請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69417完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏嗣鈞(Hsu-Chun Yen) | |
| dc.contributor.author | Li-Ju Chen | en |
| dc.contributor.author | 陳俐汝 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:15:10Z | - |
| dc.date.available | 2018-11-02 | |
| dc.date.copyright | 2018-08-24 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-09 | |
| dc.identifier.citation | [1] M. Sonka, V. Hlavac, R. Boyle, Image Processing Analysis and Machine Vision, CA, Pacific Grove:PWS, 1999.
[2] H. Edelsbrunner, Geometry and topology for mesh generation, Cambridge University Press, 2001. [3] S. Izadi, et al., 'KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera', Proc. ACM Symp. User Interface Software Technol., pp. 559-568, 2011. [4] A. Dai, M. Nießner, M. Zollofer, S. Izadi, and C. Theobalt. 'BundleFusion: Real-time globally consistent 3D reconstruction using on-the-fly surface re-integration', arXiv:1604.01093, 2016. [5] R. Schnabel, R. Wahl, and R. Klein. 'Efficient RANSAC for point-cloud shape detection', In Computer Graphics Forum, volume 26, pp. 214–226, 2007. [6] R. Schnabel, R. Wahl, and R. Klein. 'Completion and reconstruction with primitive shapes', Proc. of Eurographics. Computer Graphics Forum, 2009. [7] O. Kahler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. H. S. Torr, and D. W. Murray, 'Very high frame rate volumetric integration of depth images on mobile device', IEEE Int'l Symp. on Mixed and Augmented Reality, vol. 22, pp. 1241-1250, 2015. [8] M. Klingensmith, I. Dryanovski, S. Srinivasa, and J. Xiao, 'Chisel: Real time large scale 3d reconstruction onboard a mobile device', in Robotics Science and Systems, 2015. [9] M. Fischler, R. Bolles, 'Random sample consensus: A paradigm for model fitting applications to image analysis and automated cartography', Proc. Image Understanding Workshop, pp. 71-88, 1980. [10] P. V. C. Hough, Methods and means for recogninzing complex patterns, U.S. Patent 3,069,654, 1962. [11] G. Vosselman, B. Gorte, G. Sithole, T. Rabbani, 'Recognising structure in laser scanner point cloud', Int. Arch. of Photogrammetry Remote Sensing and Spatial Information Sciences, vol. 46, pp. 33-38, 2004. [12] M. Dzitsiuk, J. Sturm, R. Maier, L. Ma, and D. Cremers. 'De-noising, stabilizing and completing 3d reconstructions on-the-go using plane priors', CoRR, abs/1609.08267, 2016. [13] G. Roth, M.D. Levine, 'Extracting geometric primitives', CVGIP: Image Understanding, vol. 58, no. 1, pp. 1-22, 1993. [14] S. Bektas, 'Orthogonal (Shortest) Distance to the Hyperboloid', International Journal of Research in Engineering and Applied Sciences(IJREAS). Vol. 7, pp. 46~56, 2007. [15] G. Lukacs, A. D. Marshall, R. R. Martin, 'Geometric least-squares fitting of spheres cylinders cones and tori', Geometric Modelling Laboratory Computer and Automation Research, pp. 671, 1997. [16] S. Bektas, 'Orthogonal Distance from an Ellipsoid', Boletim de Ciencias Geodesicas, Vol. 20, No. 4 ISSN 1982-2170, http://dx.doi.org/10.1590/S1982-217020140004000400053, 2014 [17] D. Myatt, P. Torr, S. Nasuto, J. Bishop, R. Craddock, 'NAPSAC: High Noise High Dimensional Robust Estimation-It's in the Bag', Proc. British Machine Vision Conf. (BMVC '02), vol. 2, pp. 458-467, 2002. [18] J. Andrews and C. H. Séquin, 'Type-constrained direct fitting of quadric surfaces', Comput.-Aided Design Appl., vol. 11, no. 1, pp. 107–119, 2013. [19] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. 'Surface reconstruction from unorganized points', In Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26, pp. 71–78, 1992. [20] C.M. Shakarji, 'Least-squares fitting algorithms of the NIST algorithm testing system', Journal of Research of the National Institute of Standards and Technology, vol.103, pp. 633-641, 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69417 | - |
| dc.description.abstract | 近幾年電腦圖學的進步,使得相關的研究發展快速,譬如辨識、三維重建、切割等相關議題都有許多的探討,其中我們針對形狀辨識有相關的研究,為了使三維物件可以簡化的表達,減少儲存空間的使用,本論文利用三維形狀與基本參數表達模型,基於我們認為僅用圓形類形狀與平面,無法完全表達所有物體,因此,我們延伸更多的形狀,使得我們可以偵測更多的形狀,我們的系統增加了橢圓柱、橢圓椎、橢球、雙曲面等,並增加了更多的參數,基於octree的資料結構,隨機取點,由本論文提供的形狀參數算法,得出形狀的參數,並透過隨機抽樣一致算法,取得最佳的形狀參數,再使用符合最佳形狀的點數,重新調整參數,以得到偵測形狀與參數。以本論文與已知文獻結果做比較,本論文可以偵測出更複雜的形狀,未來也可以增加其他模型,以增加系統偵測形狀的多樣性。 | zh_TW |
| dc.description.abstract | In recent years, the advance of computer vision has led to the rapid development of related research areas, such as shape recognition, 3D reconstruction, and shape segmentation. In order to simplify the presentation of a 3D model and to reduce the storage space, it is a common practice to use simple 3D shapes and their parameters to interpret real world models. As a result, 3D shape recognition has become a research topic of importance and interest in many real-world applications. Existing work in the literature deals mostly with simple circular-shapes. In order to better cope with more complex shapes in existence in the real-world, our work extends the research on shape recognition by incorporating additional shapes of quadric surfaces including elliptic cylinders, elliptic cones, ellipsoids, circular-hyperboloids of one sheet, and circular-hyperboloids of two sheets. We use RANSAC (RANdom SAmple Consensus) algorithm to randomly choose sample points and to find the parameters repeatedly and finally find the best solution based on the octrees. At the end, we also use a re-fitting method to improve the accuracy of the parameters of the shape. In comparison with existing result in the literature, our work is able to detect more complex shapes. In the future, we plan to add additional shape models, increasing the versatility of our system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:15:10Z (GMT). No. of bitstreams: 1 ntu-107-R04921085-1.pdf: 5952417 bytes, checksum: 4a37a59be1d359b59b187a106c282733 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
銘謝 I 摘要 II ABSTRACT III List of figures IV List of tables VII Contents VIII Chapter 1 Introduction 1 Chapter 2 Our Shape Detection Method 9 2.1 Overview of our method 9 2.2 RANdom SAmple Consensus (RANSAC) 10 2.3 Shape estimation 11 2.3.1 Primitive of the shape 12 2.3.2 Distance of the shape 20 2.4 Sampling strategy 23 2.4.1 Complexity and probabilities 23 2.4.2 Localized sampling 23 2.4.3 Number of candidates 24 2.5 Score evaluation 25 2.5.1 Connect component 26 2.6 Refitting 26 Chapter 3 Experimental Evaluation 27 3.1 Environment 27 3.2 Results 28 3.2.1 Comparison 28 3.2.2 Noise with fitting 33 3.2.3 3D model scanned by Kinect 36 Chapter 4 Conclusion and Future Work 50 Bibliography 52 | |
| dc.language.iso | en | |
| dc.subject | 隨機抽樣一致算法 | zh_TW |
| dc.subject | 三維重建 | zh_TW |
| dc.subject | 偵測形狀 | zh_TW |
| dc.subject | shape detection | en |
| dc.subject | 3D reconstruction | en |
| dc.subject | Ransac | en |
| dc.title | 在三維點雲中使用隨機取樣一致算法偵測二次曲面 | zh_TW |
| dc.title | Detecting Quadric Surfaces in 3D Point-Clouds
Using RANSAC | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 雷欽隆(Chin-Laung Lei),郭斯彥(Sy-Yen Kuo),王勝德(Sheng-De Wang),莊仁輝(Jen-Hui Chuang) | |
| dc.subject.keyword | 隨機抽樣一致算法, 三維重建, 偵測形狀, | zh_TW |
| dc.subject.keyword | Ransac, 3D reconstruction, shape detection, | en |
| dc.relation.page | 54 | |
| dc.identifier.doi | 10.6342/NTU201801358 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-09 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 5.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
