Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69237
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor歐陽明(Ming Ouhyoung)
dc.contributor.authorCi-Syuan Yangen
dc.contributor.author楊騏瑄zh_TW
dc.date.accessioned2021-06-17T03:11:08Z-
dc.date.available2019-07-23
dc.date.copyright2018-07-23
dc.date.issued2018
dc.date.submitted2018-07-17
dc.identifier.citation[1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 214–223, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.
[2] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo. Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. arXiv preprint arXiv:1711.09020, 2017.
[3] M. Goin and T. Rees. A prospective study of patients’ psychological reactions to rhinoplasty. Annals of plastic surgery, 27 3:210–5, 1991.
[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 2672–2680. Curran Associates, Inc., 2014.
[5] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of wasserstein gans. CoRR, abs/1704.00028, 2017.
[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR, abs/1512.03385, 2015.
[7] X. Huang, Y. Li, O. Poursaeed, J. E. Hopcroft, and S. J. Belongie. Stacked generative adversarial networks. CoRR, abs/1612.04357, 2016.
[8] P. Isola, J. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial networks. CoRR, abs/1611.07004, 2016.
[9] V. Kazemi and J. Sullivan. One millisecond face alignment with an ensemble of regression trees. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages 1867–1874, June 2014.
[10] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim. Learning to discover cross-domain relations with generative adversarial networks. In Proceedings of the 34th International Conference on Machine Learning, volume 70, pages 1857–1865, 06–11 Aug 2017.
[11] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.
[12] I. Korshunova, W. Shi, J. Dambre, and L. Theis. Fast face-swap using convolutional neural networks. CoRR, abs/1611.09577, 2016.
[13] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. P. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-realistic single image super-resolution using a generative adversarial network. CoRR, abs/1609.04802, 2016.
[14] M. Li, W. Zuo, and D. Zhang. Deep identity-aware transfer of facial attributes. CoRR, abs/1610.05586, 2016.
[15] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. CoRR, abs/1411.7766, 2014.
[16] S. A. Rabi and P. Aarabi. Face fusion: An automatic method for virtual plastic surgery. In 2006 9th International Conference on Information Fusion, pages 1–7, July 2006.
[17] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015.
[18] W. Shen and R. Liu. Learning residual images for face attribute manipulation. CoRR, abs/1612.05363, 2016.
[19] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Instance normalization: The missing ingredient for fast stylization. CoRR, abs/1607.08022, 2016.
[20] T. Yamada, Y. Mori, K. Minami, K. Mishima, T. Sugahara, and M. Sakuda. Computer aided three-dimensional analysis of nostril forms: Application in normal and operated cleft lip patients. 27:345–53, 01 2000.
[21] Z. Zhang, Y. Song, and H. Qi. Age progression/regression by conditional adversarial autoencoder. CoRR, abs/1702.08423, 2017.
[22] J. J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial network. CoRR, abs/1609.03126, 2016.
[23] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593, 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69237-
dc.description.abstract本論文的目標是讓使用者模擬將自己的五官之一整形成理想人物的五官,並且使得被置換後的五官可以與使用者其餘未整形之五官恰當地融合。在先前的研究當中,五官置換(face features replacement)的方法通常為先進行五官特徵的偵測(feature detection)接以取代置換並輔以阿爾法混合(alpha blending)為主。然而,當使用者的照片中頭部姿勢與理想人物照片中的頭部姿勢有相當程度的不同之時或是光照情況差異較大之時,即便使用良好的混成方法(blending techniques),其合成的結果照片也往往不令人滿意。因此在過往五官的整形置換模擬必須限制在使用正臉的照片。本論文採用生成對抗式網路(generative adversarial network, GAN)的架構,並在損失函數(loss function)中加入重建損失(reconstruction loss)以及引導損失(guiding loss),以得到我們的結果。zh_TW
dc.description.abstractOur goal is to replace an individual's facial features with corresponding features of another individual and then fuse the replaced features with the original face. In previous studies, face features replacement can be done by face feature detection and simple replacement. However, when the pose of two faces are quite different, the synthesized image become barely plausible even with good blending techniques. Therefore, current face feature replacement techniques are limited to frontal face only. Our approach leverages the GAN to handle this limitation. Our proposed framework is automatic and does not need any markers on input image. Furthermore, by the introduction of reconstruction loss and guiding loss in GAN, the output image of our approach can preserve the content in source image.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:11:08Z (GMT). No. of bitstreams: 1
ntu-107-R05922101-1.pdf: 5063002 bytes, checksum: 6148d89cc55fd886e4bd79d10c1e6625 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書iii
誌謝v
摘要vii
Abstract ix
1 Introduction 1
2 Related Work 3
2.1 Face Feature Detection and replacement . . . . . . . . . . . . . . . . . . 3
2.2 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Image-to-Image Translation . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Overall System 5
3.1 Adversarial Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Modified Reconstruction Loss . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Guiding Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Full Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Guiding Function 11
4.1 Facial Landmark Detection . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Locate Lips Bounding Rectangle . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Replacement and Blending . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Implementation 17
5.1 Generator Network Architecture . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Discriminator Network Architecture . . . . . . . . . . . . . . . . . . . . 17
6 Experiment 19
6.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 Training Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.4 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7 Conclusion 27
Bibliography 29
dc.language.isoen
dc.subject生成對抗式網路zh_TW
dc.subject影像處理zh_TW
dc.subjectGenerative Adversarial Network (GAN)en
dc.subjectImage Processingen
dc.title使用生成對抗式網路模擬五官置換zh_TW
dc.titleFace Features Replacement Using Generative Adversarial
Network
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee傅楸善(Chiou-Shann Fuh),梁容輝(Rung-Huei Liang)
dc.subject.keyword生成對抗式網路,影像處理,zh_TW
dc.subject.keywordGenerative Adversarial Network (GAN),Image Processing,en
dc.relation.page31
dc.identifier.doi10.6342/NTU201801563
dc.rights.note有償授權
dc.date.accepted2018-07-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved