請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69248
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳振中 | |
dc.contributor.author | Chun-Yu Chang | en |
dc.contributor.author | 張君宇 | zh_TW |
dc.date.accessioned | 2021-06-17T03:11:20Z | - |
dc.date.available | 2018-07-19 | |
dc.date.copyright | 2018-07-19 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2018-07-17 | |
dc.identifier.citation | 參考文獻
[1] Mann, S. Principles and Concepts in Bioinorganic Materials Chemistry; Oxford University Press, 2001. [2] Weiner, S.; Dove, P. M. An overview of biomineralization processes and the problem of the vital effect; Mineralogical Soc America, Washington, 2003. [3] Bergström, L.; Sturm (née Rosseeva), E. V.; Salazar-Alvarez, G.; Cölfen, H. Mesocrystals in Biominerals and Colloidal Arrays. Acc. Chem. Res. 2015, 48(5), pp 1391– 1402. [4] Cölfen, H. Single crystals with complex form via amorphous precursors. Angew. Chem. Int. Ed Engl. 2008, 47(13), pp 2351–2353. [5] Addadi, L.; Raz, S.; Weiner, S. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 2003, 15(12), pp 959–970. [6] Beniash, E.; Aizenberg, J.; Addadi, L.; Weiner, S. Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc. R. Soc. London, Ser. B. 1997, 264(1380), pp 461–465. [7] Zhang, T. H.; Liu, X. Y. How does a transient amorphous precursor template crystallization. J. Am. hem. Soc. 2007, 129(44), pp 13520–13526.104 [8] Levi-Kalisman, Y.; Raz, S.; Weiner, S.; Addadi, L.; Sagi, I. Structural differences between biogenic amorphous calcium carbonate phases using X-ray absorption spectroscopy. Adv. Funct. Mater. 2002, 12(1), pp 43–48. [9] Radha, A. V.; Forbes, T. Z.; Killian, C. E.; Gilbert, P. U. P. A.; Navrotsky, A. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci.U.S.A. 2010, 107(38), pp 16438–16443. [10] Raiteri, P.; Gale, J. D. Water Is the Key to Nonclassical Nucleation of Amorphous Calcium Carbonate. J. Am. Chem. Soc. 2010, 132(49), pp 17623–17634. [11] Gebauer, D.; Gunawidjaja, P. N.; Ko, J. Y. P.; Bacsik, Z.; Aziz, B.; Liu, L. J.; Hu, Y. F.; Bergstrom, L.; Tai, C. W.; Sham, T. K.; Eden, M.; Hedin, N. Proto-Calcite and Proto-Vaterite in Amorphous Calcium Carbonates. Angew. Chem. Int. Ed. 2010, 49(47), pp 8889–8891. [12] Lam, R. S. K.; Charnock, J. M.; Lennie, A.; Meldrum, F. C. Synthesis-dependant structural variations in amorphous calcium carbonate. CrystEngComm. 2007, 9, pp 1226– 1236. [13] Wolf, S. E.; Leiterer, J.; Pipich, V.; Barrea, R.; Emrnerling, F.; Tremel, W. Strong Stabilization of Amorphous Calcium Carbonate Emulsion by Ovalbumin: Gaining Insight into the Mechanism of ’Polymer-Induced Liquid Precursor’ Processes. J. Am. Chem. Soc. 2011, 133(32), pp 12642–12649. [14] Konrad, F.; Gallien, F.; Gerard, D. E.; Dietzel, M. Transformation of amorphous calcium carbonate in air. Crystal Growth & Design. 2016, 16(11), pp 6310–6317. [15] Schenk, A. S.; Zope, H.; Kim, Y. Y.; Kros, A.; Sommerdijk, N. A. J. M.; Meldrum, F. C. Polymer-induced liquid precursor (PILP) phases of calcium carbonate formed in the presence of synthetic acidic polypeptides—relevance to biomineralization. Faraday Discuss. 2013, 159(0), pp 327–344. 105 [16] Wolf , S. L. P.; Jahme, K.; Gebauer, D. Synergy of Mg2+ and poly(aspartic acid) in additive-controlled calcium carbonate precipitation. CrystEngComm. 2015, 17, pp 6857– 6862. [17] Long, X.; Ma, Y.; Qi, L. In Vitro Synthesis of High Mg Calcite under Ambient Conditions and Its Implication for Biomineralization Process. Crystal Growth & Design. 2011, 11(7), pp 2866–2873. [18] Gong, Y. U. T.; Killian, C. E.; Olson, I. C.; Appathurai, N. P.; Amasino, A. L.; Martin, M. C.; Holt, L. J.; Wilt, F. H.; Gilbert, P. U. P. A. Phase transitions in biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci.U.S.A. 2012, 109(16), pp 6088–6093. [19] Politi, Y.; Batchelor, D. R.; Zaslansky, P.; Chmelka, B. F.; Weaver , J. C.; Sagi, I.; Weiner, S.; Addadi, L. Role of Magnesium Ion in the Stabilization of Biogenic Amorphous Calcium Carbonate: A Structure-Function Investigation. Chem. Mater. 2010, 22(1), pp 161–166. [20] Goodwin, A. L.; Michel, F. M.; Phillips, B. L.; Keen, D. A.; Dove, M. T.; Reeder, R. J. Nanoporous Structure and Medium-Range Order in Synthetic Amorphous Calcium Carbonate. Chem. Mater. 2010, 22(10), pp 3197–3205. [21] Lin, C. J.; Yang, S. Y.; Huang, S. J.; Chan, J. C. C. Structural characterization of Mg-stabilized amorphous calcium carbonate by Mg-25 solid-state NMR spectroscopy. J. Phys. Chem. C. 2015, 119(13), pp 7225–7233. [22] Michel, F. M.; MacDonald, J.; Feng, J.; Phillips, B. L.; Ehm, L.; Tarabrella, C.; Parise, J. B.; Reeder, R. J. Structural characteristics of synthetic amorphous calcium carbonate. Chem. Mater. 2008, 20(14), pp 4720–4728. [23] Schmidt, M. P.; Ilott, A. J.; Phillips, B. L.; Reeder, R. J. Structural Changes 106 upon Dehydration of Amorphous Calcium Carbonate. Crystal Growth & Design. 2014, 14(3), pp 938–951. [24] Nebel, H.; Neumann, M.; Mayer, C.; Epple, M. On the structure of amorphous calcium carbonate - A detailed study by solid-state NMR spectroscopy. Inorg. Chem. 2008, 47, pp 7874–7879. [25] Yang, S. Y.; Chang, H. H.; Lin, C. J.; Huang, S. J.; Chan, J. C. C. Is Mg-stabilized amorphous calcium carbonate a homogeneous mixture of amorphous magnesium carbonate and amorphous calcium carbonate? Chem. Commun. 2016, 52, pp 11527–11530. [26] Gebauer, D.; Völkel, A.; Cölfen, H. Stable prenucleation calcium carbonate clusters. Science. 2008, 322, pp 1819–1822. [27] Pouget, E. M.; Bomans, P. H. H.; Goos, J. A. C. M.; Frederik, P. M.; With, G. D.; Sommerdijk, N. A. J. M. The Initial Stages of Template-Controlled CaCO 3 Forma- tion Revealed by Cryo-TEM. Science. 2009,323(5920), pp 1455–1458. [28] Dorvee, J. R.; Veis, A. Water in the formation of biogenic minerals: Peeling away the hydration layers. J. Struct. Biol. 2013, 183(2), pp 278–303. [29] Meldrum, F. C.; Sear, R. P. Now You See Them. Science. 2008, 322(5909), pp 1802–1803. [30] Demichelis, R.; Raiteri, P.; Gale, J. D.; Quigley,D.; Gebauer, D. Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat. Comm. 2011, 2, 590. [31] Raz, S.; Weiner, S.; Addadi, L. Formation of high-magnesian calcites via an amorphous precursor phase: Possible biological implications. Adv. Mater. 2000, 12(1), pp 38. [32] Berner, R.A. The role of magnesium in the crystal growth of calcite and aragonite 107 from sea water. Geochim. Cosmochim. Acta. 1975, 39(4), pp 489 – 504. [33] Raz, S.; Hamilton, P.C.; Wilt, F.H.; Weiner, S.; Addadi, L. The transient phase of amorphous calcium carbonate in sea urchin larval spicules: The involvement of proteins and magnesium ions in its formation and stabilization. Adv. Funct. Mater. 2003, 13(6), pp 480–486. [34] Bentov, S.; Erez, J. Novel observations on biomineralization processes in foraminifera and implications for Mg/Ca ratio in the shells. Geology. 2005, 33(11), pp 841. [35] Perry, C. T.; Salter, M. A.; Harborne, A. R.; Crowley, S. F.; Jelks, H. L.; Wilson, R. W. Fish as major carbonate mud producers and missing components of the tropical carbonate factory. Proc. Natl. Acad. Sci. U.S.A. 2011, 108(10), pp 3865–3869. [36] Tao, J.; Zhou, D.; Zhang, Z.; Xu, X.; Tang, R. Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean. Proc. Natl. Acad. Sci.U.S.A. 2009, 106(52), pp 22096–22101. [37] Blue, C.R.; Giuffre, A.; Mergelsberg, S.; Han, N.; De Yoreo, J.J.; Dove, P.M. Chemical and physical controls on the transformation of amorphous calcium carbonate into crystalline caco3 polymorphs. Geochim.Cosmochim. Acta. 2017, 196, pp 179 – 196. [38] Wang, D. B.; Wallace, A. F.; De Yoreo, J. J.; Dove, P. M. Carboxylated molecules regulate magnesium content of amorphous calcium carbonates during calcification. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, pp 21511–21516. [39] Han, N.; Blue, C.R.; De Yoreo, J.J.; Dove, P.M. The effect of carboxylates on the mg content of calcites that transform from ACC. Procedia Earth Planet. Sci. 2013, 7, pp 223– 227. 108 [40] Giuffre, A. J.; Gagnonb, A. C.; De Yoreo, J. J.; Dove, P. M. Isotopic tracer evidence for the amorphous calcium carbonate to calcite transformation by dissolution– reprecipitation. Geochim. Cosmochim. Acta. 2015, 165, pp 407 – 417. [41] Blue, C.R.; Dove, P.M. Chemical controls on the magnesium content of amorphous calcium carbonate. Geochim. Cosmochim. Acta. 2015, 148, pp 23 – 33. [42] Radha, A. V.; Alejandro, F. M.; Hu, Y.; Jun, Y. S.; Waychunas, G. A.; Navrotsky, A. Energetic and structural studies of amorphous Ca(1−x)MgxCO3.nH2O (0 <= x <= 1). Geochim. Cosmochim. Acta. 2012, 90, pp 83–95. [43] Jensen, J. N. Approach to steady state in completely mixed flow reactors. J Environ Eng. 2001, 127(1), pp 13–18. [44] Gebauer, D.; Kellermeier, M.; Gale, J. D.; Bergstrom, L.; Colfen, H. Prenucleation clusters as solute precursors in crystallisation. Chem. Soc. Rev. 2014, 43, pp 2348–2371. [45] Wohlrab, S.; Pinna, N.; Antonietti, M.; Cölfen, H. Polymer-induced alignment of dl-alanine nanocrystals to crystalline mesostructures. Chemistry–A European Journal. 2005, 11(10), pp 2903–2913,. [46] Teng, H. H.; Chen, Y.; Pauli, E. Direction specific interactions of 1,4-dicarboxylic acid with calcite surfaces. J. Am. Chem. Soc. 2006, 128(45), pp 14482–14484. [47] Cölfen, H.; Mann, S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed. 2003, 42(21), pp 2350–2365. [48] Gower, L. B. Biomimetic Model Systems for Investigating the Amorphous Precursor Pathway and Its Role in Biomineralization. Chem. Rev. 2008, 108(11), 109 4551–4627. [49] Ostwald, W. Uber die vermeintliche isomerie des roten und gelben quescksilberox- yds und die oberflachenspannung fester korper. Z. Phys. Chem. 1900, 34, pp 495–503. [50] Chiang, W. H.; Mohan Sankaran, R. The influence of bimetallic catalyst composition on single-walled carbon nanotube yield. Carbon, 2012, 50, pp 1044 – 1050. [51] Zou, Z.; Bertinetti, L.; Politi, Y.; Jensen, A. C. S.; Weiner, S.; Addadi, L.; Fratzl, P.; Habraken, W. J. E. M. Opposite particle size effect on amorphous calcium carbonate crystallization in water and during heating in air. Chem. Mater. 2015, 27(12), pp 4237–4246. [52] Yang, X.; Myerson, A. S. Nanocrystal formation and polymorphism of glycine. CrystEngComm. 2015, 17, pp 723–728. [53] Wu, W.; Nancollas, G. H. A new understanding of the relationship between solubility and particle size. J. Solution. Chem. 1998, 27, pp 521–531. [54] Rodriguez-Blanco, J. D.; Shaw, S.; Bots, P.; Roncal-Herrero, T.; Benning, L. G. The role of pH and Mg on the stability and crystallization of amorphous calcium carbonate. J. Alloys Compd. 2012, 536, pp 477–479. [55] Plummer, L. N.; Machenzie, F. T. Predicting mineral solubility from rate data; application to the dissolution of magnesian calcite. Am. J. Sci. 1974, 274, pp 61– 83. [56] Thompson, M. E.; Garrels, R. M.; Siever, R. Stability of some carbonates at 25 degrees C and one atmosphere total pressure. Am. J. Sci. 1960, 258, pp 402–418. [57] Zhang, Z.; Xie, Y.; Xu, X.; Pan, H.; Tang, R. Transformation of amorphous 110 calcium carbonate into aragonite. J. Cryst. Growth. 2012, 343(1), pp 62–67. [58] Kababya, S.; Gal, A.; Kahil, K.; Weiner, S.; Addadi, L.; Schmidt, A. Phosphate-ewater interplay tunes amorphous calcium carbonate metastability: Spontaneous phase separation and crystallization vs stabilization viewed by solid state NMR. J. Am. Chem. Soc. 2015, 137(2), pp 990–998. [59] Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calve, S.; Alonso, B.; Durand, J.O.; Bujoli, B.; Gan, Z.; Hoatson, G. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 2002, 40(1), pp 70–76. [60] Stefánsson, A.; Bénézeth, P.; Schott, J. Potentiometric and spectrophotometric study of the stability of magnesium carbonate and bicarbonate ion pairs to 150° C and aqueous inorganic carbon speciation and magnesite solubility. Geochim. Cos-mochim. Acta. 2014, 138, pp 21 – 31. [61] Saxena, P.; Meng, Z.; Seinfeld, J. H.; Kim, Y. P. Atmospheric gas-aerosol equilibrium: IV. thermodynamics of carbonates, aerosol science and technology. Geochim. Cosmochim. Acta. 1995, 23(2), pp 131 – 152. [62] Harvie, C. E.; Møller, N.; Weare, J. H. The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C. Geochim. Cosmochim. Acta. 1984, 48(4), pp 723 – 751,. [63] Kim, H. T.; Bae, S. Y.; Yoo, K. O. Correlation of pitzer ion interaction parameters. Korean J. Chem. Eng. 1991, 8(2), pp 105–113. [64] Plummer, L. N. A computer program incorporating pitzer’s equations for calculation of geochemical reactions in brines. US Geological Survey Water-Resources Investigations Report. 1988, 88(4153), 310. [65] Pytkowicz, R. M. Activity coefficients in electrolyte solutions. CRC PRESS, 1979. 111 [66] Pitzer, K. S. Thermodynamics of electrolytes. I. theoretical basis and general equations. J. Phys. Chem. 1973, 77(2), pp 268–277. [67] Rodriguez-Blanco, J.D.; Shaw, S.; Bots, P.; Roncal-Herrero, T. and Benning, L. G. The role of Mg in the crystallization of monohydrocalcite. Geochim. Cosmochim. Acta. 2014, 127, pp 204 – 220. [68] Prieto, M.; Stoll, H. Ion Partitioning in Ambient-Temperature Aqueous Systems; Mineralogical Society of Great Britain, 2010. [69] Brečević, L.; Nielsen, A. E. Solubility of amorphous calcium carbonate. J. Cryst. Growth. 1989, 98(3), pp 504–510. [70] Frykstrand, S.; Strietzel, C.; Forsgren, J.; Angstrom, J.; Potin, V.; Stromme, M. Synthesis, electron microscopy and X-ray characterization of oxymagnesite, MgO·2MgCO3, formed from amorphous magnesium carbonate. CrystEngComm, 2014, 16, pp 10837–10844. [71] Xu, J.; Yan, C.; Zhang, F.; Konishi, H.; Xu, H.; Teng, H. H. Testing the cation- hydration effect on the crystallization of Ca–Mg–CO3 systems. Proc. Natl. Acad. Sci. U.S.A. 2013, 110(44), pp 17750–17755. [72] Warren, J. Dolomite: occurrence, evolution and economically important associa- tions. Earth-Sci. Rev. 2000, 52(1), pp 1 – 81. [73] Silbey, R. J.; Alberty, R. A.; Bawendi, M. G. Physical Chemistry. John Wiley Sons, 2005. [74] Robie, R. A.; Hemingway, B. S. The enthalpies of formation of nesquehonite, MgCO3 3H2O, and hydromagnesite, 5MgO · 4CO2 · 5H 2O. Journal of Research of the U.S. Geological Survey.1973, 1, pp 543–547. [75] Xiao, J.; Yang, S. Bio-inspired synthesis: understanding and exploitation of the crystallization process from amorphous precursors. Nanoscale. 2012, 4(1), pp 54–65. [76] Kaptay, G. On the size and shape dependence of the solubility of nano-particles in solutions. Int. J. Pharm. 2012, 430(1), pp 253 – 257. [77] Pitzer, K. S.; Mayorga, G. Thermodynamics of electrolytes. II. activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 1973, 77(19), pp 2300–2308. [78] Pitzer, K. S.; Mayorga, G. Thermodynamics of electrolytes. III. activity and osmotic coefficients for 2–2 electrolytes. J. Phys. Chem. 1974, 3(7), pp 539–546. [79] Pitzer, K. S.; Kim, J. J. Thermodynamics of electrolytes. IV. activity and osmotic coefficients for mixed electrolytes. J. Phys. Chem. 1974, 96(18), pp 5701–5707. [80] Kim, H. T.; Frederick, W. J. Evaluation of pitzer ion interaction parameters of aqueous electrolytes at 25 degree C. J. Chem. Eng. Data. 1988, 33(2), pp 177– 184. [81] Harris, D. C. Quantitative chemical analysis. W.H. Freeman and Company, 2010. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69248 | - |
dc.description.abstract | 含鎂非晶相無序結構碳酸鈣 (MgACC) 在生物體中常被用來做為前驅物儲存,鎂的進入使得 ACC 相轉的瓶頸步驟脫水反應不易發生,大幅提高 ACC 的穩定度。不同物種及不同組織中 MgACC 的含鎂量差異甚大,含鎂量可從 5% 至 54%,組成的差異除了影響 ACC穩定度外,也調控了相轉晶相 calcite 中的鎂含量。生物體如何精準的控制 MgACC 含鎂量一直是科學家的疑問,本研究建立熱力學平衡的模型嘗試探討影響 MgACC 的含鎂量的因子,首先從 NMR 光譜研究 MgACC 的結構,發現 MgACC 是由無序結構碳酸鎂 (AMC) 和無序結構碳酸鈣 (ACC) 以奈米團簇聚集而成,因此在熱力學討論中,MgACC 的沉澱可以視為 AMC 和 ACC 兩種物種的平衡。實驗上利用微量混合器和緩衝溶液建立一個準確且可重複的系統,在不同 pH 值下製備不同含鎂量的 MgACC 樣品,並量測 AMC 和 ACC 的溶解度平衡常數,帶入熱力學平衡系統進行計算,擬合結果與實驗有良好的吻合,可得知在本研究中 MgACC 的生成確實是由熱力學平衡調控。除此之外,我們亦觀察到 AMC 溶解度隨 pH 值改變,其原因亦可用熱力學參數粒徑大小來解釋。因此我們或許可以透過這個模型進一步去了解生物體內調控含鎂量的機制。 | zh_TW |
dc.description.abstract | Amorphous calcium carbonate(ACC) has been established as the key precursor phase in the biogenic mineralization process of calcareous materials. Most biogenic ACCs contain Mg 2+ ions and the Mg content is rather specific in different species and tissues. It has long been an enigma how organisms control the Mg content of biogenic ACC. Using a pH buffer and a micromixer, Mg-stabilized amorphous calcium carbonates(MgACCs) were synthesized under well-controlled chemical conditions. In this study, we develop a thermodynamic equilibrium model to investigate the composition of MgACCs under different pH conditions. Solid-state NMR data revealed that there are two types of carbonate ions in MgACC, whose short range orders were identical to those of ACC and amorphous magnesium carbonate(AMC). Thus, the precipitation of MgACC could be contributed from the combination of ACC and AMC in our model. This model also include a set of ten chemical equilibria with the database of Pitzer equations. We successfully rationalize the chemical composition of MgACC with the combination of equilibrium model and thermodynamic parameters. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:11:20Z (GMT). No. of bitstreams: 1 ntu-106-R04223146-1.pdf: 15959863 bytes, checksum: a90d1f30e8d58e0c71de0c8729d00ca1 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書 iii
誌謝 v 摘要 ix Abstract xi 1 序論 1 1.1 生物礦化概要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 常見生物礦物 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 含鎂非晶態碳酸鈣 (Mg-stablilized amorphous calcium carbonate, MgACC) 3 1.3.1 非晶態碳酸鈣 (Amorphous calcium carbonate, ACC) . . . . . . 5 1.3.2 成核前碳酸鈣團簇 (prenucleation cluster, PNC) . . . . . . . . . 8 1.3.3 含鎂量的重要性 . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.4 影響含鎂量的變因 . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 生物礦化機制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.1 結晶理論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.2 熱力學與動力學 . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4.3 溶解度與粒徑的關係 . . . . . . . . . . . . . . . . . . . . . . . 17 1.5 動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 合成鑑定與熱力學模型建構 21 2.1 化學藥品與使用儀器 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.1 化學藥品 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.2 使用儀器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 實驗方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.1 微量反應器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.2 非晶態碳酸鎂的溶解度實驗 . . . . . . . . . . . . . . . . . . . 23 2.2.3 含鎂無序結構碳酸鈣的製備 . . . . . . . . . . . . . . . . . . . 25 2.3 儀器鑑定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 X-ray 粉末繞射分析 (X-ray powder diffraction, XRD) . . . . . . 27 2.3.2 傅立葉轉換紅外線光譜儀 (Fourier transform infrared spec- troscopy, FT-IR) . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.3 掃描式電子顯微鏡 (Scanning electron microscopy, SEM) . . . . 28 2.3.4 X-ray 能量散射光譜儀 (Energy-dispersive x-ray spectrometer, EDX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.5 感應耦合電漿質譜儀 (Inductively coupled plasma mass spec- troscopy, ICP-MS) . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.6 熱重分析儀 (Thermogravimetry Analyzer, TGA) . . . . . . . . . 31 2.3.7 差示掃描量熱法 (Differential scanning calorimetry, DSC) . . . . 31 2.3.8 元素分析儀 (Elemental Analyzer, EA) . . . . . . . . . . . . . . 31 2.3.9 固態核磁共振光譜 . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4 熱力學模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5 軟體 pHreeqc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.5.1 資料庫 (database) . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.5.2 離子活性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.5.3 軟體與模型適用性 . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5.4 物種分配 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.5.5 擬合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3 非晶態碳酸鎂的熱力學性質 47 3.1 非晶態碳酸鎂的基本鑑定 . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.1 IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.2 XRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.3 SEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.4 NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.1.5 TGA/DSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 非晶態碳酸鎂的室溫溶解度 . . . . . . . . . . . . . . . . . . . . . . . 51 3.2.1 鎂離子濃度測量 . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2.2 鈉離子濃度測量 . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2.3 碳酸根離子濃度測量 . . . . . . . . . . . . . . . . . . . . . . . 53 3.2.4 不同 pH 值的 AMC 溶解度 . . . . . . . . . . . . . . . . . . . . 56 3.3 非晶態碳酸鎂不同溫度的溶解度 . . . . . . . . . . . . . . . . . . . . . 58 3.4 小結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4 含鎂非晶態碳酸鈣系統 61 4.1 含鎂非晶態碳酸鈣的基本鑑定 . . . . . . . . . . . . . . . . . . . . . . 61 4.1.1 pH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.1.2 IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1.3 SEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 含鎂非晶態碳酸鈣的結構討論 . . . . . . . . . . . . . . . . . . . . . . 64 4.2.1 碳的化學位移 . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2.2 鎂含量的鑑定 . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 介穩態 (Steady State) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4 擬合結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4.1 利用獨立熱力學參數擬合 . . . . . . . . . . . . . . . . . . . . 69 4.4.2 非晶態碳酸鎂與非晶態碳酸鈣的溶解度 . . . . . . . . . . . . 70 4.4.3 利用 MgACC 系統得到參數擬合 . . . . . . . . . . . . . . . . . 71 4.4.4 混合的熵變化 . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.5 各溶解度的比較 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.5.1 非晶態碳酸鎂的溶解度比較 . . . . . . . . . . . . . . . . . . . 77 4.5.2 非晶態碳酸鈣的溶解度比較 . . . . . . . . . . . . . . . . . . . 80 4.6 小結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5 論文總結與未來展望 83 A 凡特霍夫方程 85 B 溶解度與粒徑的關係 87 C Pitzer equation 91 D 誤差傳遞 95 E t test 99 參考文獻 103 | |
dc.language.iso | zh-TW | |
dc.title | 含鎂非晶相碳酸鈣的化學組成分析-熱力學參數探討與模擬 | zh_TW |
dc.title | Modeling of the Chemical Composition of Mg-stabilized Amorphous Calcium Carbonate by Thermodynamic Parameters | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 牟中原,鄭原忠 | |
dc.subject.keyword | 碳酸鈣,熱力學模型,碳酸鎂, | zh_TW |
dc.subject.keyword | calcium carbonate,magnesium carbonate,thermodynamic model, | en |
dc.relation.page | 112 | |
dc.identifier.doi | 10.6342/NTU201704272 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-07-17 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 15.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。