Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69250
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡豐羽(Feng-Yu Tsai)
dc.contributor.authorYun-Ju Chenen
dc.contributor.author陳韻如zh_TW
dc.date.accessioned2021-06-17T03:11:22Z-
dc.date.available2020-08-24
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-19
dc.identifier.citationREFERENCE
1. Nielsen, L.E., Models for the permeability of filled polymer systems. Journal of Macromolecular Science—Chemistry, 1967. 1(5): p. 929-942.
2. Cussler, E., et al., Barrier membranes. Journal of membrane science, 1988. 38(2): p. 161-174.
3. Wakeham, W.A. and E.A. Mason, Diffusion through multiperforate laminae. Industrial Engineering Chemistry Fundamentals, 1979. 18(4): p. 301-305.
4. Yoo, B.M., et al., Graphene and graphene oxide and their uses in barrier polymers. Journal of Applied Polymer Science, 2014. 131(1).
5. Crawford, G.P., Flexible flat panel display technology. Flexible Flat Panel Displays, 2005: p. 1-9.
6. Liang, J., et al., Molecular‐level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Advanced Functional Materials, 2009. 19(14): p. 2297-2302.
7. Lee, J.-U., D. Yoon, and H. Cheong, Estimation of Young’s modulus of graphene by Raman spectroscopy. Nano letters, 2012. 12(9): p. 4444-4448.
8. Mensah, B., et al., Graphene-reinforced elastomeric nanocomposites: a review. Polymer Testing, 2018. 68: p. 160-184.
9. Young, R.J., et al., The mechanics of graphene nanocomposites: a review. Composites Science and Technology, 2012. 72(12): p. 1459-1476.
10. Young, R.J. and P.A. Lovell, Introduction to polymers. 2011: CRC press.
11. Halpin, J.C. and R. Thomas, Ribbon reinforcement of composites. Journal of Composite Materials, 1968. 2(4): p. 488-497.
12. Zhu, Y., et al., Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials, 2010. 22(35): p. 3906-3924.
13. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
14. Ren, P.-G., et al., Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology, 2010. 22(5): p. 055705.
15. Stankovich, S., et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon, 2007. 45(7): p. 1558-1565.
16. Jeong, H., et al., Tailoring the characteristics of graphite oxides by different oxidation times. Journal of Physics D: Applied Physics, 2009. 42(6): p. 065418.
17. Huang, X., et al., Graphene-based composites. Chemical Society Reviews, 2012. 41(2): p. 666-686.
18. Guan, Y., et al., Ecofriendly fabrication of modified graphene oxide latex nanocomposites with high oxygen barrier performance. ACS applied materials interfaces, 2016. 8(48): p. 33210-33220.
19. Zhu, H., et al., In Situ Polymerization Approach to Graphene‐Oxide‐Reinforced Silicone Composites for Superior Anticorrosive Coating. Macromolecular Rapid Communications, 2019. 40(5): p. 1800252.
20. Jin, J.-U., et al., Methylpiperidine-functionalized graphene oxide for efficient curing acceleration and gas barrier of polymer nanocomposites. Applied Surface Science, 2019. 464: p. 509-515.
21. Martín-Fabiani, I., et al., Enhanced water barrier properties of surfactant-free polymer films obtained by MacroRAFT-mediated emulsion polymerization. ACS applied materials interfaces, 2018. 10(13): p. 11221-11232.
22. Jiang, B., J.G. Tsavalas, and D.C. Sundberg, Water whitening of polymer films: Mechanistic studies and comparisons between water and solvent borne films. Progress in Organic Coatings, 2017. 105: p. 56-66.
23. Zhang, X., et al., Dispersion of graphene in ethanol using a simple solvent exchange method. Chemical Communications, 2010. 46(40): p. 7539-7541.
24. Su, D., Silver nanowires and graphene sheets applied on applications of flexible electrode, supercapacitor and stretchable gas-permeation barrier., in National Taiwan University 2019. p. 1-137.
25. Han, X., et al., Scalable, printable, surfactant-free graphene ink directly from graphite. Nanotechnology, 2013. 24(20): p. 205304.
26. Du, J. and H.M. Cheng, The fabrication, properties, and uses of graphene/polymer composites. Macromolecular Chemistry and Physics, 2012. 213(10‐11): p. 1060-1077.
27. Cui, Y., S. Kundalwal, and S. Kumar, Gas barrier performance of graphene/polymer nanocomposites. Carbon, 2016. 98: p. 313-333.
28. Hsu, Y., Thermosetting Polyacrylate/Graphene Composite for High Performance Gas Barrier Films, in National Taiwan University 2019.
29. Coleman, J.N., Liquid exfoliation of defect-free graphene. Accounts of chemical research, 2013. 46(1): p. 14-22.
30. Hernandez, Y., et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nature nanotechnology, 2008. 3(9): p. 563-568.
31. N-Vinyl-2-pyrrolidone, stabilized; MSDS No. AC140920050 [Online]; Fisher Scientific: Waltham, MA, USA, 29-Apr-2010, https://www.fishersci.com/store/msds?partNumber=AC140920050 productDescription=N-VINYL-2-PYRROLIDINONE+5ML vendorId=VN00032119 countryCode=US language=en (accessed July, 2020).
32. BASF Corporation, “N-Vinyl-2-Pyrrolidone,” 22048 datasheet, 1997.
33. Husár, B., et al., The formulator's guide to anti-oxygen inhibition additives. Progress in Organic Coatings, 2014. 77(11): p. 1789-1798.
34. Tan, B. and N.L. Thomas, A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. Journal of Membrane Science, 2016. 514: p. 595-612.
35. Rafiee, M.A., et al., Enhanced mechanical properties of nanocomposites at low graphene content. ACS nano, 2009. 3(12): p. 3884-3890.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69250-
dc.description.abstract隨著電子元件的急速發展,封裝材料也顯得日益重要。以高分子材料作為封裝的基材有低成本以及易加工的優點。不過,對於脆弱的電子元件來說光是靠軟性材料的保護還不夠,故必須添加填料。石墨烯具有封裝材料所需要的性質如機械強度、不可穿透性等,因此本研究將使用石墨烯當作填料。不過,單層石墨烯容易聚集成為多層石墨烯,喪失掉本來的優秀性質。故本研究利用溶劑插層的方式穩定單層石墨烯,溶劑的選用是表面能與石墨烯十分匹配的 N-乙烯基-2-吡咯烷酮(N-vinylpyrrolidone, NVP)。本實驗利用熱溶劑法,將高濃度的石墨烯漿料在高溫低壓的環境下沸騰,並利用 NVP 蒸氣優於液相的擴散性插層於石墨烯層間。此方法可以減少使用探頭破碎的時間,維持較大的石墨烯片徑,並透過 NVP 的穩定,提升石墨烯在高分子基材中的分散性。殘存的 NVP 分子可以與壓克力單體乙氧基化雙酚 A二丙烯酸酯(ethoxylate bisphenol-A diacrylate, EBAD)在 2,2'-二氰基-2,2'-偶氮丙烷( 2,2’-Azobis(2-methylpropionitrile), AIBN)的自由基起始之下形成共聚物,排除了殘留溶劑造成的缺點,製備出具有封裝潛能的石墨烯高分子複材,其機械性質在1.2wt%石墨烯的添加之下,拉伸強度可以達到 3.348MPa,比純高分子增加了 167%,楊氏係數則高達 21.737MPa,提升了 87.55%。本研究利用熱溶劑法提升石墨烯在單體中的分散性,並維持了片徑,成功地製備出機械性能表現優秀的高分子封裝材料。zh_TW
dc.description.abstractThis study developed a solvothermal technique for uniformly dispersing high concentrations of pristine graphene in monomers, which via in situ polymerization enabled the fabrication of graphene/polymer composites with excellent encapsulant performance, i.e. low moisture permeability and high mechanical properties. The solvothermal technique facilitated thorough absorption of a good solvent, N-vinyl pyrrolidone (NVP), onto graphene platelets through vapor infiltration aided by the mechanical stirring generated by rapid vaporization of NVP. The solvothermal-treated graphene was able to uniformly dispersed in an acrylate monomer, ethoxylate bisphenol-A diacrylate (EBAD), in high concentrations ranging from 0.5 to 1.4wt%. The solvothermaltreated graphene retained its original aspect ratio, as opposed to the severe reduction caused by the conventional ultrasonication dispersion methods. Thanks to the preserved aspect ratio and uniform dispersion of the solvothermal-treated graphene, the resultant composite with the NVP-EBAD copolymer showed marked improvements in moisture transmission rate (from 16.051 to 1.614 /2 ⋅ ) and Young’s modulus (from 15.132 to 21.737 MPa) compared with the unreinforced copolymer.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:11:22Z (GMT). No. of bitstreams: 1
U0001-1808202016234300.pdf: 3683646 bytes, checksum: c2bd72da0b8b55f4c02e9ce96df94298 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Polymer-based encapsulation 1
1.1.1 Overview of Polymer-based Encapsulant 1
1.1.2 Overview of Mechanical Properties of Polymer-based Composites 7
1.1.3 Methods to Obtain Graphene 11
1.1.4 Dispersion of Graphene 13
1.1.5 Fabrication of Graphene/polymer Composite 19
1.1.6 Graphene-based Encapsulation Composite 21
1.2 Research Approaches 22
1.2.1 Selection of Monomer 22
1.2.2 Solvothermal Method to Disperse Graphene 26
1.3 Motivation and Objective Statements 27
Chapter 2 Experimental Details 29
2.1 Materials 29
2.2 Fabrication of Graphene/EBAD Composites 30
2.3 FT-IR Pellets 34
2.4 Lateral Size Measurement 35
2.5 Dispersibility Test 35
2.6 Characterization 36
2.6.1 Fourier-Transform Infrared Spectroscopy 36
2.6.2 Transmission Electron Microscope 36
2.6.3 Dynamic Light Scattering 36
2.6.4 Water Vaper Transmission Rate 37
Chapter 3 Results and Discussion 39
3.1 Optimized Disperse State of Graphene by Tuning Heating Temperature in Solvothermal Method 39
3.2 Preserving Graphene Lateral Size by Solvothermal Process 46
3.3 The Improved Properties of Graphene/EBAD Nanocomposites via Solvothermal Method 56
Chapter 4 Conclusion 63
REFERENCE 65
dc.language.isoen
dc.subject石墨烯zh_TW
dc.subject機械性能zh_TW
dc.subject熱溶劑法zh_TW
dc.subject高分子薄膜zh_TW
dc.subject高分子複材zh_TW
dc.subjectmechanical propertiesen
dc.subjectencapsulationen
dc.subjectwater vapor transmission rateen
dc.subjectsolvothermal methoden
dc.subjectnanocompositesen
dc.subjectgrapheneen
dc.title熱溶劑法製備石墨烯漿料於壓克力/石墨烯複材之研究zh_TW
dc.titlePolyacrylate/Graphene Composites Films from Graphene Dispersions Prepared by Solvothermal Methoden
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅世強(Shyh-Chyang Luo),童世煌(Shih-Huang Tung)
dc.subject.keyword石墨烯,高分子複材,機械性能,熱溶劑法,高分子薄膜,zh_TW
dc.subject.keywordgraphene,nanocomposites,solvothermal method,water vapor transmission rate,encapsulation,mechanical properties,en
dc.relation.page68
dc.identifier.doi10.6342/NTU202003993
dc.rights.note有償授權
dc.date.accepted2020-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-1808202016234300.pdf
  未授權公開取用
3.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved