Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69370
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor呂育道(Yuh-Dauh Lyuu)
dc.contributor.authorYi-Ke Huangen
dc.contributor.author黃奕軻zh_TW
dc.date.accessioned2021-06-17T03:13:59Z-
dc.date.available2018-07-19
dc.date.copyright2018-07-19
dc.date.issued2018
dc.date.submitted2018-07-11
dc.identifier.citationBorovykh, A., Bohte, S., & Oosterlee, C. W. (2018). Conditional time series forecasting with convolutional neural networks. Retrieved June 15, 2018, from https://arxiv.org/abs/1703.04691v4
Brock, W., Lakonishok, J., & Lebaron, B. (1992). Simple technical trading rules and the stochastic properties of stock returns. Journal of Finance, 47(5), 1731–1764. doi: 10.1111/j.1540-6261.1992.tb04681.x
Chavarnakul, T., & Enke, D. (2009). A hybrid stock trading system for intelligent technical analysis-based equivolume charting. Neurocomputing, 72(16–18), 3517–3528. doi: 10.1016/j.neucom.2008.11.030
Chordia, T., Roll, R., & Subrahmanyam, A. (2002). Order imbalance, liquidity, and market returns. Journal of Financial Economics, 65(1), 111–130. doi: 10.1016/s0304-405x(02)00136-8
Chordia, T., Roll, R., & Subrahmanyam, A. (2008). Liquidity and market efficiency. Journal of Financial Economics, 87(2), 249–268. doi: 10.1016/j.jfineco.2007.03.005 Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues.
Quantitative Finance, 1(2), 223–236. doi: 10.1088/1469-7688/1/2/304
Cont, R., Kukanov, A., & Stoikov, S. (2013). The price impact of order book events. Journal of Financial Econometrics, 12(1), 47–88. doi: 10.1093/jjfinec/nbt003
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2(4), 303–314. doi: 10.1007/bf02551274
Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25(2), 383–417. doi: 10.2307/2325486
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT Press.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th international conference on neural information processing systems (Vol. 1, pp. 1097–1105). Lake Tahoe, NV: Curran Associates.
Liu, R., & Gillies, D. F. (2016). Overfitting in linear feature extraction for classification of high-dimensional image data. Pattern Recognition, 53(C), 73–86. doi: 10.1016/j.patcog.2015.11.015
Murphy, J. J. (1999). Technical analysis of the financial markets: A comprehensive guide to trading methods and applications. New York: New York Institute of Finance.
O’Hara, M. (2011). Market microstructure theory. Hoboken, NJ: Wiley-Blackwell.
Ozturk, S. R., Van der Wel, M., & Van Dijk, D. (2017). Intraday price discovery in fragmented markets. Journal of Financial Markets, 32(C), 28–48. doi: 10.1016/j.finmar.2016.10.001
Putra, E. F., & Kosala, R. (2011, 12). Application of artificial neural networks to predict intraday trading signals. In Proceedings of the 10th wseas international conference one-activities (e-activities ’11) (pp. 174–179). Jakarta, Island of Java.
Schulmeister, S. (2009). Profitability of technical stock trading: Has it moved from daily to intraday data? Review of Financial Economics, 18(4), 190–201. doi: https://doi.org/10.1016/j.rfe.2008.10.001
Sullivan, R., Timmermann, A., & White, H. (1999). Data-snooping, technical trading rule performance, and the bootstrap. Journal of Finance, 54(5), 1647–1691. doi: 10.1111/0022-1082.00163
台灣證券交易所 (民 105 年 1月 15 日)。集中市場交易制度介紹。取自 http://www.twse.com.tw/zh/page/trading/introduce.html。
台灣指數股份有限公司 (民 105年 1 月 24 日)。發行量加權股價指數編製要點。取自 https://www.taiwanindex.com.tw/files/indexfile/2.pdf。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69370-
dc.description.abstract股市指數通常由多家上市公司的股票組合而成。然而其價格決定於複雜的交易過程,並且資產間時常具有非線性的相依性。因此為了預測指數未來的短期走勢,我們考慮以卷積神經網路處理非線性多維時間序列。我們將模型用於預測指數的上漲或下跌,並實證模型的預測性。市場高頻資料 (每5秒) 包含了 2015 年至 2017 年日內的臺灣加權指數與個股價格。實驗結果顯示,模型使用在日內交易預測能得到良好的準確率與績效。zh_TW
dc.description.abstractA stock index consists of a board selection of stocks. Stylized facts show non-linear correlations exist between stock prices. Therefore, predicting the direction of an index involves modeling and analyzing sophisticated multi-dimensional time series. We employ the convolutional neural network to forecast the intra-day price movement of the Taiwan Stock Exchange Weighted Index (TAIEX). Furthermore, we verify the prediction performance of our model on the high-frequency data (5 sec) of the TAIEX and its constituent share prices from 2015 to 2017.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:13:59Z (GMT). No. of bitstreams: 1
ntu-107-R05922111-1.pdf: 1501490 bytes, checksum: 3e7bf2bfc8927179f72569b62ef8f791 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 i
中文摘要 iii
英文摘要 v
圖目錄 vii
表目錄 ix
第一章 研究介紹與文獻回顧 1
第二章 預測模型 5
第一節 卷積神經網路 5
第二節 估計方法 8
第三章 實證研究 11
第一節 資料來源以及特性 11
第二節 趨勢預測 12
第三節 模型預測結果 15
第四章 結論 21
參考文獻 23
dc.language.isozh-TW
dc.subject台灣證券市場zh_TW
dc.subject日內資料zh_TW
dc.subject資料探勘zh_TW
dc.subject神經網絡zh_TW
dc.subject股票預測zh_TW
dc.subjectTaiwan Stock Marketen
dc.subjectIntraday tradingen
dc.subjectData miningen
dc.subjectNeural networken
dc.subjectStock predictionen
dc.title上市個股預測台灣加權指數高頻趨勢zh_TW
dc.titlePrediction of Short-Term Trends of TAIEX via Its High-Frequency Constituent Share Pricesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee金國興(Guo-Xing JIN),張經略(Jing-Lue Zhang),鄧惠文(Hui-Wen Deng),蔡芸琤(Yun-Cheng Cai)
dc.subject.keyword台灣證券市場,日內資料,資料探勘,神經網絡,股票預測,zh_TW
dc.subject.keywordTaiwan Stock Market,Intraday trading,Data mining,Neural network,Stock prediction,en
dc.relation.page25
dc.identifier.doi10.6342/NTU201801430
dc.rights.note有償授權
dc.date.accepted2018-07-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
1.47 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved