Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69398
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊維(Chun-Wei Chen)
dc.contributor.authorTing-Chun Laien
dc.contributor.author賴庭君zh_TW
dc.date.accessioned2021-06-17T03:14:41Z-
dc.date.available2023-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-09
dc.identifier.citation1. Chapin, D.M., C.S. Fuller, and G.L. Pearson, A NEW SILICON P-N JUNCTION PHOTOCELL FOR CONVERTING SOLAR RADIATION INTO ELECTRICAL POWER. Journal of Applied Physics, 1954. 25(5): p. 676-677.
2. Available from: https://global.kyocera.com/prdct/solar/spirit/about_solar/cell.html.
3. NREL. Available from: https://www.nrel.gov/pv/.
4. Cheng, Z.Y. and J. Lin, Layered organic-inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. Crystengcomm, 2010. 12(10): p. 2646-2662.
5. Xiao, J.W., et al., The Emergence of the Mixed Perovskites and Their Applications as Solar Cells. Advanced Energy Materials, 2017. 7(20).
6. Opel, M., Spintronic oxides grown by laser-MBE. Journal of Physics D-Applied Physics, 2012. 45(3).
7. Weber, D., CH3NH3PBX3, A PB(II)-SYSTEM WITH CUBIC PEROVSKITE STRUCTURE. Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences, 1978. 33(12): p. 1443-1445.
8. Mitzi, D.B., Synthesis, structure, and properties of organic-inorganic perovskites and related materials, in Progress in Inorganic Chemistry, Vol 48, K.D. Karlin, Editor. 1999. p. 1-121.
9. Tanaka, K., et al., Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3CH3NH3PbI3. Solid State Communications, 2003. 127(9-10): p. 619-623.
10. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-+.
11. Varadwaj, P.R., Methylammonium Lead Trihalide Perovskite Solar Cell Semiconductors Are Not Organometallic: A Perspective. Helvetica Chimica Acta, 2017. 100(7).
12. Yin, W.J., T.T. Shi, and Y.F. Yan, Superior Photovoltaic Properties of Lead Halide Perovskites: Insights from First-Principles Theory. Journal of Physical Chemistry C, 2015. 119(10): p. 5253-5264.
13. Xing, G.C., et al., Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 2013. 342(6156): p. 344-347.
14. Ponseca, C.S., et al., Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination. Journal of the American Chemical Society, 2014. 136(14): p. 5189-5192.
15. Kim, H.S., et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2012. 2.
16. Yang, S.D., et al., Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of Materials Chemistry A, 2017. 5(23): p. 11462-11482.
17. Jorgensen, M., et al., Stability of Polymer Solar Cells. Advanced Materials, 2012. 24(5): p. 580-612.
18. Pradeesh, K., J.J. Baumberg, and G.V. Prakash, Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity. Optics Express, 2009. 17(24): p. 22171-22178.
19. Koh, T.M., et al., Multidimensional Perovskites: A Mixed Cation Approach Towards Ambient Stable and Tunable Perovskite Photovoltaics. Chemsuschem, 2016. 9(18): p. 2541-2558.
20. Yuan, M., et al., Perovskite energy funnels for efficient light-emitting diodes. Nature nanotechnology, 2016. 11(10): p. 872.
21. Eperon, G.E., et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 2014. 7(3): p. 982-988.
22. Ogomi, Y., et al., CH3NH3Sn x Pb (1–x) I3 Perovskite solar cells covering up to 1060 nm. The journal of physical chemistry letters, 2014. 5(6): p. 1004-1011.
23. Noh, J.H., et al., Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells. Nano Letters, 2013. 13(4): p. 1764-1769.
24. Liang, Y.Q., et al., Achieving High Open-Circuit Voltages up to 1.57 V in Hole-Transport-Material-Free MAPbBr(3) Solar Cells with Carbon Electrodes. Advanced Energy Materials, 2018. 8(4).
25. Yu, H., et al., The Role of Chlorine in the Formation Process of 'CH3NH3PbI3-xCl(x)' Perovskite. Advanced Functional Materials, 2014. 24(45): p. 7102-7108.
26. deQuilettes, D.W., et al., Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015. 348(6235): p. 683-686.
27. Stranks, S.D., et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013. 342(6156): p. 341-344.
28. Bai, Y., et al., Dimensional Engineering of a Graded 3D–2D Halide Perovskite Interface Enables Ultrahigh Voc Enhanced Stability in the p‐i‐n Photovoltaics. Advanced Energy Materials, 2017. 7(20).
29. Kojima, A., et al. Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (5). in Meeting Abstracts. 2007. The Electrochemical Society.
30. Jeon, N.J., et al., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials, 2014. 13(9): p. 897.
31. Zhou, H., et al., Interface engineering of highly efficient perovskite solar cells. Science, 2014. 345(6196): p. 542-546.
32. Yang, W.S., et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015. 348(6240): p. 1234-1237.
33. Saliba, M., et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science, 2016. 9(6): p. 1989-1997.
34. Jiang, Q., et al., Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%. Advanced Materials, 2017. 29(46).
35. Wu, X., et al., Trap states in lead iodide perovskites. Journal of the American Chemical Society, 2015. 137(5): p. 2089-2096.
36. Bai, Y., X.Y. Meng, and S.H. Yang, Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells. Advanced Energy Materials, 2018. 8(5).
37. Li, J.W., et al., Direct Evidence of Ion Diffusion for the Silver-Electrode-Induced Thermal Degradation of Inverted Perovskite Solar Cells. Advanced Energy Materials, 2017. 7(14).
38. Polander, L.E., et al., Hole-transport material variation in fully vacuum deposited perovskite solar cells. APL Materials, 2014. 2(8): p. 081503.
39. Kim, H., K.G. Lim, and T.W. Lee, Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy & Environmental Science, 2016. 9(1): p. 12-30.
40. Bai, Y., et al., Effects of a Molecular Monolayer Modification of NiO Nanocrystal Layer Surfaces on Perovskite Crystallization and Interface Contact toward Faster Hole Extraction and Higher Photovoltaic Performance. Advanced Functional Materials, 2016. 26(17): p. 2950-2958.
41. Zhou, Y.-Q., et al., Enhancing Performance and Uniformity of Perovskite Solar Cells via a Solution-Processed C70 Interlayer for Interface Engineering. ACS applied materials & interfaces, 2017. 9(39): p. 33810-33818.
42. Bai, Y., X. Meng, and S. Yang, Interface Engineering for Highly Efficient and Stable Planar p‐i‐n Perovskite Solar Cells. Advanced Energy Materials, 2018. 8(5): p. 1701883.
43. Leguy, A.M.A., et al., Reversible Hydration of CH(3)NH(3)Pbl(3) in Films, Single Crystals, and Solar Cells. Chemistry of Materials, 2015. 27(9): p. 3397-3407.
44. Smith, I.C., et al., A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability. Angewandte Chemie-International Edition, 2014. 53(42): p. 11232-11235.
45. Tsai, H.H., et al., High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016. 536(7616): p. 312-+.
46. Quan, L.N., et al., Ligand-Stabilized Reduced-Dimensionality Perovskites. Journal of the American Chemical Society, 2016. 138(8): p. 2649-2655.
47. Hu, Y.H., et al., Hybrid Perovskite/Perovskite Heterojunction Solar Cells. Acs Nano, 2016. 10(6): p. 5999-6007.
48. Wang, J., et al., Engineered Directional Charge Flow in Mixed Two-Dimensional Perovskites Enabled by Facile Cation-Exchange. The Journal of Physical Chemistry C, 2017. 121(39): p. 21281-21289.
49. Zhou, Z., et al., Methylamine‐Gas‐Induced Defect‐Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells. Angewandte Chemie International Edition, 2015. 54(33): p. 9705-9709.
50. Lin, Y., et al., Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures. The journal of physical chemistry letters, 2018. 9(3): p. 654-658.
51. Li, L., et al., Unraveling the growth of hierarchical Quasi-2D/3D perovskite and carrier dynamics. The journal of physical chemistry letters, 2018. 9(5): p. 1124-1132.
52. Stoumpos, C.C., et al., Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chemistry of Materials, 2016. 28(8): p. 2852-2867.
53. Cao, D.H., et al., 2D homologous perovskites as light-absorbing materials for solar cell applications. Journal of the American Chemical Society, 2015. 137(24): p. 7843-7850.
54. Shi, J., et al., Interfaces in perovskite solar cells. Small, 2015. 11(21): p. 2472-2486.
55. Chen, P., et al., In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells. Advanced Functional Materials, 2018. 28(17): p. 1706923.
56. Koh, T.M., et al., Enhancing moisture tolerance in efficient hybrid 3D/2D perovskite photovoltaics. Journal of Materials Chemistry A, 2018.
57. Chang, C.-Y., et al., Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS applied materials & interfaces, 2015. 7(8): p. 4955-4961.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69398-
dc.description.abstract鈣鈦礦太陽能電池發展至今短短幾年的時間,效率已從9.7提升至22.7%。然而,鈣鈦礦太陽能電池發展至今仍存在許多問題影響效能的提升,特別是在薄膜異質接面的能帶結構上,當兩層間的能階位置落差較大時,容易使載子再結合的機率增加,進而影響元件表現。因此,在本研究中我們透過同為鈣鈦礦之材料作為中間層,利用鈣鈦礦本身在結構及組成上的多樣性來改善異質接面。首先,我們藉由陽離子交換法將三維鈣鈦礦中的甲胺與反應溶液中的有機長碳鏈-正丁基銨進行交換,並透過有機長碳鏈離子濃度在薄膜內部的變化,製作出具有漸變層數的二維-三維鈣鈦礦,其在能帶結構上呈現梯形排列,因此當鈣鈦礦吸收光激發載子後,載子會自我分離,降低再結合率,使效率提升至15.25%,除此之外,二維鈣鈦礦中的疏水性有機長碳鏈,使二維鈣鈦礦中間層更做為保護層,降低水氣與鈣鈦礦反應降解的機率,提升元件的穩定度,使未封裝之二維-三維鈣鈦礦元件在經過12天後仍能保有原效率的84%。我們也透過反應溶液濃度的調控改變二維、三維鈣鈦礦之間的比例,同時利用光致螢光譜及X光繞射儀分析薄膜的光學性質,發現反應溶液的濃度對於二維鈣鈦礦的厚度及層數上都有影響,這會改變載子的轉移能力,影響元件的效能。最後,我們在表面形成最佳厚度之二維鈣鈦礦層並加入溴離子,使得在陽離子交換的同時,溶液中的溴離子會與薄膜內的碘離子進行交換,並調控反應溶液中溴的含量,觀察薄膜在光學性質、表面形貌、載子轉移能力上的變化,發現我們能藉由溴離子的摻入改變鈣鈦礦的結構並增加能隙,進而幫助在層數低於二的二維鈣鈦礦在價帶位置能更接近電洞傳輸層的價帶,幫助電洞的轉移,提升載子的轉移能力,使開路電壓有效提升至1.05V。從研究結果中,我們發現可以藉由溴混摻之二維-三維鈣鈦礦,改變能帶結構,使其具有較佳的載子轉移能力,並製作出轉換效能更佳的太陽能電池。zh_TW
dc.description.abstractOrganic-inorganic halide perovskite solar cells (PSCs) have pushed forward the photovoltaics progress since first reported in 2009 and their power conversion efficiency (PCE) has exceeded 22% in only a few years. However, there are some problems to affect the development of perovskite solar cells, especially the band structure at the heterojunction. So energy-level alignment at the interfaces is critical for the optimization of the solar cells. In this work, we use perovskite with different structure and composition as interlayer to improve the band structure. In the beginning, we form the graded 2D-3D perovskite through the cation-exchange, and change the band structure to the ordered band alignment between different perovskite components. Therefore, when the perovskite absorbs light and generates carriers, the carriers will self-separate, which reduces the recombination and increasing the efficiency to 15.25%. Moreover, the hydrophobic two-dimensional perovskite acts as a protective layer to reduce degradation of perovskite, and improve the stability of the device. We also change the ratio between 2D and 3D perovskite by adjusting the concentration of the reaction solution, and get the different optical properties by using the photoluminescence (PL) and X-ray diffraction. Then we discuss the relationship between the concentration of the reaction solution, thickness of 2D perovskite, and thickness of perovskite sheet, which affects the carriers’ transfer ability and the performance of devices. Finally, we doping different concentration of bromide ions into 2D/3D perovskite layer with the best ratio, which changes optical properties and morphology. In PL analysis that doping bromide will increase the band gap, and then decrease the valence band of 2D perovskite to be closer to HOMO of hole transporting layer, which improves holes’ transfer ability and effectively increases the open circuit voltage to 1.05V. Bromide-doped 2D-3D perovskite indeed improves the energy band structures at interface to get better carriers’ transfer ability, and high performance solar cells.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:14:41Z (GMT). No. of bitstreams: 1
ntu-107-R05527045-1.pdf: 4389000 bytes, checksum: 09ce6705132591b069707a0feeb495fb (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iv
ABSTRACT v
CONTENTS vii
圖目錄 x
表目錄 xiv
第1章 緒論 1
1.1 太陽能電池 1
1.2 鈣鈦礦太陽能電池 5
1.2.1 結構與性質 5
1.2.2 鈣鈦礦太陽能電池工作原理 8
1.2.3 太陽能電池元件結構 9
1.3 多樣化鈣鈦礦 11
1.3.1 結構多樣性 11
1.3.2 組成多樣性 13
1.4 研究動機 17
第2章 文獻回顧 18
2.1 鈣鈦礦太陽能電池發展歷史 18
2.2 鈣鈦礦太陽能電池異質接面之改善 23
2.2.1 異質接面對元件的影響 23
2.2.2 藉由中間層改善異質接面 26
2.3 低維度鈣鈦礦太陽能電池 28
2.3.1 二維鈣鈦礦太陽能電池 28
2.3.2 二維-三維鈣鈦礦太陽能電池 32
第3章 實驗方法 35
3.1 前言 35
3.2 實驗流程 36
3.3 材料與元件製備 37
3.3.1 基板清洗 37
3.3.2 電子傳輸層 37
3.3.3 鈣鈦礦光吸收層 37
3.3.4 中間層 二維鈣鈦礦之製備 38
3.3.5 電洞傳輸層 38
3.4 儀器設備 40
3.4.1 掃描式電子顯微鏡 40
3.4.2 X光繞射分析儀 40
3.4.3 旋轉塗佈機 41
3.4.4 紫外光-可見光-近紅外光吸收光譜儀 42
3.4.5 真空蒸鍍機 43
3.4.6 太陽光模擬器及電流密度-電壓特性量測設備 44
3.4.7 光激螢光與時間解析光激螢光 45
第4章 實驗結果與討論 47
4.1 二維-三維鈣鈦礦薄膜之光學分析 47
4.2 不同二維-三維鈣鈦礦比例之太陽能電池 50
4.2.1 不同反應溶液濃度造成薄膜在光學性質上的改變 50
4.2.2 二維-三維鈣鈦礦的比例對元件效能的影響 52
4.2.3 二維-三維鈣鈦礦元件對載子轉移能力的影響 54
4.2.4 三維鈣鈦礦與二維-三維鈣鈦礦元件表現穩定性比較 56
4.3 混摻溴之二維-三維鈣鈦礦太陽能電池 57
4.3.1 前言 57
4.3.2 不同溴含量之二維-三維鈣鈦礦薄膜光電性質及表面形貌 58
4.3.2 混摻溴之二維-三維鈣鈦礦元件表現 61
4.3.3 混摻溴之二維-三維鈣鈦礦元件對載子動態行為的影響 63
第5章 結論 65
參考資料 66
dc.language.isozh-TW
dc.title二維-三維鈣鈦礦異質接面對鈣鈦礦太陽能電池效能之改善與研究zh_TW
dc.title2D/3D Perovskite Heterojunction to Improve the Performance of Perovskite Solar Cellsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳學禮,闕居振
dc.subject.keyword鈣鈦礦太陽能電池,二維鈣鈦礦,異質接面,陽離子交換法,zh_TW
dc.subject.keywordperovskite solar cell,2D perovskite,heterojunction,cation exchange,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201801332
dc.rights.note有償授權
dc.date.accepted2018-07-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
4.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved