請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69414完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余榮熾 | |
| dc.contributor.author | Chih-Chun Yeh | en |
| dc.contributor.author | 葉芷均 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:15:06Z | - |
| dc.date.available | 2018-08-01 | |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-09 | |
| dc.identifier.citation | 1. Mann, J.D., et al., A sex-linked blood group. Lancet, 1962. 1(7219): p. 8-10.
2. Fialkow, P.J., X-chromosome inactivation and the Xg locus. Am J Hum Genet, 1970. 22(4): p. 460-3. 3. Toivanen, P. and T. Hirvonen, Antigens Duffy, Kell, Kidd, Lutheran and Xga on Fetal Red Cells. Vox Sanguinis, 1973. 24(4): p. 372-376. 4. Campana, T., et al., The Xg<sup>a</sup> antigen on red cells and fibroblasts. Cytogenetic and Genome Research, 1978. 22(1-6): p. 524-526. 5. Fouchet, C., et al., A study of the coregulation and tissue specificity of XG and MIC2 gene expression in eukaryotic cells. Blood, 2000. 95(5): p. 1819-26. 6. Meynet, O., et al., Xg expression in Ewing's sarcoma is of prognostic value and contributes to tumor invasiveness. Cancer Res, 2010. 70(9): p. 3730-8. 7. Goodfellow, P.N. and P. Tippett, A human quantitative polymorphism related to Xg blood groups. Nature, 1981. 289(5796): p. 404-5. 8. Levy, R., et al., A human thymus-leukemia antigen defined by hybridoma monoclonal antibodies. Proc Natl Acad Sci U S A, 1979. 76(12): p. 6552-6. 9. Goodfellow, P., Expression of the 12E7 antigen is controlled independently by genes on the human X and Y chromosomes. Differentiation, 1983. 23 Suppl: p. S35-9. 10. Hahn, J.H., et al., CD99 (MIC2) regulates the LFA-1/ICAM-1-mediated adhesion of lymphocytes, and its gene encodes both positive and negative regulators of cellular adhesion. J Immunol, 1997. 159(5): p. 2250-8. 11. Pettersen, R.D., et al., CD99 Signals Caspase-Independent T Cell Death. The Journal of Immunology, 2001. 166(8): p. 4931-4942. 12. Yoon, S.S., et al., Engagement of CD99 triggers the exocytic transport of ganglioside GM1 and the reorganization of actin cytoskeleton. FEBS Letters, 2003. 540(1-3): p. 217-222. 13. Seol, H.J., et al., Overexpression of CD99 Increases the Migration and Invasiveness of Human Malignant Glioma Cells. Genes Cancer, 2012. 3(9-10): p. 535-49. 14. Tippett, P., et al., The 12E7 red cell quantitative polymorphism: control by the Y-borne locus, Yg. Ann Hum Genet, 1986. 50(Pt 4): p. 339-47. 15. Goodfellow, P.J., et al., Recombination between the X and Y chromosomes: implications for the relationship between MIC2, XG and YG. Ann Hum Genet, 1987. 51(Pt 2): p. 161-7. 16. Latron, F., D. Blanchard, and J.P. Cartron, Immunochemical characterization of the human blood cell membrane glycoprotein recognized by the monoclonal antibody 12E7. Biochem J, 1987. 247(3): p. 757-64. 17. Fouchet, C., et al., Quantitative analysis of XG blood group and CD99 antigens on human red cells. Immunogenetics, 2000. 51(8-9): p. 688-694. 18. Tippett, P. and N.A. Ellis, The Xg blood group system: A review. Transfusion Medicine Reviews, 1998. 12(4): p. 233-257. 19. Ellis, N.A., et al., Cloning of PBDX, an MIC2-related gene that spans the pseudoautosomal boundary on chromosome Xp. Nat Genet, 1994. 6(4): p. 394-400. 20. Ellis, N.A., et al., PBDX is the XG blood group gene. Nat Genet, 1994. 8(3): p. 285-90. 21. Goodfellow, P., et al., A human X-linked antigen defined by a monoclonal antibody. Somatic Cell Genet, 1980. 6(6): p. 777-87. 22. Goodfellow, P., et al., Genetic evidence that a Y-linked gene in man is homologous to a gene on the X chromosome. Nature, 1983. 302(5906): p. 346-9. 23. Darling, S.M., et al., Cloning an expressed gene shared by the human sex chromosomes. Proc Natl Acad Sci U S A, 1986. 83(1): p. 135-9. 24. Smith, M.J., P.J. Goodfellow, and P.N. Goodfellow, The genomic organisation of the human pseudoautosomal gene MIC2 and the detection of a related locus. Hum Mol Genet, 1993. 2(4): p. 417-22. 25. Banting, G.S., B. Pym, and P.N. Goodfellow, Biochemical analysis of an antigen produced by both human sex chromosomes. EMBO J, 1985. 4(8): p. 1967-72. 26. Weller, P.A., et al., The human Y chromosome homologue of XG: transcription of a naturally truncated gene. Hum Mol Genet, 1995. 4(5): p. 859-68. 27. Goodfellow, P., et al., The cell surface antigen locus, MIC2X, escapes X-inactivation. Am J Hum Genet, 1984. 36(4): p. 777-82. 28. Johnson, N.C., XG: the forgotten blood group system. Immunohematology, 2011. 27(2): p. 68-71. 29. Wolf, A.B., et al., APOE and neuroenergetics: an emerging paradigm in Alzheimer's disease. Neurobiol Aging, 2013. 34(4): p. 1007-17. 30. Lu, Y.F., et al., IFNL3 mRNA structure is remodeled by a functional non-coding polymorphism associated with hepatitis C virus clearance. Sci Rep, 2015. 5: p. 16037. 31. Stephens, M. and P. Donnelly, A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet, 2003. 73(5): p. 1162-9. 32. Rouyer, F., et al., A gradient of sex linkage in the pseudoautosomal region of the human sex chromosomes. Nature, 1986. 319(6051): p. 291-5. 33. Soriano, P., et al., High rate of recombination and double crossovers in the mouse pseudoautosomal region during male meiosis. Proc Natl Acad Sci U S A, 1987. 84(20): p. 7218-20. 34. Lien, S., et al., Evidence for heterogeneity in recombination in the human pseudoautosomal region: high resolution analysis by sperm typing and radiation-hybrid mapping. Am J Hum Genet, 2000. 66(2): p. 557-66. 35. Flaquer, A., et al., The human pseudoautosomal regions: a review for genetic epidemiologists. Eur J Hum Genet, 2008. 16(7): p. 771-9. 36. Hinch, A.G., et al., Recombination in the human Pseudoautosomal region PAR1. PLoS Genet, 2014. 10(7): p. e1004503. 37. Spielman, R.S., et al., Common genetic variants account for differences in gene expression among ethnic groups. Nat Genet, 2007. 39(2): p. 226-31. 38. Stranger, B.E., et al., Population genomics of human gene expression. Nat Genet, 2007. 39(10): p. 1217-24. 39. Tycko, B., Allele-specific DNA methylation: beyond imprinting. Hum Mol Genet, 2010. 19(R2): p. R210-20. 40. Lai, Y.J., et al., A systematic study of single-nucleotide polymorphisms in the A4GALT gene suggests a molecular genetic basis for the P1/P2 blood groups. Transfusion, 2014. 54(12): p. 3222-31. 41. Yeh, C.C., et al., The differential expression of the blood group P(1) -A4GALT and P(2) -A4GALT alleles is stimulated by the transcription factor early growth response 1. Transfusion, 2018. 58(4): p. 1054-1064. 42. Lentjes, M.H., et al., The emerging role of GATA transcription factors in development and disease. Expert Rev Mol Med, 2016. 18: p. e3. 43. Hewitt, K.J., et al., The Hematopoietic Stem and Progenitor Cell Cistrome: GATA Factor-Dependent cis-Regulatory Mechanisms. Curr Top Dev Biol, 2016. 118: p. 45-76. 44. DeVilbiss, A.W., et al., Navigating Transcriptional Coregulator Ensembles to Establish Genetic Networks: A GATA Factor Perspective. Curr Top Dev Biol, 2016. 118: p. 205-44. 45. Bresnick, E.H., et al., GATA switches as developmental drivers. J Biol Chem, 2010. 285(41): p. 31087-93. 46. Suzuki, M., et al., GATA factor switching from GATA2 to GATA1 contributes to erythroid differentiation. Genes Cells, 2013. 18(11): p. 921-33. 47. Moriguchi, T. and M. Yamamoto, A regulatory network governing Gata1 and Gata2 gene transcription orchestrates erythroid lineage differentiation. International Journal of Hematology, 2014. 100(5): p. 417-424. 48. Shimamoto, T., et al., The expression pattern of erythrocyte/megakaryocyte-related transcription factors GATA-1 and the stem cell leukemia gene correlates with hematopoietic differentiation and is associated with outcome of acute myeloid leukemia. Blood, 1995. 86(8): p. 3173-3180. 49. Ayala, R.M., et al., Clinical significance of Gata‐1, Gata‐2, EKLF, and c‐MPL expression in acute myeloid leukemia. American Journal of Hematology, 2009. 84(2): p. 79-86. 50. Chung, S.S., et al., CD99 is a therapeutic target on disease stem cells in myeloid malignancies. Sci Transl Med, 2017. 9(374). 51. Han, G.C., et al., Genome-Wide Organization of GATA1 and TAL1 Determined at High Resolution. Mol Cell Biol, 2016. 36(1): p. 157-72. 52. Wu, W., et al., Dynamic shifts in occupancy by TAL1 are guided by GATA factors and drive large-scale reprogramming of gene expression during hematopoiesis. Genome Res, 2014. 24(12): p. 1945-62. 53. Li, L., et al., Ldb1-nucleated transcription complexes function as primary mediators of global erythroid gene activation. Blood, 2013. 121(22): p. 4575-85. 54. Love, P.E., C. Warzecha, and L. Li, Ldb1 complexes: the new master regulators of erythroid gene transcription. Trends Genet, 2014. 30(1): p. 1-9. 55. Krivega, I., R.K. Dale, and A. Dean, Role of LDB1 in the transition from chromatin looping to transcription activation. Genes Dev, 2014. 28(12): p. 1278-90. 56. Landsteiner, K. and P. Levine, Further Observations on Individual Differences of Human Blood. Proceedings of the Society for Experimental Biology and Medicine, 1927. 24(9): p. 941-942. 57. Sanger, R., An association between the P and Jay systems of blood groups. Nature, 1955. 176(4494): p. 1163-1164. 58. Matson, G.A., et al., A “New” Antigen and Antibody Belonging to the P Blood Group System. American Journal of Human Genetics, 1959. 11(1): p. 26-34. 59. Harris, P.A., et al., An Inherited RBC Characteristic, NOR, Resulting in Erythrocyte Polyagglutination. Vox Sanguinis, 1982. 42: p. 134-140. 60. Spitalnik, P.F. and S.L. Spitalnik, The P blood group system: Biochemical, serological, and clinical aspects. Transfusion Medicine Reviews, 1995. 9(2): p. 110-122. 61. Issitt, P.D., Applied blood group serology. 1985: Montgomery Scientific Publications. 62. ABO, Hh, and Lewis Systems, in Human Blood Groups. 63. Kaczmarek, R., et al., P1PK, GLOB, and FORS blood group systems and GLOB collection: biochemical and clinical aspects. Do we understand it all yet? Transfus Med Rev, 2014. 28(3): p. 126-36. 64. Westman, J.S., et al., P1/P2 genotyping of known and novel null alleles in the P1PK and GLOB histo-blood group systems. Transfusion, 2013. 53(11 Suppl 2): p. 2928-39. 65. Suchanowska, A., et al., A single point mutation in the gene encoding Gb3/CD77 synthase causes a rare inherited polyagglutination syndrome. J Biol Chem, 2012. 287(45): p. 38220-30. 66. Iwamura, K., et al., The blood group P1 synthase gene is identical to the Gb3/CD77 synthase gene. A clue to the solution of the P1/P2/p puzzle. J Biol Chem, 2003. 278(45): p. 44429-38. 67. Thuresson, B., J.S. Westman, and M.L. Olsson, Identification of a novel A4GALT exon reveals the genetic basis of the P1/P2 histo-blood groups. Blood, 2011. 117(2): p. 678-87. 68. Roback, J., et al., AABB technical manual. Bethesda, MD: American Association of Blood Banks (AABB), 2008. 69. Hellberg, A., M.A. Chester, and M.L. Olsson, Two previously proposed P1/P2-differentiating and nine novel polymorphisms at the A4GALT (Pk) locus do not correlate with the presence of the P1 blood group antigen. BMC Genet, 2005. 6: p. 49. 70. Tilley, L., C. Green, and G. Daniels, Sequence variation in the 5' untranslated region of the human A4GALT gene is associated with, but does not define, the P1 blood-group polymorphism. Vox Sang, 2006. 90(3): p. 198-203. 71. Ahmed, M.M., Regulation of radiation-induced apoptosis by early growth response-1 gene in solid tumors. Curr Cancer Drug Targets, 2004. 4(1): p. 43-52. 72. Gomez-Martin, D., et al., Early growth response transcription factors and the modulation of immune response: implications towards autoimmunity. Autoimmun Rev, 2010. 9(6): p. 454-8. 73. Miao, T., et al., Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med, 2017. 214(6): p. 1787-1808. 74. Zhu, B., et al., Early growth response gene 2 (Egr-2) controls the self-tolerance of T cells and prevents the development of lupuslike autoimmune disease. J Exp Med, 2008. 205(10): p. 2295-307. 75. Li, S., et al., The transcription factors Egr2 and Egr3 are essential for the control of inflammation and antigen-induced proliferation of B and T cells. Immunity, 2012. 37(4): p. 685-96. 76. Bae, C.J., J. Jeong, and J.P. Saint-Jeannet, A novel function for Egr4 in posterior hindbrain development. Sci Rep, 2015. 5: p. 7750. 77. Thiel, G. and G. Cibelli, Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol, 2002. 193(3): p. 287-92. 78. Valledor Annabel, F., et al., Transcription factors that regulate monocyte/macrophage differentiation. Journal of Leukocyte Biology, 1998. 63(4): p. 405-417. 79. Liebermann, D.A. and B. Hoffman, Myeloid differentiation (MyD) primary response genes in hematopoiesis. Oncogene, 2002. 21: p. 3391. 80. Friedman, A.D., Transcriptional control of granulocyte and monocyte development. Oncogene, 2007. 26(47): p. 6816-28. 81. Joslin, J.M., et al., Haploinsufficiency of EGR1, a candidate gene in the del(5q), leads to the development of myeloid disorders. Blood, 2007. 110(2): p. 719-26. 82. Eisenmann, K.M., et al., 5q- myelodysplastic syndromes: chromosome 5q genes direct a tumor-suppression network sensing actin dynamics. Oncogene, 2009. 28(39): p. 3429-41. 83. Ebert, B.L., Molecular dissection of the 5q deletion in myelodysplastic syndrome. Semin Oncol, 2011. 38(5): p. 621-6. 84. Tian, J., et al., The progress of early growth response factor 1 and leukemia. Intractable Rare Dis Res, 2016. 5(2): p. 76-82. 85. Sripichai, O., et al., Cytokine-mediated increases in fetal hemoglobin are associated with globin gene histone modification and transcription factor reprogramming. Blood, 2009. 114(11): p. 2299-306. 86. Ragione, F.D., et al., p21Cip1 gene expression is modulated by Egr1: a novel regulatory mechanism involved in the resveratrol antiproliferative effect. J Biol Chem, 2003. 278(26): p. 23360-8. 87. Singleton, B.K., et al., Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype. Blood, 2008. 112(5): p. 2081-8. 88. Helias, V., et al., Molecular analysis of the rare in(Lu) blood type: toward decoding the phenotypic outcome of haploinsufficiency for the transcription factor KLF1. Hum Mutat, 2013. 34(1): p. 221-8. 89. Kawai, M., et al., Mutations of the KLF1 gene detected in Japanese with the In(Lu) phenotype. Transfusion, 2017. 57(4): p. 1072-1077. 90. Keller, J., et al., Novel mutations in KLF1 encoding the In(Lu) phenotype reflect a diversity of clinical presentations. Transfusion, 2018. 58(1): p. 196-199. 91. Crawford, M.N., P. Tippett, and R. Sanger, Antigens Au^ a, i and P (1) of Cells of the Dominant Type of Lu (ab-). Vox sanguinis, 1974. 26: p. 283-287. 92. Gibson, T., Two kindred with the rare dominant inhibitor of the lutheran and p1 red cell antigens. Human heredity, 1976. 26(3): p. 171-174. 93. Shaw, M., et al., The rare Lutheran blood group phenotype Lu (a–b–): a genetic study. Annals of human genetics, 1984. 48(3): p. 229-237. 94. Tallack, M.R., et al., A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. Genome Res, 2010. 20(8): p. 1052-63. 95. Mohandas, N. and A. Narla, Blood group antigens in health and disease. Current opinion in hematology, 2005. 12(2): p. 135-140. 96. Lomberg, H., et al., P1 blood group and urinary tract infection. The Lancet, 1981. 317(8219): p. 551-552. 97. Jacob, F., et al., The glycosphingolipid P(1) is an ovarian cancer-associated carbohydrate antigen involved in migration. Br J Cancer, 2014. 111(8): p. 1634-45. 98. Jacewicz, M., et al., Pathogenesis of shigella diarrhea. XI. Isolation of a shigella toxin-binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotriaosylceramide. Journal of Experimental Medicine, 1986. 163(6): p. 1391-1404. 99. Lund, N., et al., The human P(k) histo-blood group antigen provides protection against HIV-1 infection. Blood, 2009. 113(20): p. 4980-91. 100. Branch, D.R., Blood groups and susceptibility to virus infection: new developments. Current opinion in hematology, 2010. 17(6): p. 558-564. 101. Brown, K.E., S.M. Anderson, and N.S. Young, Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science, 1993. 262(5130): p. 114-117. 102. Fletcher, K.S., E.G. Bremer, and G. Schwarting, P blood group regulation of glycosphingolipid levels in human erythrocytes. Journal of Biological Chemistry, 1979. 254(22): p. 11196-11198. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69414 | - |
| dc.description.abstract | Part I.
XG血型是人類36種血型系統之一,由Xga及CD99兩種抗原組成。Xga抗原分佈於紅血球表面,分成兩種表現型,Xg(a+)及Xg(a-)。CD99抗原廣佈於各種細胞表面,在紅血球上的表現量具有高低差異,分成CD99High及CD99Low。過去研究指出,CD99抗原在紅血球表面表現量的多寡與Xga抗原表現與否有著相互連結的關係之外,CD99抗原及Xga抗原的表現也存在著性別上的差異。在男性與女性的紅血球上具有Xg(a+)表現型者,CD99皆為高表現(CD99High);若是Xg(a-)表現型者,則是CD99低表現(CD99Low)。但是在男性紅血球上會出現第三種表現型Xg(a-)表現型者,CD99卻是高表現(CD99High)。對於紅血球上Xga及CD99抗原的表現差異,先前的研究指出可能是透過兩者基因轉錄層面上的調控而改變其表現量,但其中的分子遺傳機制尚未明瞭。 為了闡明這個機制,我們實驗室抽取78人血液樣本的genomic (g)DNA進行研究,將樣本區分成三種表現類型(Xg(a+)/CD99High; Xg(a-)/CD99Low; Xg(a-)/CD99High)。接著從樣本中選取16人[Xg(a+)/CD99High男女各4人; Xg(a-)/CD99Low男女各4人],針對可能為Xga及CD99調控區域大約570 Kb的範圍進行大規模次世代定序(next generation sequencing, NGS),並對此區域的單一核甘酸多型性(Single nucleotide polymorphism, 簡稱SNP)進行分析。透過分析結果發現SNP rs311103[G/C]的基因型符合Xga及CD99表現型的分佈;Xg(a+)/CD99High表現型男女rs311103的基因型為[G/G]或[G/C],而Xg(a-)/CD99Low表現型男女rs311103的基因型為[C/C],因此我們推測此SNP可能與XG及CD99基因表現量的調控相關。在我們報導基因法檢測的結果證實rs311103[G]片段會大量促進基因轉錄的表現量,但在rs311101[C] 片段則不具有刺激基因轉錄的能力,而且扮演enhancer角色的rs311103[G]片段只會專一於紅血球型細胞促進基因的轉錄。接著我們進一步探討rs311103[G]片段是否透過與轉錄因子的結合進而調控目標基因的轉錄能力。程式預測分析的結果顯示轉錄因子GATA family (GATA1- GATA 6)與LEF-1可能與rs311103[G]片段結合。在報導基因法分析各個轉錄因子所造成的轉錄影響中,我們發現GATA1及GATA2對於rs311103[G]片段皆會促使報導基因轉錄的表現量再大幅地上升。接著我們更進一步利用凝膠電泳分析(electrophoretic mobility shift assay, EMSA)證實rs311103[G]片段與GATA1及GATA2產生直接的結合。不過,在使用直接由紅血球細胞株萃取出的細胞核物質進行凝膠電泳分析(EMSA)實驗中,卻只有GATA1對於rs311103[G] 片段具有專一結合力,GATA2則沒有。對於GATA1及GATA2與rs311103[G] 片段實際在紅血球細胞株中的結合能力,我們利用染色質免疫沉澱(chromatin immunoprecipitation, CHIP)的方法去檢測細胞內真實的結合力。而實驗結果證實,在紅血球細胞株實驗中,只有GATA1對於rs311103[G] 片段具有專一性的結合力。我們的研究結果闡明紅血球上的Xga與CD99抗原表現相互連結兩者之間的遺傳分子機制形成的途徑。 Part II. P1/PK血型系統中的P1及PK抗原是兩種表現在紅血球細胞表面的醣抗原,這兩種抗原的表現存在著個體差異。依據個體間P1抗原的表現,可以區分為P1及P2兩種表現型:(1) P1表現型:包含P1及P抗原(P抗原為PK抗原的下游產物);(2) P2表現型:只包含P抗原。從過去研究中得知這P1及PK抗原的形成與A4GALT基因相關,A4GALT基因生成酵素α-1,4-galactosyltransferase (α4GalT),為一種半乳糖基轉移酶,具有催化P1及PK抗原合成的能力。過去研究也證實P1/P2表現型和A4GALT基因的表現量具有相關性,P1表現型的A4GALT基因的表現量高於P2表現型。於是找出調控A4GALT基因進而影響P1抗原生成的因素有助於了解P1/P2表現型形成的分子機制。 在實驗室先前的研究已經發現,兩個位於A4GALT基因1號內含子裡的SNP rs2143918 (SNP5) 及rs5751348 (SNP6),對於A4GALT基因表現量的高低與P1/P2表現型的成因具有很重要的關聯。因此我們在本研究中進一步去探討這兩個SNP是透過甚麼分子機制去調控P1-A4GALT 和P2-A4GALT兩個等位基因的表現。首先,我們利用電腦軟體預測分析可能會與兩個SNP結合的轉錄因子。接著,由報導基因分析法(reporter assay)的結果中得知,EGR1轉錄因子會促進報導基因載體的轉錄活性之外,其主要可能是針對P1-A4GALT SNP6區域去做結合並影響轉錄的活性,而導致P1-A4GALT 和 P2-A4GALT兩個等位基因在紅血球中具有高低不同的轉錄表現量。而Electrophoretic mobility shift assay (EMSA)的實驗結果也進一步證實EGR1轉錄因子直接與P1-A4GALT SNP6區域專一的結合。除此之外,表現EGR1轉錄因子在異型核子HT-29細胞中的實驗結果也發現,EGR1轉錄因子確實會促使細胞核中的P1-A4GALT的heterogeneous nuclear RNA (hnRNA)的表現量上升。綜合我們過去與現在的研究,我們發現rs5751348 (SNP6) 對於P1-A4GALT及P2-A4GALT基因表現量的高低具有重要的影響,我們更進一步證實這個表現量的差異是透過EGR1轉錄因子與A4GALT基因上不同基因型的rs5751348 (SNP6)做結合所導致的。此分子遺傳機制所影響的P1-A4GALT及P2-A4GALT基因表現量的高低闡明了造成P1與P2不同血型的成因。 | zh_TW |
| dc.description.abstract | Part I.
Xga and CD99 are two antigens belong to the human Xg blood group system and express on the surface of red blood cells (RBCs). The expression levels of Xga and CD99 on RBCs are highly correlated and this correlation also relative to the sex-specific phenotype. Among the RBCs in both females and males, the Xg(a+) is associated with the CD99High phenotype. Interestingly, the Xg(a-) RBCs in females express CD99Low, but Xg(a-) RBCs in males show both CD99High and CD99Low phenotypes. According to the previous studies, the expressions of Xga and CD99 are determined by transcriptional regulation. However, the molecular and genetic mechanisms remain unclear. In order to elucidate the mechanism, we analyzed the genomic areas between XG and CD99 by next generation sequencing (NGS). We collected the genomic (g)DNA from Taiwanese and divided the samples into three groups according to the expression levels of Xga and CD99: 1) Xg(a+)/CD99High in male and female; 2) Xg(a-)/CD99Low in male and female; 3) Xg(a-)/CD99High in male. Our result demonstrated that a single nucleotide polymorphism (SNP) rs311103 shows an association with Xga/CD99 blood group. The genotypes of rs311103[G] and [C] were associated with Xg(a+)/CD99High and Xg(a-)/CD99Low phenotypes, respectively. Moreover, the rs311103[G] strongly enhanced the transcriptional activity, but not in the case of rs311103[C]. Notably, this regulatory mechanism is specifically in the red blood cell linages but not other cell types. Furthermore, the transcription database analysis and in vitro experiment demonstrated that the transcription factor GATA1 binds to the region with the rs311103[G] genotype, which subsequently promotes the transcription level in erythroid cell lines. In this study, we clarified the phenotypic regulation between Xga and CD99, and elucidated the molecular genetic mechanism of the erythroid-specific Xga/CD99 blood group formation. Part II. P1 and PK are carbohydrate antigens on the surface of red blood cells (RBCs) in the P1/PK blood group system, and the expression level of these antigens varies among individuals. According to the expression level of the P1 antigen, blood types are divided into two groups: (1) the P1 phenotype, containing the P1 and P antigens (the P antigen is the downstream product of the PK antigen); (2) P2 phenotype, containing only the P antigen. Previous studies demonstrated that the synthesis of P1 and PK antigens is determined by the enzymatic activity of an α-1,4-galactosyltransferase (α4GalT), and this enzyme is encoded by the A4GALT gene. Moreover, the phenotypic polymorphism of the P1/P2 blood groups result from the different quantities of P1 antigen expression, that is associated with the different expression levels of the A4GALT gene, in P1 and P2 RBCs. However, the molecular mechanism for the formation of the P1/P2 blood groups remains unclear. Our previous investigations demonstrated that two SNPs, rs2143918 (SNP5) and rs5751348 (SNP6), located in intron 1 of the A4GALT gene were associated with the P1/P2 polymorphic phenotype, which is regulated by the different expression levels of the A4GALT gene. Following our previous identification, we further explored the detailed molecular mechanism associated with these SNPs in the formation of different P1/P2 phenotypes. First, in silico analysis predicted the potential transcription factors that may bind to the SNP5 and SNP6 regions of the P1-A4GALT allele. The following transcriptional activity determined in reporter assay experiments indicated that EGR1 elevated the transcriptional activity of the reporter construct bearing the SNP6 region with P1-A4GALT genotype, but such transcriptional activity was absent in the reporter construct bearing the SNP5 region with the P1-A4GALT genotype. Moreover, results of electrophoretic mobility shift assays (EMSA) validated the specific binding of EGR1 to the SNP6 segments with the P1-A4GALT genotype in vitro, and P1-A4GALT and P2-A4GALT allelic expression analysis further demonstrated that EGR1 specifically induce the expression of P1-A4GALT allele in vivo. Taken together, the results of our previous investigation demonstrated that two SNPs, rs2143918 (SNP5) and rs5751348 (SNP6), were associated with the P1/P2 blood groups, which result from variations in P1-A4GALT and P2-A4GALT differential expression, and we further demonstrated that the differential expression levels of the P1-A4GALT and P2-A4GALT genes result from the differential binding of EGR1 to the A4GALT SNP6 genomic region with the different genotypes. Through these investigations, we elucidated the detailed molecular mechanism for the formation of P1/P2 blood group polymorphic phenotypes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:15:06Z (GMT). No. of bitstreams: 1 ntu-107-D03b46003-1.pdf: 3962414 bytes, checksum: 53d6802379564d6bc4ded3ad2871741e (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………………………i
Abstract (part I)……………………………………………………………………….. ii Abstract (part II).……………………………………………………………….……… vi Contents…….…………………………………………………………………………... x List of Figures (part I)…………………………………………………………………xiv List of Tables (part I)………………………………………………………………....xv List of Figures (part II)……………………………………………………………….xvi List of Tables (part II)………………………………………………………………...xvii Part I. The molecular genetic study in the formation of the human erythroid-specific Xga/CD99 blood groups. 1. Introduction…………………………………………………………………….......1 1-1. Human Xg blood group system……………………………………………....1 1-1-1. Xga antigen……………………………………………………………..1 1-1-2. CD99 antigen…………………………………………………………...2 1-2. XG and CD99 genes…………………………………………………………..3 1-2-1. Regulatory locus of XG and CD99, XG regulator (XGR) ……………..4 1-3. The SNP determines the polymorphic phenotypes of the Xg blood group system ……………………………………………………………………………..5 1-3-1. Single nucleotide polymorphism (SNP)……………………..…………5 1-3-2. Association between the SNP rs311103 and the polymorphic phenotypes of the Xg blood group system …………………………………….6 2. Aim..………………………………………………………………………………..7 3. Material and Methods……………………………………………………………8 3-1. Peripheral blood sample preparation………………………………………….8 3-2. Xga blood group typing……………………………………………………….8 3-3. Flow cytometry analysis ……………………………………………...………...8 3-4. Targeted NGS…………………………………………………………………8 3-5. Sanger re-sequencing…………………………………………………………9 3-6. Reporter assay………………………………………………………………...9 3-7. Cell culture…………………………………………………………………..10 3-8. Ectopic expression of transcription factor.…………………………………..10 3-9. Quantification of gene expression…………………………………………...11 3-10. Western blot analysis……………………………………………………….11 3-11. Electrophoretic mobility shift assay (EMSA)……………………………...12 3-12. Chromatin immunoprecipitation (ChIP).…………………………………..13 4. Results..…………………………………………………………………………..14 4-1. The phenotypic relationship between Xga and CD99 blood groups in 78 Taiwanese subjects……………………………………………………………….14 4-2. Identification of the candidate SNPs that are associated with Xga/CD99 blood groups through NGS ……………………………………………………………..15 4-3. The SNP rs311103 is consistently associated with Xga/CD99 blood groups as assessed through a large-scale association study ………………………………..15 4-4. The polymorphic rs311103 genomic regions show different levels of transcription-enhancing activity specifically in erythroid-lineage cells………...17 4-5. GATA factors induce the transcriptional activity of the rs311103[G] region in erythroid-lineage cells…………………………………………………………...18 4-6. GATA1 specifically binds to the rs311103[G] region……………………….19 5. Discussion………………………………………………………………………..21 6. Figures..…………………………………………………………………………..26 7. Tables………………………………………………………………………………41 8. Supplementary data…………………………………………………………….43 Part II. The study of single nucleotide polymorphism at the A4GALT gene in the formation of the human P1/P2 blood groups. 1. Introduction..…………………………………………………………………….47 1-1. Huamn P1/PK blood group system………………………………………….47 1-1-1. The P1, PK, and NOR antigens are included in the human P1/PK blood group system………………………………………………………………..47 1-2. The P1/P2 blood groups are associated with differential expression levels of A4GALT gene…………………………………………………………………….48 1-2-1. α-1,4-galactosyltransferase…………………………………………..49 1-3. Relationship between single nucleotide polymorphisms in the A4GALLT gene and the P1/P2 blood groups……………………………………………………….49 1-3-1. Association between single nucleotide polymorphisms of the A4GALT gene and the P1/P2 blood groups…………………………………………….49 1-3-2. Two SNPs, rs2143918 and rs5751348, are definitively associated with the P1/P2 phenotypes………………………………………………………...50 2. Aim..………………………………………………………………………………52 3. Material and Methods…………………………………………………………..53 3-1. Cell culture…………………………………………………………………..53 3-2. Expression vectors for the various transcription factors…………………….53 3-3. Reporter assay……………………………………………………………….54 3-4. Quantification of gene expression…………………………………………...55 3-5. Electrophoretic mobility shift assay (EMSA)……………………………….56 3-6. P1-A4GALT and P2-A4GALT allelic expression analysis……………………57 4. Results……………………………………………………………………………..59 4-1. Identification of potential transcription factor binding motifs in the single nucleotide polymorphisms rs2143918 and rs5751348 genomic regions………...59 4-2. Examination of the candidate transcription factors by reporter assay experiments………………………………………………………………………60 4-3. Ectopic expression of factors in the EGR family induces the differential transcriptional activity between the genomic regions containing the P1- and P2-associated SNP genotypes…………………………………………………….61 4-4. EGR1 is significantly expressed in erythroid-lineage cells…………………61 4-5. EGR1 specifically induces transcriptional activity of the rs5751348 (SNP6) [G] genomic region………………………………………………………………62 4-6. EGR1 specifically binds to the rs5751348 (SNP6)[G] genomic region…….63 4-7. EGR1 induces the expression of the P1-A4GALT allele…………………….64 5. Discussion………………………………………………………………………..66 6. Figures.…………………………………………………………………………..71 7. Supplementary data………………………………………………………………79 8. References …………………………………………………………………………85 | |
| dc.language.iso | en | |
| dc.subject | EGR1 | zh_TW |
| dc.subject | Xga | zh_TW |
| dc.subject | CD99 | zh_TW |
| dc.subject | rs311103 | zh_TW |
| dc.subject | GATA1 | zh_TW |
| dc.subject | P1抗原 | zh_TW |
| dc.subject | P1/P2表現型 | zh_TW |
| dc.subject | A4GALT基因 | zh_TW |
| dc.subject | SNP | zh_TW |
| dc.subject | Xga | en |
| dc.subject | EGR1 | en |
| dc.subject | SNP | en |
| dc.subject | A4GALT gene | en |
| dc.subject | P1/P2phenotype | en |
| dc.subject | P1antigen | en |
| dc.subject | GATA1 | en |
| dc.subject | rs311103 | en |
| dc.subject | CD99 | en |
| dc.title | 探討人類Xga/CD99與P1/P2的血型形成之分子遺傳機制 | zh_TW |
| dc.title | The investigation of molecular genetic mechanisms of the human Xga/CD99 and P1/P2 blood groups formation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 朱善德,涂玉青,張?仁,蕭超隆 | |
| dc.subject.keyword | Xga,CD99,rs311103,GATA1,P1抗原,P1/P2表現型,A4GALT基因,SNP,EGR1, | zh_TW |
| dc.subject.keyword | Xga,CD99,rs311103,GATA1,P1antigen,P1/P2phenotype,A4GALT gene,SNP,EGR1, | en |
| dc.relation.page | 98 | |
| dc.identifier.doi | 10.6342/NTU201801349 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-09 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
