and functional analysis of key residues in activation and stabilization by calcium. The Journal of Biological Chemistry, 281, 5885-5894.
Belitz, H. D., & Wieser, H. (1985). Bitter compounds: Occurrence and structure‐activity relationships. Food Reviews International, 1(2), 271-354.
Bhosale, M., Pande, S., Kumar, A., Kairamkonda, S., & Nandi, D. (2010). Characterization of two M17 family members in Escherichia coli, Peptidase A and Peptidase B. Biochemical and Biophysical Research Communications, 395(1), 76-81.
Blinkovsky, A. M., Byun, T., Brown, K. M., Golightly, E. J., & Klotz, A. V. (2000). A non-specific aminopeptidase from Aspergillus. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1480(1), 171-181.
Borgstrom, B., Dahlqvist, A., Lundh, G., & Sjovall, J. (1957). Studies of intestinal digestion and absorption in the human. The Journal of Clinical Investigation, 36(10), 1521-1536.
Çelik, E., & Çalık, P. (2012). Production of recombinant proteins by yeast cells. Biotechnology Advances, 30(5), 1108-1118.
Chaerkady, R., & Sharma, K. K. (2004). Characterization of a Bradykinin-Hydrolyzing Protease from the Bovine Lens. Investigative Ophthalmology & Visual Science, 45(4), 1214-1223.
Cherry, J. R., & Fidantsef, A. L. (2003). Directed evolution of industrial enzymes: an update. Current Opinion in Biotechnology, 14(4), 438-443.
Chien, H.-C. R., Lin, L.-L., Chao, S.-H., Chen, C.-C., Wang, W.-C., Shaw, C.-Y., Tsai, Y.-C., Hu, H.-Y., & Hsu, W.-H. (2002). Purification, characterization, and genetic analysis of a leucine aminopeptidase from Aspergillus sojae. Gene Structure and Expression, 1576(1-2), 119-126.
Chou, C. P. (2007). Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Applied Microbiology and Biotechnology, 76(3), 521-532.
Clemente, A. (2000). Enzymatic protein hydrolysates in human nutrition. Trends in Food Science & Technology, 11(7), 254-262.
Demain, A. L., & Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances, 27(3), 297-306.
Edens, L., Dekker, P., van der Hoeven, R., Deen, F., de Roos, A., & Floris, R. (2005). Extracellular Prolyl Endoprotease from Aspergillus niger and Its Use in the Debittering of Protein Hydrolysates. Journal of Agricultural and Food Chemistry, 53(20), 7950-7957.
Fedorova, N. D., Khaldi, N., Joardar, V. S., Maiti, R., Amedeo, P., Anderson, M. J., Crabtree, J., Silva, J. C., Badger, J. H., Albarraq, A., Angiuoli, S., Bussey, H., Bowyer, P., Cotty, P. J., Dyer, P. S., Egan, A., Galens, K., Fraser-Liggett, C. M., Haas, B. J., Inman, J. M., Kent, R., Lemieux, S., Malavazi, I., Orvis, J., Roemer, T., Ronning, C. M., Sundaram, J. P., Sutton, G., Turner, G., Venter, J. C., White, O. R., Whitty, B. R., Youngman, P., Wolfe, K. H., Goldman, G. H., Wortman, J. R., Jiang, B., Denning, D. W., & Nierman, W. C. (2008). Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. Plos Genetics, 4(4), e1000046.
Fischer, B. E. (1994). Renaturation Of Recombinant Proteins Produced As Inclusion-Bodies. Biotechnology Advances, 12(1), 89-101.
Fowler, J. H., Narvaez-Vasquez, J., Aromdee, D. N., Pautot, V., Holzer, F. M., & Walling, L. L. (2009). Leucine aminopeptidase regulates defense and wound signaling in tomato downstream of jasmonic acid. Plant Cell, 21(4), 1239-1251.
García-Fruitós, E. (2012). Lactic acid bacteria: a promising alternative for recombinant protein production. Microbial Cell Factories, 11(1), 157.
Gauthier, T., Wang, X., Sifuentes Dos Santos, J., Fysikopoulos, A., Tadrist, S., Canlet, C., Artigot, M. P., Loiseau, N., Oswald, I. P., & Puel, O. (2012). Trypacidin, a Spore-Borne Toxin from Aspergillus fumigatus, Is Cytotoxic to Lung Cells. PLoS ONE, 7(2), e29906.
Gonzales, T., & Robert-Baudouy, J. (1996). Bacterial aminopeptidases: Properties and functions. FEMS Microbiology Reviews, 18, 319-344.
Grosjean, H., & Fiers, W. (1982). Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene, 18(3), 199-209.
Guenet, C., Lepage, P., & Harris, B. A. (1992). Isolation of The Leucine Aminopeptidase Gene from Aeromonas proteolytica - Evidence for An Enzyme Precursor. Journal of Biological Chemistry, 267(12), 8390-8395.
He, C., & Ohnishi, K. (2017). Efficient renaturation of inclusion body proteins denatured by SDS. Biochemical and Biophysical Research Communications, 490(4), 1250-1253.
Hernández-Moreno, A. V., Perdomo-Abúndez, F. C., Pérez-Medina Martínez, V., Luna-Bárcenas, G., Villaseñor-Ortega, F., Pérez, N. O., López-Morales, C. A., Flores-Ortiz, L. F., & Medina-Rivero, E. (2015). Structural and functional characterization of a recombinant leucine aminopeptidase. Journal of Molecular Catalysis B-Enzymatic, 113, 39-46.
Hilbish, T. J., & Koehn, R. K. (1985). The Physiological Basis of Natural Selection at the Lap Locus. Evolution, 39(6), 1302.
Hook, V., Yasothornsrikul, S., Greenbaum, D., Medzihradszky, K. F., Troutner, K., Toneff, T., Bundey, R., Logrinova, A., Reinheckel, T., Peters, C., & Bogyo, M. (2004). Cathepsin L and Arg/Lys aminopeptidase: a distinct prohormone processing pathway for the biosynthesis of peptide neurotransmitters and hormones. Biological Chemistry, 385(6), 473-480.
Huang, W.-Q., Zhong, L.-F., Meng, Z.-Z., You, Z.-J., Li, J.-Z., & Luo, X.-C. (2015). The Structure and Enzyme Characteristics of a Recombinant Leucine Aminopeptidase rLap1 from Aspergillus sojae and Its Application in Debittering. Applied Biochemistry and Biotechnology, 177(1), 190-206.
Imanaka, H., Tanaka, S., Feng, B., Imamura, K., & Nakanishi, K. (2010). Cultivation characteristics and gene expression profiles of Aspergillus oryzae by membrane-surface liquid culture, shaking-flask culture, and agar-plate culture. Journal of Bioscience and Bioengineering, 109(3), 267-273.
Ishibashi, N., Arita, Y., Kanehisa, H., Kouge, K., Okai, H., & Fukui, S. (1987). Bitterness of Leucine-Containing Peptides. Agricultural and Biological Chemistry, 51(9), 2389-2394.
Ishibashi, N., Kouge, K., Shinoda, I., Kanehisa, H., & Okai, H. (1988). A Mechanism for Bitter Taste Sensibility in Peptides. Agricultural and Biological Chemistry, 52(3), 819-827.
Ishibashi, N., Ono, I., Kato, K., Shigenaga, T., Shinoda, I., Okai, H., & Fukui, S. (1988). Role of the Hydrophobia Amino Acid Residue in the Bitterness of Peptides & dagger. Agricultural and Biological Chemistry, 52(1), 91-94.
Izawa, N., Tokuyasu, K., & Hayashi, K. (1997). Debittering of Protein Hydrolysates Using Aeromonas caviae Aminopeptidase. Journal of Agricultural and Food Chemistry, 45(3), 543-545.
Jankiewicz, U., & Bielawski, W. (2003). The properties and functions of bacterial aminopeptidases. Acta microbiologica Polonica, 52(3), 217-231.
Kanehisa, H., & Okai, H. (1984). Studies of Bitter Peptides from Casein Hydrolyzate. V. Bitterness of the Synthetic N-Terminal Analogs of des-Gly2–BPIa (Arg–Pro–Pro–Phe–Ile–Val). Bulletin of the Chemical Society of Japan, 57(1), 301-302.
Keller, S. R. (2003). The insulin-regulated aminopeptidase: a companion and regulator of GLUT4. Frontiers in Bioscience, 8, s410-420.
Khan, A. R., & James, M. N. (1998). Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Science : A Publication of the Protein Society, 7(4), 815-836.
Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology, 13(4), 345-351.
Kitamoto, K. (2002). Molecular biology of the Koji molds. Advances in Applied Microbiology, 51, 129-153.
Koo, S. H., Bae, I. Y., Lee, S., Lee, D.-H., Hur, B.-S., & Lee, H. G. (2014). Evaluation of wheat gluten hydrolysates as taste-active compounds with antioxidant activity. Journal of Food Science and Technology, 51(3), 535-542.
Kwon, S. C., Park, S. J., & Cho, J. M. (1996). Purification and properties of an intracellular leucine aminopeptidase from the fungus, Penicillium citrinum strain IFO 6352. Journal of Industrial Microbiology, 17(1), 30-35.
Le Loir, Y., Nouaille, S., Commissaire, J., Brétigny, L., Gruss, A., & Langella, P. (2001). Signal Peptide and Propeptide Optimization for Heterologous Protein Secretion in Lactococcus lactis. Applied and Environmental Microbiology, 67(9), 4119-4127.
Lee, K. D., Lo, C. G., & Warthesen, J. J. (1996). Removal of Bitterness from the Bitter Peptides Extracted from Cheddar Cheese with Peptidases from Lactococcus lactis ssp. cremoris SK111. Journal of Dairy Science, 79(9), 1521-1528.
Liu, L., Yang, H., Shin, H.-d., Chen, R. R., Li, J., Du, G., & Chen, J. (2013). How to achieve high-level expression of microbial enzymes. Bioengineered, 4(4), 212-223.
Machida, M., Asai, K., Sano, M., Tanaka, T., Kumagai, T., Terai, G., Kusumoto, K., Arima, T., Akita, O., Kashiwagi, Y., Abe, K., Gomi, K., Horiuchi, H., Kitamoto, K., Kobayashi, T., Takeuchi, M., Denning, D. W., Galagan, J. E., Nierman, W. C., Yu, J., Archer, D. B., Bennett, J. W., Bhatnagar, D., Cleveland, T. E., Fedorova, N. D., Gotoh, O., Horikawa, H., Hosoyama, A., Ichinomiya, M., Igarashi, R., Iwashita, K., Juvvadi, P. R., Kato, M., Kato, Y., Kin, T., Kokubun, A., Maeda, H., Maeyama, N., Maruyama, J., Nagasaki, H., Nakajima, T., Oda, K., Okada, K., Paulsen, I., Sakamoto, K., Sawano, T., Takahashi, M., Takase, K., Terabayashi, Y., Wortman, J. R., Yamada, O., Yamagata, Y., Anazawa, H., Hata, Y., Koide, Y., Komori, T., Koyama, Y., Minetoki, T., Suharnan, S., Tanaka, A., Isono, K., Kuhara, S., Ogasawara, N., & Kikuchi, H. (2005). Genome sequencing and analysis of Aspergillus oryzae. Nature, 438(7071), 1157-1161.
Matsui, M., Fowler, J. H., & Walling, L. L. (2006). Leucine aminopeptidases: diversity in structure and function. Biol Chem, 387(12), 1535-1544.
Matsushita-Morita, M., Tada, S., Suzuki, S., Hattori, R., & Kusumoto, K.-I. (2017). Enzymatic characterization of a novel Xaa-Pro aminopeptidase XpmA from Aspergillus oryzae expressed in Escherichia coli. Journal of Bioscience and Bioengineering, 124(5), 534-541.
Matsushita-Morita, M., Tada, S., Suzuki, S., Hattori, R., Marui, J., Furukawa, I., Yamagata, Y., Amano, H., Ishida, H., Takeuchi, M., Kashiwagi, Y., & Kusumoto, K.-I. (2011). Overexpression and Characterization of an Extracellular Leucine Aminopeptidase from Aspergillus oryzae. Current Microbiology, 62(2), 557-564.
McDonnell, M., Fitzgerald, R., Ni FhaolÁIn, I. D. E., Jennings, P. V., & O'Cuinn, G. (1997). Purification and characterization of aminopeptidase P from Lactococcus lactis subsp. cremoris. Journal of Dairy Research, 64(3), 399-407.
Meinlschmidt, P., Sussmann, D., Schweiggert-Weisz, U., & Eisner, P. (2016). Enzymatic treatment of soy protein isolates: effects on the potential allergenicity, technofunctionality, and sensory properties. Food Science & Nutrition, 4(1), 11-23.
Merz, M., Eisele, T., Berends, P., Appel, D., Rabe, S., Blank, I., Stressler, T., & Fischer, L. (2015). Flavourzyme, an Enzyme Preparation with Industrial Relevance: Automated Nine-Step Purification and Partial Characterization of Eight Enzymes. Journal of Agricultural and Food Chemistry, 63(23), 5682-5693.
Merz, M., Eisele, T., Claassen, W., Appel, D., Rabe, S., Stressler, T., & Fischer, L. (2015). Continuous long-term hydrolysis of wheat gluten using a principally food-grade enzyme membrane reactor system. Biochemical Engineering Journal, 99, 114-123.
Minagawa, E., Kaminogawa, S., Tsukasaki, F., & Yamauchi, K. (1989). Debittering mechanism in bitter peptides of enzymatic hydrolysates from milk casein by aminopeptidase T. Journal of Food Science, 54(5), 1225-1229.
Monod, M., Capoccia, S., Lechenne, B., Zaugg, C., Holdom, M., & Jousson, O. (2002). Secreted proteases from pathogenic fungi. International Journal of Medical Microbiology, 292(5-6), 405-419.
Monod, M., Lechenne, B., Jousson, O., Grand, D., Zaugg, C., Stocklin, R., & Grouzmann, E. (2005). Aminopeptidases and dipeptidyl-peptidases secreted by the dermatophyte Trichophyton rubrum. Microbiology Society Journals, 151, 145-155.
Morty, R. E., & Morehead, J. (2002). Cloning and characterization of a leucyl aminopeptidase from three pathogenic Leishmania species. The Journal of Biological Chemistry, 277(29), 26057-26065.
Nampoothiri, K. M., Nagy, V., Kovacs, K., Szakacs, G., & Pandey, A. (2005). l-leucine aminopeptidase production by filamentous Aspergillus fungi. Letter in Applied Microbiology, 41(6), 498-504.
Ney, K. H. (1979). Bitterness of Peptides: Amino Acid Composition and Chain Length. Food Taste Chemistry, 115, 149-173.
Nierman, W. C., Pain, A., Anderson, M. J., Wortman, J. R., Kim, H. S., Arroyo, J., Berriman, M., Abe, K., Archer, D. B., Bermejo, C., Bennett, J., Bowyer, P., Chen, D., Collins, M., Coulsen, R., Davies, R., Dyer, P. S., Farman, M., Fedorova, N., Fedorova, N., Feldblyum, T. V., Fischer, R., Fosker, N., Fraser, A., García, J. L., García, M. J., Goble, A., Goldman, G. H., Gomi, K., Griffith-Jones, S., Gwilliam, R., Haas, B., Haas, H., Harris, D., Horiuchi, H., Huang, J., Humphray, S., Jiménez, J., Keller, N., Khouri, H., Kitamoto, K., Kobayashi, T., Konzack, S., Kulkarni, R., Kumagai, T., Lafton, A., Latgé, J.-P., Li, W., Lord, A., Lu, C., Majoros, W. H., May, G. S., Miller, B. L., Mohamoud, Y., Molina, M., Monod, M., Mouyna, I., Mulligan, S., Murphy, L., O'Neil, S., Paulsen, I., Peñalva, M. A., Pertea, M., Price, C., Pritchard, B. L., Quail, M. A., Rabbinowitsch, E., Rawlins, N., Rajandream, M.-A., Reichard, U., Renauld, H., Robson, G. D., de Córdoba, S. R., Rodríguez-Peña, J. M., Ronning, C. M., Rutter, S., Salzberg, S. L., Sanchez, M., Sánchez-Ferrero, J. C., Saunders, D., Seeger, K., Squares, R., Squares, S., Takeuchi, M., Tekaia, F., Turner, G., de Aldana, C. R. V., Weidman, J., White, O., Woodward, J., Yu, J.-H., Fraser, C., Galagan, J. E., Asai, K., Machida, M., Hall, N., Barrell, B., & Denning, D. W. (2005). Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 438, 1151.
Nierman, W. C., Yu, J., Fedorova-Abrams, N. D., Losada, L., Cleveland, T. E., Bhatnagar, D., Bennett, J. W., Dean, R., & Payne, G. A. (2015). Genome Sequence of Aspergillus flavus NRRL 3357, a Strain That Causes Aflatoxin Contamination of Food and Feed. Genome Announcements, 3(2), e00168-00115.
Nishiwaki, T., Yoshimizu, S., Furuta, M., & Hayashi, K. (2002). Debittering of enzymatic hydrolysates using an aminopeptidase from the edible basidiomycete Grifola frondosa. Journal of Bioscience and Bioengineering, 93(1), 60-63.
Pearse, A. G. E., & Tremblay, G. (1958). Leucine aminopeptidase in rat parathyroid and its relation to parathyroid hormone production. Nature, 181(4622), 1532-1533.
Pel, H. J., de Winde, J. H., Archer, D. B., Dyer, P. S., Hofmann, G., Schaap, P. J., Turner, G., de Vries, R. P., Albang, R., Albermann, K., Andersen, M. R., Bendtsen, J. D., Benen, J. A. E., van den Berg, M., Breestraat, S., Caddick, M. X., Contreras, R., Cornell, M., Coutinho, P. M., Danchin, E. G. J., Debets, A. J. M., Dekker, P., van Dijck, P. W. M., van Dijk, A., Dijkhuizen, L., Driessen, A. J. M., d'Enfert, C., Geysens, S., Goosen, C., Groot, G. S. P., de Groot, P. W. J., Guillemette, T., Henrissat, B., Herweijer, M., van den Hombergh, J., van den Hondel, C., van der Heijden, R., van der Kaaij, R. M., Klis, F. M., Kools, H. J., Kubicek, C. P., van Kuyk, P. A., Lauber, J., Lu, X., van der Maarel, M., Meulenberg, R., Menke, H., Mortimer, M. A., Nielsen, J., Oliver, S. G., Olsthoorn, M., Pal, K., van Peij, N., Ram, A. F. J., Rinas, U., Roubos, J. A., Sagt, C. M. J., Schmoll, M., Sun, J. B., Ussery, D., Varga, J., Vervecken, W., de Vondervoort, P., Wedler, H., Wosten, H. A. B., Zeng, A. P., van Ooyen, A. J. J., Visser, J., & Stam, H. (2007). Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnology, 25(2), 221-231.
Raksakulthai, R., & Haard, N. F. (2003). Exopeptidases and Their Application to Reduce Bitterness in Food: A Review. Critical Reviews in Food Science and Nutrition, 43(4), 401-445.
Ramón, A., Señorale-Pose, M., & Marín, M. (2014). Inclusion bodies: not that bad…. Frontiers in Microbiology, 5, 56.
Ramamoorthy, V., Shantappa, S., Dhingra, S., & Calvo Ana, M. (2012). veA‐dependent RNA‐pol II transcription elongation factor‐like protein, RtfA, is associated with secondary metabolism and morphological development in Aspergillus nidulans. Molecular Microbiology, 85(4), 795-814.
Ramos, O. H. P., Carmona, A. K., & Selistre-de-Araujo, H. S. (2003). Expression, refolding, and in vitro activation of a recombinant snake venom pro-metalloprotease. Protein Expression and Purification, 28(1), 34-41.
Rinas, U., Garcia-Fruitós, E., Corchero, J. L., Vázquez, E., Seras-Franzoso, J., & Villaverde, A. (2017). Bacterial Inclusion Bodies: Discovering Their Better Half. Trends in Biochemical Sciences, 42(9), 726-737.
Rogl, H., Kosemund, K., Kühlbrandt, W., & Collinson, I. (1998). Refolding of Escherichia coli produced membrane protein inclusion bodies immobilised by nickel chelating chromatography. FEBS Letters, 432(1), 21-26.
Schoemaker, J. M., Brasnett, A. H., & Marston, F. A. (1985). Examination of calf prochymosin accumulation in Escherichia coli: disulphide linkages are a structural component of prochymosin-containing inclusion bodies. The EMBO Journal, 4(3), 775-780.
Shahravan, S. H., Qu, X., Chan, I. S., & Shin, J. A. (2008). Enhancing the specificity of the enterokinase cleavage reaction to promote efficient cleavage of a fusion tag. Protein Expression and Purification, 59(2), 314-319.
Shinoda, I., Fushimi, A., Kato, H., Okai, H., & Fukui, S. (1985). Bitter taste of synthetic c-terminal tetradecapeptide of bovine β-casein, H-Pro196-Val-Leu-Gly-Pro-Val-Arg-Gly-Pro-Phe-Pro-Ile-Ile-Val209-OH, and its related peptides. Agricultural and Biological Chemistry, 49(9), 2587-2596.
Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2016). Microbial enzymes: industrial progress in 21st century. 3 Biotech, 6(2), 174.
Singh, S. M., & Panda, A. K. (2005). Solubilization and refolding of bacterial inclusion body proteins. Journal of Bioscience and Bioengineering, 99(4), 303-310.
Solms, J. (1969). Taste of amino acids, peptides, and proteins. Journal of Agricultural and Food Chemistry, 17(4), 686-688.
Song, S., Zhang, X., Hayat, K., Huang, M., Liu, P., Karangwa, E., Gu, F., Jia, C., Xia, S., Xiao, Z., & Niu, Y. (2010). Contribution of beef base to aroma characteristics of beeflike process flavour assessed by descriptive sensory analysis and gas chromatography olfactometry and partial least squares regression. Journal of Chromatography A, 1217(49), 7788-7799.
Spriestersbach, A., Kubicek, J., Schafer, F., Block, H., & Maertens, B. (2015). Purification of His-tagged proteins. Methods in Enzymology, 559, 1-15.
Su, G., Cui, C., Zheng, L., Yang, B., Ren, J., & Zhao, M. (2012). Isolation and identification of two novel umami and umami-enhancing peptides from peanut hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS. Food Chemistry, 135(2), 479-485.
Sumantha, A., Larroche, C., & Pandey, A. (2006). Microbiology and industrial biotechnology of food-grade proteases: A perspective. Food Technology and Biotechnology, 44(2), 211-220.
Tang, B., Nirasawa, S., Kitaoka, M., & Hayashi, K. (2002). In vitro stepwise autoprocessing of the proform of pro-aminopeptidase processing protease from Aeromonas caviae T-64. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 1596(1), 16-27.
Tatsumi, H., Murakami, S., Tsuji, R. F., Ishida, Y., Murakami, K., Masaki, A., Kawabe, H., Arimura, H., Nakano, E., & Motaf, H. (1991). Cloning and expression in yeast of a cDNA clone encoding Aspergillus oryzae neutral protease II, a unique metalloprotease. Molecular and General Genetics MGG, 228(1), 97-103.
Taylor, A. (1993). Aminopeptidases: Structure and function. The FASEB Journal, 7, 290-298.
Temussi, P. A. (2012). The good taste of peptides. Journal of Peptide Science, 18(2), 73-82.
Terpe, K. (2006). Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 72(2), 211.
Toldra, F., Aristoy, M. C., & Flores, M. (2000). Contribution of muscle aminopeptidases to flavor development in dry-cured ham. Food Research International, 33(3-4), 181-185.
Ulaganathan, T., Helbert, W., Kopel, M., Banin, E., & Cygler, M. (2018). Structure-function analyses of a PL24 family ulvan lyase reveal key features and suggest its catalytic mechanism. Journal of Biological Chemistry, 293(11), 4026-4036.
Umetsu, H., & Ichishima, E. (1988). Mechanism of digestion of bitter peptides from soybean protein by wheat carboxypeptidase. Journal of Japanese Society of Food Science and Technology, 35, 440-447.
Van Wart, H. E., & Birkedal-Hansen, H. (1990). The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proceedings of the National Academy of Sciences of the United States of America, 87(14), 5578-5582.
Watanabe, M., Shimizu, J., & Arai, S. (1990). Debittering of a tryptic hydrolysate of casein by incubating with the ice nucleation-active bacterium, erwinia ananas, and its aminopeptidase at low temperature. Agricultural and Biological Chemistry, 54(12), 3351-3353.
William Shurtleff, A. A. (2012). History of Koji - Grains and/or Soybeans Enrobed with A Mold Culture.
Wortman, J. R., Gilsenan, J. M., Joardar, V., Deegan, J., Clutterbuck, J., Andersen, M. R., Archer, D., Bencina, M., Braus, G., Coutinho, P., Döhren, H. v., Doonan, J., Driessen, A. J. M., Durek, P., Espeso, E., Fekete, E., Flipphi, M., Estrada, C. G., Geysens, S., Goldman, G., de Groot, P. W. J., Hansen, K., Harris, S. D., Heinekamp, T., Helmstaedt, K., Henrissat, B., Hofmann, G., Homan, T., Horio, T., Horiuchi, H., James, S., Jones, M., Karaffa, L., Karányi, Z., Kato, M., Keller, N., Kelly, D. E., Kiel, J. A. K. W., Kim, J.-M., van der Klei, I. J., Klis, F. M., Kovalchuk, A., Kraševec, N., Kubicek, C. P., Liu, B., MacCabe, A., Meyer, V., Mirabito, P., Miskei, M., Mos, M., Mullins, J., Nelson, D. R., Nielsen, J., Oakley, B. R., Osmani, S. A., Pakula, T., Paszewski, A., Paulsen, I., Pilsyk, S., Pócsi, I., Punt, P. J., Ram, A. F. J., Ren, Q., Robellet, X., Robson, G., Seiboth, B., van Solingen, P., Specht, T., Sun, J., Taheri-Talesh, N., Takeshita, N., Ussery, D., vanKuyk, P. A., Visser, H., van de Vondervoort, P. J. I., de Vries, R. P., Walton, J., Xiang, X., Xiong, Y., Zeng, A. P., Brandt, B. W., Cornell, M. J., van den Hondel, C. A. M. J. J., Visser, J., Oliver, S. G., & Turner, G. (2009). The 2008 update of the Aspergillus nidulans genome annotation: A community effort. Fungal Genetics and Biology, 46(1, Supplement), S2-S13.
Xi, H., Tian, Y., Zhou, N., Zhou, Z., & Shen, W. (2015). Characterization of an N-glycosylated Bacillus subtilis leucine aminopeptidase expressed in Pichia pastoris. Journal of Basic Microbiology, 55(2), 236-246.
Yamaguchi, H., & Miyazaki, M. (2014). Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules, 4(1), 235-251.
Yamaguchi, S., Yamamoto, E., Mannen, T., & Nagamune, T. (2013). Protein refolding using chemical refolding additives. Biotechnology Journal, 8(1), 17-31.
Yang, H., Liu, L., Shin, H. d., Chen Rachel, R., Li, J., Du, G., & Chen, J. (2012). Comparative analysis of heterologous expression, biochemical characterization optimal production of an alkaline α‐amylase from alkaliphilic Alkalimonas amylolytica in Escherichia coli and Pichia pastoris. Biotechnology Progress, 29(1), 39-47.
Yiallouros, I., Kappelhoff, R., Schilling, O., Wegmann, F., Helms, M. W., Auge, A., Brachtendorf, G., Berkhoff, E. G., Beermann, B., Hinz, H. J., Konig, S., Peter-Katalinic, J., & Stocker, W. (2002). Activation mechanism of pro-astacin: Role of the propeptide, tryptic and autoproteolytic cleavage and importance of precise amino-terminal processing. Journal of Molecular Biology, 324(2), 237-246.
Yin, J., Li, G., Ren, X., & Herrler, G. (2007). Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. Journal of Biotechnology, 127(3), 335-347.
Yong‐Qiang, G., M., H. F., & L., W. L. (1999). Overexpression, purification and biochemical characterization of the wound‐induced leucine aminopeptidase of tomato. European Journal of Biochemistry, 263(3), 726-735.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69454-
dc.description.abstract酶解法是目前產業界常用來提升蛋白質功能性的方法,然而此處理會伴隨苦味胜肽的生成,造成蛋白水解物於食品工業上的應用限制。Aspergillus oryzae 為 GRAS (Generally recognized as safe) 菌種,廣泛使用於東方飲食,可生產改善蛋白質風味的酵素,亦為商業風味蛋白酶 Flavourzyme™ 的生產菌種。本研究選用商業複合酵素 Flavourzyme™ 中的主要酵素— M28 家族中之白胺酸胺基肽酶 A (leucine aminopeptidase A, lapA) ,並且透過 Escherichia coli 異體表現的方式,生產單一重組蛋白,期望純化出單一重組 lapA,可用於改善苦味胜肽的風味。lapA全長為1,134 bp,具337個胺基酸,經預測分析 lapA 為 pre-pro-mature 酵素結構。為確認 pro-peptide 於 lapA的必要性,分別將 pro-mature-peptide (lapAp) 與 mature-peptide (lapAm) 構築至表現載體 pET-22b(+),並轉形至 E. coli BL21 (DE3)。E. coli BL21 所表現之rHis-lapA 多為不具活性且不可溶之包涵體 (inclusion bodies) 形式,本研究利用尿素回溶包涵體,以親和性管柱進行純化,並透過氧化還原法,成功將rHis-lapAp 復性為具有白胺酸胺基肽酶活性之重組酵素,同時確認 pro-peptide 為蛋白酶形成活性之必要片段。結果顯示 rHis-lapAp 酵素比活性為 2096.02 mU/mg,其最適溫度及最適酸鹼度分別為 50℃ 與pH 6-7,並且於 30℃ 下具有熱穩定性。本研究選殖出之 lapAp 未來可進一步探討是否具改善胜肽苦味之修飾功能,而純化與復性方法可作為 LAPs M28 家族中,以 E. coli 表現胺基肽酶之案例。zh_TW
dc.description.abstractEnzymatic hydrolysis has been widely used to improve the functions of protein. However, the enzymatic treatments usually come with the formation of bitter peptides, which seriously limit the application of protein hydrolysates in food industry. Aspergillus oryzae regarded as GRAS (Generally Recognized As Safe) has a long history in the use of fermentation industry in tthe oriental diet. A. oryzae can produce enzymes that reduce the bitterness of hydrolysate. Moreover, commercial complex protease Flavourzyme™ is also derived from A. oryzae. In this study, we chose one of the major enzymes from Flavourzyme™, M28 lapA (leucine aminopeptidase A), as the target. Then lapA gene from A. oryzae ATCC 42149 was cloned and expressed in Escherichia coli system for purifying single recombinant lapA, trying to modify the flavor of protein. Full sequence of lapA was 1,134 bp, and the sequence encoded 378 amino acids residues, which predicted as a pre-pro-mature enzyme. Two truncated lapA, including lapAp (pro-mature peptide) and lapAm (mature peptide), were inserted to the expression vector pET-22b(+) and transformed into E. coli BL21 (DE3) in order to confirm the necessity of pro-peptide. Most of the recombinant rHis-lapA formed as biological inactive inclusion bodies. Hence, urea was used to solubilize inclusion bodies and rHis-lapA was purified by affinity chromatography under denaturing condition. After that, rHis-lapA was refolded and activated successfully by redox method. Meanwhile, we confirmed that pro-peptide was an essential domain for production of active lapA. Renatured rHis-lapAp had a specific activity of 2096.02 mU/mg. It exhibited great stability below 30℃ while optimum temperature and pH was observed at 50℃ and pH 6-7, respectively. This study provided supportive information for future investigation regarding the application to remove bitterness from hydrolysate. Furthermore, the purification and folding treatment of lapAp could be helpful for a better understanding of expressing M28 family LAPs in E. coli.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:16:08Z (GMT). No. of bitstreams: 1
ntu-107-R05628203-1.pdf: 5505127 bytes, checksum: 7b6fac45b3721c188cc5c6220e7071f2 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
目 錄 vi
表目錄 x
圖目錄 xi
補充資料 xiii
第一章 文獻回顧 1
第一節 胜肽的呈味 1
1.1苦味胜肽 2
第二節 以蛋白酶降低胜肽苦味之應用 3
2.1 酶簡介 3
2.2 蛋白酶簡介 4
2.3 蛋白酶修飾胜肽苦味 5
2.4 市售食品級蛋白酶 6
第三節 米麴菌 (Aspergillus oryzae) 8
第四節 蛋白質表現系統 9
4.1 Escherichia coli 11
4.2 Pichia pastoris 13
第五節 Lap 選殖與表現 14
第二章 研究動機與目的 18
第三章 材料與方法 19
第一節 商業酵素 Flavourzyme™ 分析 21
1.1 Flavourzyme™ 樣品製備 22
1.2 變性膠體製備 22
1.3 膠體電泳、染色與退染 23
第二節 米麴菌白胺酸胺基肽酶基因 (lapA) 之選殖 23
2.1引子 (primer) 設計 23
2.2 米麴菌轉錄體萃取與反轉錄聚合酶鏈鎖反應 24
2.3聚合酶鏈鎖反應 26
2.4 DNA膠體電泳分析 26
2.5 PCR產物純化 26
2.6 TA cloning 及藍白篩 27
2.7 定序分析 27
2.8 質體DNA製備 28
2.9 構築質體 pETLm、pETLp、pICLm 28
2.10 膠體純化限制酶處理片段 29
2.11 接合反應 29
2.12 DNA濃度測定 30
第三節 重組蛋白 rHis-lapA 表現 30
3.1 Escherchia coli 菌株培養與融合蛋白之表現 30
第四節 重組蛋白 rHis-lapA 純化 31
4.1 FPLC系統純化酵素粗萃上清液之rHis-lapA 32
4.1 FPLC系統純化包涵體粗萃液之rHis-lapA 32
4.3 蛋白濃度測定nano-drop 33
第五節 濕式轉印及西方墨點轉漬法 33
5.1 濕式轉印 34
5.2 西方墨點轉漬法 34
第六節 蛋白酶活性分析 Leu-pNA assay 34
6.1 蛋白質濃度測定 35
6.2 p-nitroaniline標準曲線繪製 35
6.3 酵素呈色法 35
第七節 重組蛋白 rHis-lapA 復性 35
7.1 尿素透析復性法 36
7.2 SDS 沉澱復性法 37
7.3 鋅離子共培養復性法 37
7.4 氧化還原復性法 37
第八節 重組蛋白 rHis-lapA 之生化特性分析 38
8.1 最適反應溫度 38
8.2 最適反應 pH 值 38
8.3 溫度安定性 39
第九節 膠體內水解 39
第四章 研究結果 41
第一節 商業酵素 Flavourzyme™ 分析 41
第二節 白胺酸胺基肽酶基因選殖 41
第三節 表現載體之構築及重組蛋白之生產 44
第四節 重組蛋白 rHis-LapA 純化 46
第五節 尿素法純化重組蛋白 rHis-LapA 與復性 46
第六節 重組蛋白 rHis-lapA 之生化特性分析 48
第七節 活性 rHis-lapA 之序列與位置 48
第五章 討論 50
第一節 Flavourzyme 50
第二節 白胺酸胺基肽酶基因選殖 51
第三節 rHis-lapA 表現與酵素活性 52
第四節 rHis-lapA 純化 54
第五節 rHis-lapA 復性 55
5.1 尿素透析復性法 55
5.2 SDS 沉澱復性法 55
5.3 鋅離子共培養復性法 56
5.4 氧化還原復性法 56
第六節 rHis-lapA 之生化特性 57
第七節 pro-peptide 之於酵素活性的重要性 58
第六章 結論與未來展望 60
參考文獻 61
dc.language.isozh-TW
dc.subjectFlavourzymezh_TW
dc.subject米麴?zh_TW
dc.subject白胺酸胺基??zh_TW
dc.subjectM28 LAPszh_TW
dc.subjectpro-peptidezh_TW
dc.subject包涵體zh_TW
dc.subject復性zh_TW
dc.subjectinclusion bodiesen
dc.subjectFlavourzymeen
dc.subjectAspergillus oryzaeen
dc.subjectleucine aminopeptidaseen
dc.subjectM28 LAPsen
dc.subjectpro-peptideen
dc.subjectrefoldingen
dc.title米麴菌白胺酸胺基肽酶之選殖、表現與胞外復性zh_TW
dc.titleMolecular Cloning, Gene Expression and in vitro
Renaturation of a Recombinant Leucine Aminopeptidase
from Aspergillus oryzae
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇南維,周志輝,繆希椿
dc.subject.keywordFlavourzyme,米麴?,白胺酸胺基??,M28 LAPs,pro-peptide,包涵體,復性,zh_TW
dc.subject.keywordFlavourzyme,Aspergillus oryzae,leucine aminopeptidase,M28 LAPs,pro-peptide,inclusion bodies,refolding,en
dc.relation.page117
dc.identifier.doi10.6342/NTU201801292
dc.rights.note有償授權
dc.date.accepted2018-07-05
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
5.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved