請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6935
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張新軒(Shin-Shinge Chang) | |
dc.contributor.author | Zhi-Wei Yang | en |
dc.contributor.author | 楊志維 | zh_TW |
dc.date.accessioned | 2021-05-17T09:21:38Z | - |
dc.date.available | 2017-03-19 | |
dc.date.available | 2021-05-17T09:21:38Z | - |
dc.date.copyright | 2012-03-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-02-09 | |
dc.identifier.citation | 申雍、羅正宗、鄭世朋。2000。稻株氮營養狀況遙測技術之建立。中華農業氣象7:23-32。
申雍、李裕娟、章國威、羅正宗。2001。水稻氮營養之遙感探測技術。p.235-238有機肥料與合理化施肥研討會。中華土壤肥料學會,台中市。 申雍、章國威、李裕娟、楊純明、羅正宗,2002。應用遙測技術推估水稻產量之初探,應用於水稻精準農業體系之知識與技術(楊純明、林俊義主編),農業試驗所,pp.39-50。 申雍、李裕娟、章國威、姚銘輝。2003。機載簡易多光譜影像拍攝系統之建構與應用。p.97-104。水稻精準農業(耕)體系。楊純明、林俊義,主編。農業試驗所,台中縣。 吳啟南、蕭國鑫、徐偉城、廖子毅、陳大科、劉治中,2002。衛星及地面遙測資料應用於水稻生長及產量監測出步研究,應用於水稻精準農業體系之知識與技術(楊純明、林俊義主編),農業試驗所,pp.19-38。 宋勳、劉瑋婷。1996。稻米品質的影響因素與分級。p.133-154。稻作生產改進策略研討會專刊。台灣省農業試驗所編印。 邵泰璋、史天元,2000。類神經網路於多光譜影像分類之應用。航測及遙測學刊,5(1):1-14。 陳益凰、曾義星。1999。應用多時段衛星影像辨識水稻田之研究。航測及遙測學刊,4(3):1-15。 許愛娜。2005。稻米品質要項與其影響因素。台中區農業專訊,50:8-13。 楊棋明、吳雅婷、劉翠雅、黃文達、黃秀鳳、趙璧玉。2004。高等植物非葉綠色組織葉綠素含量及其 a/b 比值之初探。華岡農科學報。13:27-34。 楊志維。2001。衛星遙測與灰系統理論應用於水稻(Oryza sativa L.)營養生長期之監測。國立台灣大學農藝學研究所碩士論文。 楊嘉凌、許愛娜、許志聖。2004。良質米推薦品種的特性。台中區農業專訊,46:11-18。 劉振榮、林唐煌、郭宗華、梁志綱、梁隆鑫。2002。機載多頻譜遙測系統之建構與應用,應用於水稻精準農業體系之知識與技術(楊純明、林俊義主編),農業試驗所,pp.51-64。 賴明信、陳正昌、郭益全、陳治官、李長沛、曾東海、林英俊。1997。現行水稻推品種生產力與氮肥用量之關係 II. 氮肥用量對水稻品質性狀之影響。中華農業研究,46(1):1-14。 薛利紅、曹衛星、李映雪、周冬琴、李衛國。2004。水稻冠層反射光譜特徵與籽粒品質指標的相關性研究。中國水稻科學,18:431-436。 蕭國鑫、劉治中、史天元,2000。遙測與GIS結合應用於水稻田辨識。航測及遙測學刊,5(4):1-22。 蕭國鑫、劉治中、徐偉城,2004。不同影像分類方法應用於水稻辨識之探討。航測及遙測學刊,9(1):13-26。 Asaka, D. and H. Shiga. 1999. Distribution mapping of rice grain protein contents using satellite romote sensing, new results in 1999. In: Collections of Paper Presented at the Meeting of Hokkaido Agricultural Experimental Stations in 1999(平成11年度北海道農業試驗場會議資料).Yubari:HCAES,2000.97-101. Baret, F., Champion, I., Guyot, G. and Podaire, A. 1987. Monitoring wheat canopies with high spectral resolution radiometer. Remote Sens. Environ. 22:367-378. Baret, F., Jacquemoud, S. and Guyot, G. 1992. Modeled analysis of the biophysical nature of spectral shift and comparison with information content of broad bands. Remote Sens. Environ. 41:133-142. Barry, P., Young, A. J. and Britton, G. 1991. Accumulation of pigments during the greening of etiolated seedlings of Hordeum vulgare L. J. Exp. Bot. 42:229-234. Bauer, M. E. 1975. The role of remote sensing in determining the distribution and yield of crops. Adv. Agron. 27:271-304. Boardman, N. K. 1980. Comparative photosynthesis of sun and shade plants. Annu. Rev. plant Physiol. 28:355-377. Buschmann, C. and Nagel, E. 1993. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int. J. Remote Sens. 14:711-722. Cagampang, G. B., C. M. Perez and B. O. Juliano. 1973. A gel consistency for eating quality of rice. J. Sci. Fd. Agri. 24:1589-1594. Carter, G. A. 1993. Responses of leaf spectral reflectance to plant stress. Am. J. Bot. 80:239-243. Carter, G. A. 1994. Ratios of leaf reflectances in narrow wavebands as indicator of plant stress. Int. J. Remote Sens. 15:697-703. Chamura, S., K. Kawase, E. Yokoyama and Y. Honda. 1972. Studies on the relation between the types of soil and palatability of paddy rice. I. The influence of chemical properties of various soil on the growth and palatability of paddy rice. Pro. Crop Sci. Soc. Japan 41:27-31. Chang, F. H. and Troughton, J. H. 1972. Chlorophyll a/b ratios in C3-C4-plants. Photosynthetica 6:57-65. Chang, K. W., Y. Shen and J. C. Lo. 2005. Predicting rice yield using canopy reflectance measured at booting stage. Agronomy Journal 97: 872-878. Chappelle, E. W., Kim, M. S. and McMurtrey III, J. E. 1992. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll a chlorophyll b, and carotenoids in soybean leaves. Remote Sens. Environ. 39:239-247. Chen H. Y, C. M., Yang 1995. Temperaturesensitivity of chlorophyll expression in the leaves of Ficus microcarpa cv. Golden-leaves. Proc. Natl. Sci. Counc. ROC. Pt.B. 19: 196-200. Chen, H. Y., Li, C. C. and Yang, C. M. 2003. Analysis of the chlorophyll biosynthetic and degradative pathways in a chlorophyll-deficient mutant of Sansevieria trifasciata. J. Agric. Assoc. China 4: in press. Chen, H. Y., Lu, Y. K., Chou, C. H. and Yang, C. M. 1996. Analysis of pigment degradation in exocarp of papaya during late ripening. J. Chinese Agric. Chem. Soc. 34:460-468. Chen Q. Wang L.F., Su N., Qin H.D., Niu H.B., Wang J.L., Zhai H.Q., Wan J.M. 2008. Photosystem 2 photochemistry and pigment composition of a yellow mutant of rice (Oryza sativa L.) under different irradiances. Photosynthetica 46(1):35-39. Curran, P. J., Dungan, J. L., Macler, B. A. and Plummer, S. E. 1991. The Effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration. Remote Sens. Environ. 35:69-76. Dale, M. P. and Causton, D. R. 1992. Use of the chlorophyll a/b ratio as a bioassay for the light environment of a plant. Functional Ecol. 6:190-196. Demming-Adams, B., and W. W. Adams III. 1996. The role of xanthophylls cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1:21-26. Elvidge, C. D. and Chen, Z. 1995. Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sens. Environ. 54:38-48. Fuchs, M. 1990. Canopy thermal infrared observations In: Instrumentation for studying vegetation canopies for remote sensing in optical and thermal infrared regions (ed. by Goel, N. S. and Norman, J. M.). pp.323-333. Harwood Acad. Publ. Gmb H, U. K. Gitelson, A. A. and Merzlyak, M. N. 1994a. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 143:286-292. Gitelson, A. A. and Merzlyak, M. N. 1994b. Quantitative estimation of Chlorophyll a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. (B) 22:247-252. Gitelson, A. A. and Merzlyak, M. N. 1996. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. J. Plant Physiol. 148:494-500. Gitelson, A. A. and Merzlyak, M. N. 1997. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 18:2691-2697. Gitelson, A. A., Kaufman, Y. J. and Merzlyak, M. N. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sen. Environ. 58:289-298. Green, E. P., Mymby, P. J., Edwards, A. J., Clark, C. D. and Ellis A. C. 1997. Estimating leaf area index of mangroves from satellite data. Aquatic Botany 58:11-19. Hansen, P. M., J. R. Jorgensen and A. Thomsen. 2002. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression. J Agric Sci. 139: 307-318. Hendry, G. A. F., Houghton, J. D. and Brown, S. B. 1987. The degradation of chlorophyll – a biological enigma. New Phytol. 107:255-302. Holm, G. (1954) Chlorophyll mutations in barley. Acta Agric. Scand. 4:457-461. Hsu, B. D., and Lee J. Y. 1995. The photosystem II heterogeneity of chlorophyll b-deficient mutants of rice: a fluorescence induction study. Aust. J. Plant Physiol. 22:195-200. Hsu, J. C., Lu, Y. K. and Yang, C. M. 1995. Analysis on pigments in the exocarp of orange fruit. Taiwania 40:83-90. Hsu, M. H., Huang, W. D., Yang, Z. W., Tsai, Y. Z., Yang, C. M. and Chang, S. S. 2003. Study on the chlorophyll biosynthetic and degradative pathway in the leaves of three sweet potatoes. Chinese Agron. J. 13:87-98. Huang, W. D., Yang, J. S., Hsu, M. H., Yang, Z. W., Tsai, Y. Z., Chang, S. S.,. and Yang, C. M. 2005. Application of grey system theory in biology: (2) Photosystem I attributes more than photosystem II to photosynthesis rate in higher plants: application of grey relational analysis. J. Grey Sys. 17(1):67-72. Huang, W. D., J. S. Yang, M. H. Hsu, S. F. Huang, S. S. Chang, Y. Z. Tsai, Z. W. Yang and C. M. Yang. 2005. Application of grey system theory on biology: (IV) Grey relational analysis on the chlorophyll contents and yield of rice. J. Agric. Assoc. China. 6:347-354. Inada, K. 1985. Spectral ratio of reflectance for estimating chlorophyll content of leaf. Jpn. J. Crop Sci. 54:261-265. Inoue, Y., M. S. Moran, and T. Horie. 1998. Analysis of spectral measurements in paddy field for predicting rice growth and yield based on a simple crop simulation model. Plant Prod. Sci. 1:269-279. Jensen, P.E., Willows, R.D., Petersen, B.L., Vothknecht, U.C., Stummann, B.M., Kannangara, C.G., von Wettstein, D. and Henningsen, K.W. 1996. Structural genes for Mg-chelatase subunits in barley: XANTHA-F, -G and -H. Mol. Gen. Genet. 250: 383–394. Juliano, B. O. 1971. A simplified assay for milled rice amylose. Cereal Sci. Today 16:334-340. Jung, K.H., Hur, J.H., Ryu, C.H., Choi, Y.J., Chung, Y.Y., Miyao, A., Hirochika, H., An, G.H. 2003. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol. 44: 463-472. Kahn, V. M., Avivi-Bieise, N. and Von Wettstein, D. 1976. Genetic regulation of chlorophyll synthesis analyzed with double mutants in barley. In: Genetics and Biogenesis of chloroplasts and Mitochondria (ed. by Bhuchler, T.). pp. 119-131. Elsevier/North-Holland Biomedical Press, Amsterdam. Kariya, K., A. Matsuzaki, and H. Machida. 1982. Distribution of chlorophyll content in leaf blade of rice plant. Jpn. J. Crop Sci. 51:134-135. King, J. 1991. The chlorophyll-deficient mutants. In: The Genetics Basic of Plant Physiological Processes (ed. by King, J.) pp. 153-166. Oxford University Press, Inc. Koncz, C., Mayerhofer, R., Koncz-Kalman, Z., Nawrath, C., Reiss, B., Redei, G.P. and Schell, J. 1990. Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J. 9: 1337–1346. Kusumi, K., Komori, H., Satoh, H., Iba, K. 2000. Characterization of a zebra mutant of rice with increased susceptibility to light stress. Plant Cell Physiol. 41: 158-64. Lee, Y.J., K.W. Chang, J.C. Lo and Y. Shen. 2005. Remote sensing techniques to map nitrogen status of rice plants within fields at panicle initiation stage. Agron. J. (submitted) Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembrane. Methods Enzymol. 148: 350-382. Li, H. H. and Liu, K. C. 1973. A survey of the medicinal plants in Taiwan. National Research Institute in Chinese Medicine. Taiwan. Lo, C. C. and Y. S. Chen. 2003. Yield and grain nitrogen content in relation to leaf color in rice cultivars TK 9 and TNG 67. J. Agri. Res. China. 52:166-177. Ma, B. L., Morrison, M. J. and Dwyer, L. M. 1996. Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of maize. Agron. J. 88:915-920. Markwell J. P., J. P., Thornber, R. T., Boggs 1979. Higher plant chloroplasts: evidence that all the chlorophyll exists as chlorophyll-protein complexes. Proc. Natl. Acad. Sci. USA. 76:1233-1235. Markwell, J. P., Danko, S. J., Bauwe, H., Osterman, J., Gorz, H. J. and Haskins, F. A. 1986. A temperature-sensitive chlorophyll b-deficient mutant of sweetclover (Melilotus alba). Plant Physiol. 81:329-334. Masoni, A., Ercoli, L. and Mariotti, M. 1997. Spectral properties of leaves deficient in iron. Sulfur, Magnesium, and Manganese. Agron. J. 88:937-943. Matile, P., Duggelin, T., Schellenberg, M., Rentsch, D., Bortlik, K., Peisker, C. and Thomas, H. 1989. How and why is chlorophyll broken down in senescent leaves? Plant Physiol. Biochem. 27:595-604. Matile, P., Flach, B. M. -P. and Eller, B. M. 1992a. Autumn leaves of Ginkgo biloba L.: Optical properties, pigments and optical brighteners. Bot. Acta 105:13-17. Matile, P., Schellenberg, M. and Peisker, C. 1992b. Production and release of a chlorophyll catabolite in isolated senescent chloroplasts. Planta 187:230-235. Matile, P., Hortensteiner, S., Thomas, H. and Krautler, B. 1996. Chlorophyll breakdown in senescent leaves. Plant Physiol. 112:1403-1409. Mayfield, S. P. and Taylor, W. C. 1984. Carotenoid-deficient maize seedling fail to accumulate light-harvesting chlorophyll a/b binding protein (LHCP) mRNA. Eur. J. Biochem. 144:79-84. McFeeters, R. F., Chichester, C. O. and Whitaker, J. R. 1971. Purification and properties of chlorophyllase from Ailanthus altissima (Tree-of-Heaven). Plant Physiol. 47:609-618. Meinke, D. and Koornneef, M. 1997. Community standards for Arabidopsis genetics. Plant J. 12: 247–253. Minolta Camera Co. Ltd., 1989. Chlorophyll meter SPAD-502. Instruction Manual. Radiometric Instruments Divisions, Osaka, Minolta, p. 22. Mochizuki, N., Brusslan, J.A., Larkin, R., Nagatani, A. and Chory, J. 2001. Arabidopsis genome’s uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc. Natl. Acad. Sci. USA 98: 2053–2058. Nakatani HY, V Baliga 1985. A clover mutant lacking chlorophyll a and b-containing protein antenna complexes. Biochim. Biophys. Res. Commun. 131: 182-189. Netto AT, Campostrini E, Oliveira JGD, Bressan-Smith RE 2005. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae 104: 199-209. Oelmullar, R. and Mohr, H. 1985. Carotenoid composition in milo (Sorghum vulgare) shoots as affected by phytochrome and chlorophyll. Planta 164:390-395. Papenbrock, J., Mock, H.P., Tanaka, R., Kruse, E. and Grimm, B. 2000. Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol. 122: 1161–1169. Peterson, T. A., T. M. Blackmer, D. D. Francis, and J. S. Scheppers. 1993. Using a chlorophyll meter to improve N management. A Web Guide in Soil Resource Management: D-13, Fertility. Cooperative Extension, Institute of Agriculture and Natural Resources, University of Nebraska, Lincoln, Nebraska, USA. Porra, R. J., Thompson, W. A. and Kriedelman, P. E. 1989. Determination of accurate extraction and simultaneously equation for assaying chlorophyll a and b extracted with different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochem. Biophys. Acta 975:384-394. Price, J. C. and Bausch, W. C. 1995. Leaf area index estimation from visible and near-infrared reflectance data. Remote Sens. Environ. 52:55-65. Quijja A, N Farineaum, C Cantrel, T Guillot-Salomon 1988. Biochemical analysis and photosynthetic activity of chloroplasts and photosystem II particles from a barley mutant lacking chlorophyll. Biochim. Biophys. Acta 932:97-106. Raj, A and M. P. Tripathi, M. 1999. Relationship of leaf area and chlorophyll content with yield in deep water rice. Indian J. Plant Physiol. 4: 219-220. Ramesh, K., B. Chandrasekaran, T. N. Balasubramanian, U. Bangarusamy, R. Sivasamy and N. Sankaran. 2002. Chlorophyll dynamics in rice (Oryza sativa) before and after flowering based on SPAD (chlorophyll) meter monitoring and its relation with grain yield. J. Agro. Crop Sci. 188:102-105. Rissler, H.M., Collakova, E., DellaPenna, D., Whelan, J. and Pogson, B.J. 2002. Chlorophyll biosynthesis. Expression of a second CHLI gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis. Plant Physiol. 128: 770–779. Sakaiya, E. and Y. Inoue. 2007. Estimating Protein Content of Brown Rice in Central Tsugaru using Airborne Remote Sensing. Crop Science Society of Japan 2007 Annual Meeting. SAS Institute, Inc. 1985. SAS User’s Guide. Statistics. SAS Inst., Cary, NC, USA. Shibayama, M., M. Steven, S. Morinaga and T. Akiyama. 1993. Canopy water deficit detection in paddy rice using a high resolution field spectroradiometer. Remote Sens. Of Environ. 45:117-126. Shioi, Y. and Sasa, T. 1986. Purification of solubilized chlorophyllase from Chlorella protothecoides. Methods Enzymol. 123:421-427. Sugimoto, H., Kusumi, K., Tozawa, Y., Yazaki, J., Kishimoto, N., Kikuchi, S., Iba, K. 2004. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol. 45: 985-996. Sun, X. M., Q. F. Zhou and Q. X. He. 2005. Hyperspectral variables in predicting leaf chlorophyll content and grain protein content in rice. Acta Agronomica Sinica. 31:844-850. Terao, T., Yamashita, A., and Katoh, S. 1985a. Chlorophyll b-deficient mutants of rice. I. Absorption and fluorescence spectra and chlorophyll alb ratios. Plant and Cell Physiology 26, 1361-1367. Terao, T., Yamashita, A., and Katoh, S. 1985b. Chlorophyll b-deficient mutants of rice. 11. Antenna chlorophyll ah-proteins of photosystem I and 11. Plant and Cell Physiology 26, 1369-1377. Thomas, J. R. and Gausman, H. W. 1977. Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops. Agron. J. 69:799-802. Tung, T. C., Huang, P. C. and Li, H. C. 1961. Composition of food used in Taiwan. J Formosan Med. Assoc. 60:973-1005. Turner, F. T. and M. F. Jund. 1994. Assessing the nitrogen requirements of rice crops with a chlorophyll meter method. Aust. J. Exp. Agric. 34:1001-1005. Villareal, R. L., Lin, S. K., Chang, L. S. and Lai, S. H. 1979. Use of sweet potato (Ipomoea batatasa) leaf trips as vegetables. Expl. Agric. 15:113-116. Walburg, G., Bauer, M. E., Daughtry, C. S. and Housley, T. L. 1982. Effects of nitrogen on the growth, yield, and reflectance characteristics of corn. Agron. J. 74:677-683. Walker, C.J. and Willows, R.D. 1997. Mechanism and regulation of Mg-chelatase. Biochem. J. 327: 321–333. Yang, C. M., Osterman, J. C. and Markwell, J. P. 1990. Temperature-sensitivity as a general phenomenon is a collection of chlorophyll-deficient mutants of sweetcolver (Melilotus alba). Biochem. Genet. 28:31-40. Yang C. M., J. C., Hsu, Y. K., Lu 1995. Light-sensitivity of chlorophyll expression in the leaves of Ficus microcarpa cv. Golden-leaves. Bot. Bull. Acad. Sin. 36:215-221. Yang, C. M., Hsu, J. C. and Chen, Y. R. 1993. Light- and Temperature- sensitivity of chlorophyll-deficient and virescent mutants. Taiwania 38:49-56. Yang, C. M. and Y. R. Chen. 1993a. Protein phosphorylation in control of grana stacking of thylakoid membranes in higher plants. J. Agri. Asso. China. 161: 33-46. Yang, C. M. and Y. R. Chen. 1993b. Grana stacking of thylakoid membranes in higher plants. In Recent Advances in Botany. (Chou, C.H. and Hsing, I.Y. eds), Institute of Botany, Academia Sinica, Taipei, Taiwan, ROC, Monograph Series 13: 219-243. Yang, C. M., Hsu, J. C. and Shih, C. F. 1994. Response of Chlorophyll a/b ratio in Yuan-Yang Lake bryophytes to the alteration of light intensity. Proc. Nat. Sci. Counc. ROC, Part B, Life Sci. 18:134-137. Yang C. M., H. Y., Chen 1996. Grana stacking is normal in a chlorophyll-deficient LT8 mutant of rice. Bot. Bull. Acad. Sin. 37:26-29. Yang, C. M., Chang, K. W. and Yin, M. H. 1997a. Influence of the soil characteristics on pigment degradation in Yuanyang Lake Nature Preserve. 1997 International Long-term Ecological Research and Biodiversity Studies Conference. 12-13 November, National Taiwan University, Taipei, Taiwan. Yang, C. M., Yin, M. H. and Chang, K. W. 1997b. Pigment degradation of the higher plants in Yuanyang Lake Nature Preserve. 1997 International Long-term Ecological Research and Biodiversity Studies Conference. 12-13 November, National Taiwan University, Taipei, Taiwan. Yang, C. M. and Ko, C. C. 1997. Seasonal changes in canopy spectra of sweet potato. J. Photogram Remote Sens. 3(1): 13-28. Yang, C. M. 1998. Variations of reflectance spectrum and vegetation index in sweet potato canopy. p.58-78. In: Proceedings of Symposium on Applications of Remote Sensing Data. April 23-24, 1998. Energy and Resources Research Institute, Research Academy of Industrial Technology, Hsinchu. Yang, C. M., Chang, K. W., Yin, M. H. and Huang, H. M. 1998. Methods for the determination of the chlorophylls and their derivatives. Taiwania 43:116-122. Yang, C. M., Lee, C. N. and Chou, C. H. 2002. Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: I. Inhibition of supply-orientation. Bot. Bull. Acad. Sin. 43:299-304. Yang, C. M., Chou, C. H., Chang, I. F. and Lin, S. J. 2003. Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: II. Stimulation of consumption-orientation. Bot. Bull. Acad. Sin. 44: (in press). Yang C. M., M. M., Yang 2004. Grana stacking is normal in two insect-induced cecidomyiid galls deficient in light-harvesting complex II (LHCII). Plant Physiol. Biochem. (accepted) Zhang, H.T., Li, J.J., Yoo, J.H., Yoo, S.C., Cho, S.H., Koh, H.J., Seo, H.S., Paek, N.C. 2006. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant mol. Biol. 62: 325-337. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6935 | - |
dc.description.abstract | 本文主要探討五種不同程度缺或無葉綠素b突變種水稻於生育期間其葉片之葉綠素(chlorophyll,Chl)、生合成中間物包括protoporphyrin IX (PPIX)、magnesium protoporphyrin IX (MGPP)、protochlorophyllide (Pchlide)與崩解代謝物包括chlorophyllide (Chlide)、pheophytin (Phe)、pheophorbide (Pho)等含量變化與崩解途徑及類胡蘿蔔素(carotenoid,Car)含量變化。結果顯示,農林8號Chl及其代謝物、Car之含量皆明顯高於突變種水稻。Chl、Phe及LP Car等極性較小之代謝物,其含量隨著生育日數增加而下降,而口比口林(PPIX、MGPP、Pchlide)、Chlide及MP Car等極性較大之代謝物,其含量亦隨著生育日數增加而下降。五種水稻在生育階段前期,也就是營養生長期至生殖生長期間,葉綠素之崩解途徑傾向以Chl→Phe→Pho為主要崩解途徑(major route),而以Chl→Chlide→Pho為次要途徑(minor route);而隨著葉片逐漸成熟與老化,其葉綠素崩解之途徑卻有明顯的不同,亦即在生育階段後期,也就是生殖生長期至成熟期間,葉綠素之崩解途徑傾向以Chl→Chlide→Pho為主要崩解途徑,而以Chl→Phe→Pho為次要途徑。
五種不同葉色水稻進行葉片反射光譜測定,並以反射率計算植生指數(vegetation index)後,估算其葉片之色素含量。由反射光譜分析顯示,五種不同葉色水稻葉片在705nm之反射率對色素含量變化具有最大敏感度。而葉綠素紅光吸收波段675nm之反射率對於色素含量變化之敏感度小,故此一波段不適用於估算葉片色素含量。波長750 nm以上之近紅外光波段對於葉片色素含量敏感度亦小,雖不適用於直接估算色素含量,卻可用於計算植生指數來估算色素含量。以波段705nm及750 nm反射率計算植生指數SRVI與NDVI後,與葉片色素含量進行迴歸分析,可得到最佳的估算模式(R2>0.78)。另以多波段平均反射率計算植生指數後,與色素含量進行迴歸分析亦可得到較佳的估算模式(R2>0.70)。由本研究結果顯示利用反射光譜計算植生指數,非破壞性地估算葉片色素含量之變化進而監測作物生長狀況,可能為有效可行的方法。 另於2006年在花蓮縣玉里鎮(台稉2號)、高雄縣美濃鎮(高雄145號)、彰化縣竹塘鄉(台稉11號)以及桃園縣新屋鄉(台稉14號),設置水稻產量地真樣區,以不同氮肥等級施用建立產量以及稻米品質差異。利用福衛二號以及SPOT衛星影像資料,建立衛星遙測NDVI植生指數對水稻產量與米質之推估模式。水稻生殖生長期間孕穗期之衛星影像NDVI指數與稻穀產量具有最高相關性,建立衛星遙測NDVI指數推估稻穀產量之最佳預測模式,玉里試區為移植後第56天之Yield (kg/ha) = 7889.7 × NDVI + 710.94;美濃試區為移植後第65天之Yield (kg/ha) = 14654 × NDVI - 364.14;竹塘試區為移植後第59天之Yield (kg/ha) = 14063 × NDVI + 1669.4;新屋試區為移植後第65天之Yield (kg/ha) = 13233 × NDVI + 1768.6。西半部美濃、竹塘及新屋試區合併資料建立之產量最佳預測模式為Yield (kg/ha) = 8602.2 × NDVI + 2845.3,以此時期建立之產量預測模式,經驗證後顯示具有高準確度。西半部美濃、竹塘及新屋試區合併資料建立之產量估算模式,亦具有高準確度,顯示預測模式應用於不同品種及不同地區之可行性。 稻米品質食味值與產量具有負相關,與衛星遙測NDVI指數亦呈現負相關,玉里試區台稉2號,在進入生殖生長期後,其衛星遙測NDVI植生指數與稻米品質食味值之關係,相當密切,水稻生殖生長期間孕穗期之衛星影像NDVI指數建立稻米食味值之推估模式為y=-30.84x + 79.313,r2 = 0.83。在生育期最後階段,成熟期後期,衛星遙測NDVI與稻米食味值之關係亦非常高,其r2達0.9。竹塘試區台稉11號水稻生殖生長期間孕穗期之衛星影像NDVI指數建立稻米食味值之推估模式為y = -88.737x + 79.23,r2 = 0.89,以竹塘試區台稉11號水稻生殖生長期間孕穗期之衛星影像NDVI指數建立稻米食味值之推估模式,經驗證後其平均誤差為11.52,顯示具有高準確度。 | zh_TW |
dc.description.abstract | We examined the contents of chlorophyll (Chl), biosynthetic intermediates (protoporphyrin IX, PPIX; magnesium protoporphyrin IX, MGPP; protochlorophyllide, Pchlide), degradative intermediates (chlorophyllide, Chlide; pheophytin, Phe; pheophorbide, Pho), and carotenoid in the leaves of rice with five different types of chlorophyll b-deficient or -lacking mutant during their growth and development. The levels of less polar (LP) intermediates such as Chl, Phe and LP Car decreased with increasing growth stage, while the levels of more polar (MP) intermediates such as porphyrins (PPIX, MGPP, Pchlide), Chlide and MP Car were also decreased. The biosynthetic and degradative rate of Chl in rice variety Norin No. 8 was higher than rice mutant type due to smaller amounts of Chl, intermediates and Car. Chl→Phe→Pho was the major route of Chl degradation at vegetative stage in five rice, while Chl→Chlide→Pho was the minor route. When leaves were aging and senescent, Chl→Chlide→Pho was the major route and Chl→Phe→Pho became the minor route of Chl degradation.
The reflectance spectra of five rice leaves were recorded. By using of reflectance spectra, vegetation indices were calculated to remotely estimate the pigment content. The signature analysis of reflectance spectra indicated that in the leaves of five rice the maximum sensitivity to pigment concentration was found to be at 705 nm. The minimal sensitivity to pigment concentration coincided with the red absorption maximum of chlorophyll at 675 nm. Therefore, it seemed inappropriate to use this spectral band for pigment estimation. The near-infrared band ranging above 750 nm was not sensitive to pigment concentration, as found for 675 nm. The reflectance at near-infrared band could be used as reference in the calculation of vegetation indices. Vegetation indices calculated using reflectance at 705 nm and 750 nm correlated very well with pigment concentration (correlation R2>0.78). Vegetation indices calculated using broad-band reflectance also correlated well with pigment concentration (correlation R2>0.70). Thus, it appears possible to create indices using reflectance spectra for non-destructive estimation pigment content and monitoring crop growth. The satellite remote sensing normalization difference vegetation index (NDVI) of rice field at booting stage correlated very well with rice yield and rice quality in first period rice. The developed prediction models for rice yield and taste meter value were: yield (kg/ha) = 8602.2 × NDVI + 2845.3; taste meter value = -30.84 × NDVI+79.313, r2 = 0.83; taste meter value = -88.737 × NDVI+79.23, r2 = 0.89. The developed algorithms predicting rice yield and rice quality from satellite remote sensing data were validated in Chutang, Shinwu, Meinong and Yuli in 2007. Results indicated that estimation models were high accuracy. | en |
dc.description.provenance | Made available in DSpace on 2021-05-17T09:21:38Z (GMT). No. of bitstreams: 1 ntu-101-D93621104-1.pdf: 3676589 bytes, checksum: 32aaa8222386ca76e1bee13c3082471f (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目 錄
圖目錄……………………………………………………………………………… i 表目錄……………………………………………………………………………... vii 第一章 水稻葉片光合色素生合成與崩解途徑之研究………………………….. 1 1.1前言………………………………………………………………………… 1 1.2材料方法…………………………………………………………………… 5 1.3結果討論…………………………………………………………………… 8 第二章 水稻葉片及植冠反射光譜分析與色素含量之遙測估算……………..... 39 2.1前言…………………………………………………………………..…… 39 2.2材料方法………………………………………………………………….. 42 2.3結果討論………………………………………………………………..… 44 第三章 地真樣區農藝性狀調查………………………………………………..... 70 3.1前言…………………………………………………………..…………… 70 3.2材料方法…………………………………………………..……………… 73 3.3結果討論…………………………………………………………..……… 75 第四章 地真樣區米質分析……………………………………………………... 116 4.1前言……………………………………………………………………… 116 4.2材料方法………………………………………………………………… 119 4.3結果討論………………………………………………………………… 121 第五章 建立植被指數推估產量模式及驗證…………………………………... 140 5.1前言……………………………………………………………………… 140 5.2材料方法………………………………………………………………… 144 5.3結果討論………………………………………………………………… 145 第六章 建立植被指數推估米質模式及驗證…………………………………... 172 6.1前言……………………………………………………………………… 172 6.2材料方法………………………………………………………………… 176 6.3結果討論………………………………………………………………… 178 參考文獻…………………………………………………………………….…..… 209 | |
dc.language.iso | zh-TW | |
dc.title | 應用遙測技術推估水稻產量與品質之研究 | zh_TW |
dc.title | Studies on Rice Yield and Quality Estimated by Remote Sensing Techniques | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 蔡養正(Yang-Zenq Tsai),楊棋明(Chi-Ming Yang) | |
dc.contributor.oralexamcommittee | 蔡文福(Wen-Fu Tsai),林孟輝(Meng-Huei Lin),陳建璋(Jan-Chang Chen),黃文達(Wen-Dar Huang) | |
dc.subject.keyword | 水稻,葉綠素,類胡蘿蔔素,生成,崩解,代謝物,反射光譜,遙測,植生指數,色素,氮肥,稻米產量,品質,推估模式,驗證, | zh_TW |
dc.subject.keyword | Paddy Rice,Chlorophyll,Carotenoid,Biosynthesis,Degradation Intermediates,Reflectance spectra,Remote sensing,Vegetation indices,Pigments,Nitrogenous fertilizer,Rice yield,Rice quality,Prediction models,Estimation, | en |
dc.relation.page | 222 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2012-02-10 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf | 3.59 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。