請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69367
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳錫侃 | |
dc.contributor.author | Che-Hsuan Su | en |
dc.contributor.author | 蘇哲萱 | zh_TW |
dc.date.accessioned | 2021-06-17T03:13:55Z | - |
dc.date.available | 2028-12-31 | |
dc.date.copyright | 2018-07-19 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-11 | |
dc.identifier.citation | 1. K.H. Huang, J. Yeh, A study on the multicomponent alloy systems containing equal-mole elements, National Tsing Hua University,Taiwan (1996).
2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6(5) (2004) 299-303 3. J.W. Yeh, Recent progress in high entropy alloys, Ann. Chim. Sci. Mat., 31(6) (2006) 633-648. 4. J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, H.C. Chen, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content, Wear, 261(5-6) (2006) 513-519. 5. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A, 375-377 (2004) 213. 6. J.W. Yeh. Alloy design strategies and future trends in high-entropy alloys. JOM ,65.12 (2013): 1759-1771. 7. Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast,-homogenized, and-deformed AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys, J. Alloys Compd., 488(1) (2009) 57-64. 8. C.J. Tong, Y.L. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, C.H. Tsau, S.Y. Chang, Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A, 36(4) (2005) 881-893. 9. C.J. Tong, M.R. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, S.Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A, 36(5) (2005) 1263-1271. 10. M.-H. Tsai, J.-W. Yeh, High-entropy alloys: a critical review, Mater. Res. Lett., 2(3) (2014) 107-123. 11. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61 (2014) 1-93. 12. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater., 59(16) (2011) 6308-6317. 13. C.Y. Hsu, C.C. Juan, W.R. Wang, T.S. Sheu, J.W. Yeh, S.K. Chen, On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys, Mater. Sci. Eng. A, 528(10-11) (2011) 3581-3588. 14. E. Pickering, N.G. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects, Int. Mater. Rev., 61(3) (2016) 183-202. 15. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science,345(6201) (2014) 1153-1158. 16. Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics, 46 (2014) 131-140. 17. D.R. Gaskell, D.E. Laughlin, Introduction to the Thermodynamics of Materials, CRC Press (2017). 18. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Microstructure and wear behavior of AlxCo1. 5CrFeNi1. 5Tiy high-entropy alloys, Acta Mater., 59(16) (2011) 6308-6317. 19. Y. Chen, T. Duval, U. Hung, J. Yeh, H. Shih, Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel, Corros. Sci., 47(9) (2005) 2257-2279. 20. Y. Chou, Y. Wang, J. Yeh, H. Shih, Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions, Corros. Sci., 52(10) (2010) 3481-3491. 21. Y. Chou, Y. Wang, J. Yeh, H. Shih, The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments. Corros. Sci., 52.8 (2010): 2571-2581. 22. Y.F. Kao, T.D. Lee, S.K. Chen, Y.S. Chang, Electrochemical passive properties of AlxCoCrFeNi (x= 0, 0.25, 0.50, 1.00) alloys in sulfuric acids, Corros. Sci., 52(3) (2010) 1026-1034. 23. L. Anmin, X. Zhang, Thermodynamic analysis of the simple microstructure of AlCrFeNiCu high-entropy alloy with multi-principal elements, Acta Metall. Sin., 3(22) (2009) 219-224. 24. M.F. del Grosso, G. Bozzolo, H.O. Mosca, Determination of the transition to the high entropy regime for alloys of refractory elements, J. Alloys Compd., 534 (2012) 25-31. 25. C. Ng, S. Guo, J. Luan, S. Shi, C.T. Liu, Entropy-driven phase stability and slow diffusion kinetics in an Al0. 5CoCrCuFeNi high entropy alloy, Intermetallics, 31 (2012) 165-172. 26. M. Lucas, G. Wilks, L. Mauger, J.A. Munoz, O.N. Senkov, E. Michel, J. Horwath, S. Semiatin, M.B. Stone, D.L. Abernathy, Absence of long-range chemical ordering in equimolar FeCoCrNi, Appl. Phys. Lett., 100(25) (2012) 251907. 27. K. Zhang, Z. Fu, Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys, Intermetallics, 22 (2012) 24-32. 28. F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Mater., 61(7) (2013) 2628-2638. 29. C.-Y. Hsu, J.-W. Yeh, S.-K. Chen, T.-T. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl 0.5 Fe alloy with boron addition, Metall. Mater. Trans. A, 35(5) (2004) 1465-1469. 30. F.R. De Boer, W. Mattens, R. Boom, A. Miedema, A. Niessen, Cohesion in metals, (1988). 31. O. Senkov, G. Wilks, J. Scott, D. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(5) (2011) 698-706. 32. O. Senkov, J. Scott, S. Senkova, F. Meisenkothen, D. Miracle, C. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci., 47(9) (2012) 4062-4074. 33. C.Y. Hsu, C.C. Juan, T.S. Sheu, S.K. Chen, J.W. Yeh, Effect of aluminum content on microstructure and mechanical properties of Al x CoCrFeMo 0.5 Ni high-entropy alloys, Jom, 65(12) (2013) 1840-1847. 34. T.T. Shun, C.H. Hung, C.F. Lee, Formation of ordered/disordered nanoparticles in FCC high entropy alloys, J. Alloys Compd., 493(1-2) (2010) 105-109. 35. M.H. Tsai, H. Yuan, G. Cheng, W. Xu, K.Y. Tsai, C.W. Tsai, W.W. Jian, C.C. Juan, W.J. Shen, M.H. Chuang, Morphology, structure and composition of precipitates in Al0. 3CoCrCu0. 5FeNi high-entropy alloy, Intermetallics, 32 (2013) 329-336. 36. K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater., 61(13) (2013) 4887-4897. 37. D. Pruthi, Calculation of solute-vacancy binding energy in dilute fcc and bcc alloys by diffusion, Bulletin of Mater. Sci.,7(1) (1985) 43-49. 38. C.y. Cheng, P.P. Wynblatt, J. Dorn, Vacancy models for concentrated binary alloys. I. Short-range ordered and clustered alloys, (1966). 39. G.H. Vineyard, Theory of order-disorder kinetics, Phys. Rev., 102(4) (1956) 981. 40. S. Ranganathan, Alloyed pleasures: multimetallic cocktails, Curr. Sci., 85(10) (2003) 1404-1406. 41. P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Multi‐principal‐element alloys with improved oxidation and wear resistance for thermal spray coating, Adv. Eng. Mater.,6(1‐2) (2004) 74-78. 42. X. Wang, Y. Zhang, Y. Qiao, G. Chen, Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys, Intermetallics, 15(3) (2007) 357-362. 43. J. Zhu, H. Fu, H. Zhang, A. Wang, H. Li, Z. Hu, Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys, Mater. Sci. Eng. A, 527(26) (2010) 6975-6979. 44. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Sci.,345(6201) (2014) 1153-1158. 45. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater., 61(15) (2013) 5743-5755. 46. W. Liu, Y. Wu, J. He, T. Nieh, Z. Lu, Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy, Scr. Mater., 68(7) (2013) 526-529. 47. H.S. Oh, D. Ma, G.P. Leyson, B. Grabowski, E.S. Park, F. Körmann, D. Raabe, Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment, Entropy, 18(9) (2016) 321. 48. J. He, Q. Wang, H. Zhang, L. Dai, T. Mukai, Y. Wu, X. Liu, H. Wang, T.-G. Nieh, Z. Lu, Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy, Science Bulletin, 63(6) (2018) 362-368. 49. Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics, 46 (2014) 131-140. 50. www1.asminternational.org/asmenterprise/apd/AdvancedSearchAPD.aspx. 51. S. Guo, C. Ng, J. Lu, C. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109(10) (2011) 103505. 52. A. Gali, E.P. George, Tensile properties of high-and medium-entropy alloys, Intermetallics, 39 (2013) 74-78. 53. S. Ma, S. Zhang, J. Qiao, Z. Wang, M. Gao, Z. Jiao, H. Yang, Y. Zhang, Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification, Intermetallics, 54 (2014) 104-109. 54. D. Li, C. Li, T. Feng, Y. Zhang, G. Sha, J.J. Lewandowski, P.K. Liaw, Y. Zhang, High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures, Acta Mater.,123 (2017) 285-294. 55. C.M. Lin, H.L. Tsai, Equilibrium phase of high-entropy FeCoNiCrCu0.5 alloy at elevated temperature, J. Appl. Phys., 489(1) (2010) 30-35. 56. K. Jin, B.C. Sales, G.M. Stocks, G.D. Samolyuk, M. Daene, W.J. Weber, Y. Zhang, H. Bei, Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity, Sci. Rep., 6 (2016) 20159. 57. M. Lucas, L. Mauger, J. Munoz, Y. Xiao, A. Sheets, S. Semiatin, J. Horwath, Z. Turgut, Magnetic and vibrational properties of high-entropy alloys, J. Appl. Phys., 109(7) (2011) 07E307. 58. E. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc, Sect. B., 64(9) (1951) 747. 59. N. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst., 174 (1953) 25-28. 60. Y.S. Sato, M. Urata, H. Kokawa, K. Ikeda, Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys, Mater. Sci. Eng.: A, 354(1-2) (2003) 298-305. 61. N. Hansen, Hall–Petch relation and boundary strengthening, Scr. Mater., 51(8) (2004) 801-806. 62. E. Anderson, D. Law, W. King, J. Spreadborough, The relationship between lower yield stress and grain size in Armco iron, TRANS MET SOC AIME, 242(1) (1968). 63. A.A. Thompson, Yielding in nickel as a function of grain or cell size, Acta Metall., 23(11) (1975) 1337-1342. 64. M.F. Ashby, D.R.H. Jones, Engineering Materials 1, Pergamon Press, Oxford, 1980, p. 105. 65. D. Wu, J. Zhang, J. Huang, H. Bei, T.-G. Nieh, Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals, Scr. Mater., 68(2) (2013) 118-121. 66. A.S. Khan, H. Zhang, L. Takacs, Mechanical response and modeling of fully compacted nanocrystalline iron and copper, Int. J. Plast., 16(12) (2000) 1459-1476. 67. A.F. Jankowski, J. Go, J.P. Hayes, Thermal stability and mechanical behavior of ultra-fine bcc Ta and V coatings, Surf. Coat. Technol., 202(4-7) (2007) 957-961. 68. V. Provenzano, R. Valiev, D. Rickerby, G. Valdre, Mechanical properties of nanostructured chromium, Nanostruct. Mater., 12(5-8) (1999) 1103-1108. 69. A. Jankowski, J. Hayes, C. Saw, Dimensional attributes in enhanced hardness of nanocrystalline Ta–V nanolaminates, Philos. Mag., 87(16) (2007) 2323-2334. 70. K. Yoder, A. Elmustafa, J. Lin, R. Hoffman, D. Stone, Activation analysis of deformation in evaporated molybdenum thin films, J. Phys. D: Appl. Phys., 36(7) (2003) 884. 71. A. Omar, A. Entwisle, The effect of grain size on the deformation of niobium, Mater. Sci. Eng., 5(5) (1970) 263-270. 72. J. Chen, L. Lu, K. Lu, Hardness and strain rate sensitivity of nanocrystalline Cu, Scr. Mater., 54(11) (2006) 1913-1918. 73. G. Hughes, S. Smith, C. Pande, H. Johnson, R. Armstrong, Hall-Petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel, Scr. Metall., 20(1) (1986) 93-97. 74. A.S. Khan, B. Farrokh, L. Takacs, Effect of grain refinement on mechanical properties of ball-milled bulk aluminum, Mater. Sci. Eng.: A, 489(1-2) (2008) 77-84. 75. Y. Chew, C. Wong, F. Wulff, F. Lim, H. Goh, Strain rate sensitivity and Hall–Petch behavior of ultrafine-grained gold wires, Thin Solid Films, 516(16) (2008) 5376-5380. 76. X. Qin, X. Wu, L. Zhang, The microhardness of nanocrystalline silver, Nanostruct. Mater., 5(1) (1995) 101-110. 77. K. Kubota, M. Mabuchi, K. Higashi, Review processing and mechanical properties of fine-grained magnesium alloys, J. Mater. Sci., 34(10) (1999) 2255-2262. 78. M. Barnett, Z. Keshavarz, A. Beer, D. Atwell, Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn, Acta Mater., 52(17) (2004) 5093-5103. 79. X. Zhang, H. Wang, R. Scattergood, J. Narayan, C. Koch, Evolution of microstructure and mechanical properties of in situ consolidated bulk ultra-fine-grained and nanocrystalline Zn prepared by ball milling, Mater. Sci. Eng.: A, 344(1-2) (2003) 175-181. 80. C.Y. Hyun, J.H. Lee, H.K. Kim, Microstructures and mechanical properties of ultrafine grained pure Ti produced by severe plastic deformation, Res. Chem. Intermed., 36(6-7) (2010) 629-638. 81. R. Lederich, S. Sastry, J. O'neal, B. Rath, The effect of grain size on yield stress and work hardening of polycrystalline titanium at 295 K and 575 K, Mater. Sci. Eng., 33(2) (1978) 183-188. 82. E. Cerreta, C. Yablinsky, G. Gray Iii, S. Vogel, D. Brown, The influence of grain size and texture on the mechanical response of high purity hafnium, Mater. Sci. Eng.: A, 456(1-2) (2007) 243-251. 83. M. Zhang, B. Yang, J. Chu, T. Nieh, Hardness enhancement in nanocrystalline tantalum thin films, Scr. Mater., 54(7) (2006) 1227-1230. 84. P.A. Beck, J.C. Kremer, L. Demer, M. Holzworth, Grain growth in high-purity aluminum and in an aluminum-magnesium alloy, Trans. Am. Inst. Min. Metall. Eng., 175 (1948) 372-400. 85. J. Burke, Some factors affecting the rate of grain growth in metals, Aime Trans, 180 (1949) 73-91. 86. H. Atkinson, Overview no. 65: Theories of normal grain growth in pure single phase systems, Acta Metall., 36(3) (1988) 469-491. 87. W. Tang, Z. Zheng, H. Tang, R. Ren, Y. Wu, Structural evolution and grain growth kinetics of the Fe–28Al elemental powder during mechanical alloying and annealing, Intermetallics, 15(8) (2007) 1020-1026. 88. Z. Huda, T. Zaharinie, S.H. Islam, Effects of annealing parameters on grain-growth behavior of HAYNES-718 superalloy, Int. J. Phys. Sci., 6(30) (2011) 7073-7077. 89. H. Hu, B. Rath, On the time exponent in isothermal grain growth, Metall. Trans., 1(11) (1970) 3181-3184. 90. RL Fullman. Metal Interfaces, Am. Soc. Met., Cleveland, OH (1952) 91. A.S.f. Metals, Recrystallization, grain growth, and textures: papers presented at a seminar of the Am. Soc. Met., (1966) 92. Q. Miao, L. Hu, X. Wang, E. Wang, Grain growth kinetics of a fine-grained AZ31 magnesium alloy produced by hot rolling, J. Alloys Compd., 493(1-2) (2010) 87-90. 93. R. Vandermeer, H. Hu, On the grain growth exponent of pure iron, Acta Metall. Mater., 42(9) (1994) 3071-3075. 94. ASTM standard E112-12 Standard Test Methods for Determining Average Grain Size. (2013). 95. S. Guo, Q. Hu, C. Ng, C. Liu, More than entropy in high-entropy alloys: forming solid solutions or amorphous phase, Intermetallics, 41 (2013) 96-103. 96. G. Sheng, C.T. Liu, Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase, Prog. Nat. Sci.: Mater. Int., 21(6) (2011) 433-446. 97. A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans., 46(12) (2005) 2817-2829. 98. https://en.wikipedia.org/wiki/Palladium 99. A. Taylor, H. Sinclair, On the determination of lattice parameters by the Debye-Scherrer method, Proc. Phys. Soc., 57(2) (1945) 126. 100. V.G. Gavriljuk, H. Berns, High nitrogen steels: structure, properties, manufacture, applications, Springer Science & Business Media, (2013) 101. S. Liu, Y. Wu, H. Wang, J. He, J. Liu, C. Chen, X. Liu, H. Wang, Z. Lu, Stacking fault energy of face-centered-cubic high entropy alloys, Intermetallics, 93 (2018) 269-273. 102. J. Cai, F. Wang, C. Lu, Y. Wang, Structure and stacking-fault energy in metals Al, Pd, Pt, Ir, and Rh, Phys. Rev. B, 69(22) (2004) 224104. 103. https://en.wikipedia.org/wiki/Stacking-fault_energy#cite_ref-1 104. https://en.wikipedia.org/wiki/Elastic_properties_of_the_elements_(data_page) 105. F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Elsevier, (2012) 106. Y. Zhang, M. Gao, J. Yeh, P. Liaw, Y. Zhang, High-Entropy alloys: fundamentals and applications, (2016). 107. R. Singh, G. Das, P. Singh, I. Chattoraj, Low-Temperature Sensitization Behavior of Base, Heat-Affected Zone, and Weld Pool in AISI 304LN, Metall. Mater. Trans. A, 40(5) (2009) 1219-1234. 108. X. Wang, L. Hu, K. Liu, Y. Zhang, Grain growth kinetics of bulk AZ31 magnesium alloy by hot pressing, J. Alloys Compd., 527 (2012) 193-196. 109. F. Gil, J. Planell, Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys, Mater. Sci. Eng.: A, 283(1-2) (2000) 17-24. 110. S. Fang, X. Xiao, L. Xia, W. Li, Y. Dong, Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses, J. Non-Cryst. Solids, 321(1-2) (2003) 120-125. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69367 | - |
dc.description.abstract | 本文探討六種中/高熵合金FeCoNiCrMn、FeCoNiCrPd、FeCoNiCr、FeCoNiMn、CoNiCr以及CoNiMn經80%冷軋延後在不同的退火溫度及時間下之再結晶行為及晶粒成長特性。由各合金的δ、∆H_mix、VEC值以及XRD量測皆顯示此六種合金為單一FCC相的結構。再結晶後合金的硬度值會隨著晶粒大小的增加而下降並符合Hall-Petch關係式Hv=H0+KHd-1/2,其中KH值以三元的CoNiCr為最大,五元的FeCoNiCrPd為最小,此因後者之疊差能最大與剪力模數最小所致。又只經80%冷軋延的合金表面硬度,以CoNiCr為最硬,這顯示在中/高熵合金中,固溶硬化的程度並不會因為所添加的合金元素數的增加而上升,反而是與所添加的元素種類較相關。本文也對此六種80%冷軋延之合金做不同條件的退火處理以觀察其晶粒成長行為,發現晶粒成長指數1/n值在FeCoNiCrPd合金約為3.5,CoNiMn、FeCoNiCr、FeCoNiCrMn合金的1/n值接近於2.8,CoNiCr及FeCoNiMn合金的1/n值接近於2.9,此等1/n值皆大於純金屬的2。而晶粒成長的活化能則以FeCoNiCrPd合金最大,為831.9kJ/mol,CoNiMn合金最小,為325.1kJ/mol,但此等值也都比傳統合金高出甚多,顯示中/高熵合金之晶界移動易受溶質拖曳效應及緩慢擴散因素等的影響;此外,合金元素的自行擴散所需活化能的大小也會造成上述晶粒成長活化能的差異。 | zh_TW |
dc.description.abstract | In this study, recrystallization behavior and grain growth characteristics of homogenized and 80% cold-rolled FeCoNiCrMn、FeCoNiCrPd、FeCoNiCr、FeCoNiMn、CoNiCr and CoNiMn multi-component equiatomic medium / high entropy alloys(MEAs/HEAs) heated at different annealing time and temperature are investigated. The values of δ、∆H_mix and VEC in these six alloys all indicate the formation of single-phase FCC structure. The hardness of recrystallized alloys decreases as the grain size increases, and obeys the Hall-Patch equation, Hv=H0+KHd-1/2. The ternary CoNiCr alloy has the highest KH value, whereas the quinary FeCoNiCrPd alloy has the lowest one. This phenomenum is caused by the largest stacking fault energy and smallest shear modulus exhibited in FeCoNiCrPd alloy. After 80% cold rolling, the surface hardness of the ternary CoNiCr alloy is hardest, indicating that solid solution hardening in MEAs/HEAs is not determined by the number of soluted elements but by the kind of the element. Furthermore, all six alloys have the grain growth exponents 1/n higher than 2 with FeCoNiCrPd alloy having the highest activation energy of grain growth, say 831.9kJ/mol which is much higher than that in the conventional alloys. This characteristic suggests that the effects of the solute drag and the sluggish diffusion control the grain boundary motion. Moreover, the self-diffusion activation energy of the element exhibited in the alloy also affects the MEAs/HEAs activation energy of grain growth. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:13:55Z (GMT). No. of bitstreams: 1 ntu-107-R05527033-1.pdf: 6925642 bytes, checksum: c4d6e1e7ac0d2be8ed2537aae2219970 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 iii 摘要 v Abstract vii 目錄 ix 第一章 前言 1 第二章 文獻回顧 3 2-1 高熵合金簡介 3 2-1-1 高熵效應(High-entropy effect) 4 2-1-2 晶格扭曲效應(Lattice distortion effect) 5 2-1-3 緩慢擴散效應(Sluggish diffusion effect) 6 2-1-4 雞尾酒效應(Cocktail effect) 7 2-2 FeCoNiCrMn系統與FeCoNiCrPd之討論與選擇 7 2-3 Hall-petch 關係式 9 2-4 晶粒成長效應 11 第三章 實驗步驟 21 3-1 高熵合金之試片準備 21 3-2 熱處理 22 3-3 微硬度(Vickers Mircohardness)量測 23 3-4 光學顯微鏡(OM)與掃描式電子顯微鏡(SEM)的觀察與晶粒大小的量測 24 3-5 XRD試驗 25 3-6 實驗流程 25 第四章 實驗結果 30 4-1 高熵合金相的分析 30 4-2 Hall-Petch 關係式與微硬度值的探討 32 4-2-1 FeCoNiCrMn高熵合金的Hall-Petch 關係 32 4-2-2 FeCoNiCrPd高熵合金的Hall-Petch 關係 33 4-2-3 FeCoNiCr中熵合金的Hall-Petch 關係 34 4-2-4 FeCoNiMn中熵合金的Hall-Petch 關係 34 4-2-5 CoNiCr中熵合金的Hall-Petch 關係 35 4-2-6 CoNiMn中熵合金的Hall-Petch 關係 36 4-2-7 Hall-Petch關係式的綜合討論 36 4-2-8 微硬度值的綜合討論 38 4-3 晶粒成長之效應 40 4-3-1 FeCoNiCrMn 高熵合金的晶粒成長 40 4-3-2 FeCoNiCrPd 高熵合金的晶粒成長 41 4-3-3 FeCoNiCr 中熵合金的晶粒成長 42 4-3-4 FeCoNiMn 中熵合金的晶粒成長 43 4-3-5 CoNiCr 中熵合金的晶粒成長 44 4-3-6 CoNiMn 中熵合金的晶粒成長 45 4-3-7 綜合討論 46 第五章 結論 95 參考文獻 97 | |
dc.language.iso | zh-TW | |
dc.title | 三元至五元FCC結構中/高熵合金Hall-Petch關係與晶粒成長之研究 | zh_TW |
dc.title | A study on Hall-Petch relationship and grain growth of ternary to quinary FCC-structured medium/high entropy alloys | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林新智,陳志軒,張世航,周棟勝 | |
dc.subject.keyword | 中/高熵合金,Hall-Petch關係,微硬度值,晶粒成長指數,晶粒成長活化能, | zh_TW |
dc.subject.keyword | Medium / High entropy alloys,Hall-Petch relationship,Hardness,Grain growth exponent,Activation energy of grain growth, | en |
dc.relation.page | 104 | |
dc.identifier.doi | 10.6342/NTU201801426 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-07-11 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 6.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。